Factoring quartic into 2 quadratic polynomials: $x^4+ax^3+bx^2+cx+d =(x^2+g_1x+h_1)(x^2+g_2x+h_2)$
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
I would like to factor the quartic into two quadratic polynomials
$F(g),G(h)$:
beginalign*
x^4+ax^3+bx^2+cx+d & =(x^2+g_1x+h_1)(x^2+g_2x+h_2),\
& =x^4+(g_1+g_2)x^3+(g_1g_2+h_1+h_2)x^2+(g_1h_2+g_2h_1)x+h_1h_2,
endalign*
which leads to the following conditions (C1,C2,C3,C4) between the
roots $g_1,g_2$ and $h_1,h_2$
beginalign*
g_1+g_2 & =a,\
g_1g_2+h_1+h_2 & =b,\
g_1h_2+g_2h_1 & =c,\
h_1h_2 & =d.
endalign*
of the quadratic polynomials $F(g)$ and $F(h)$
beginalign*
F(g) & =g^2+Ag+B,\
G(h) & =h^2+Ch+D
endalign*
Using the Vieta's theorem, it obvious that 2 coefficients may be determined
directly $A=-a$, and $D=d$. However, the remaining coefficients
$B,C$ look more difficult. In the paper
https://ijpam.eu/contents/2011-71-2/7/7.pdf
I found the following solution. These quadratic polynomials
beginalign*
F(g,y) & =g^2-ag+b-y=0,\
G(h,y) & =h^2-yh+d=0,
endalign*
hold C1,C2,C4, their roots are
beginalign*
g_1,2 & =fraca2pmfracsqrta^2-4b+4y2,\
h_12 & =fracy2pmfracsqrty^2-4d2.
endalign*
Using the C3 condition, $y$ is determined from
beginalign*
g_1h_2+g_2h_1 & =left(fraca2+fracsqrta^2-4b+4y2right)left(fracy2-fracsqrty^2-4d2right)+left(fraca2-fracsqrta^2-4b+4y2right)left(fracy2+fracsqrty^2-4d2right)=c\
& =fracay-sqrty^2-4dsqrta^2-4*b+4*y2=c,
endalign*
which leads to the cubic equation for $y$
$$
y^3-by^2+(ac-4d)y+4bd-da^2-c^2=0.
$$
Let us do the following example: $a=-0.25,$ $b=-0.85$, $c=1.45$,
$d=-4.35$. There are two complex and 1 real roots of the cubic
y1=-0.043202328926409 + 4.119424154478284i
y2=-0.043202328926409 - 4.119424154478284i
y3=-0.763595342147182
The roots of $F(g,y)$ are real
g1=-0.444420816248437, g2= 0.194420816248437
as well as for the $G(h,y)$
h1=-2.502120632708732, h2 = 1.738525290561551
The back substitution leads to
beginalign*
g_1+g_2 & =-0.25,\
g_1g_2+h_1+h_2 & =-0.85,\
g_1h_2+g_2h_1 & =-1.259101164463204,\
h_1h_2 & =-4.35.
endalign*
Unfortunately, the relationship C3 is not held even for the complex
roots. This issue affects the quartic roots, which are incorrect:
beginalign*
x_12 & =frac12(-g_1pmsqrtg_1^2-4h_1),\
x_34 & =frac12(-g_2pmsqrtg_2^2-4h_2).
endalign*
Where is the problem? An incorrect formulas for $F(g,y)$ or
$G(h,y)$?
Thanks for your help.
The Matlab code:
clc
clear
syms a b c d y g h
format long
%Roots of quadratics
g = solve(g^2 - a*g + b - y, g)
h = solve(h^2 - y*h + d, h)
g1 = g(1); g2 = g(2);
h1 = h(1); h2 = h(2);
%Verifying the conditions
C1 = g1 + g2; %OK
C2 = simplify(g1 * g2 + h1 + h2); %OK
C4 = simplify(h1 * h2); %OK
%Cubic for C3
C3 = simplify(g1 * h2 + g2 *h1);
Q = expand(((y^2 - 4*d)*(a^2 - 4*b + 4*y))/4-((a*y)/2 -c)^2);
%Numerical verification
a = -0.25; b=-0.85; c = 1.45; d =-4.35;
%Roots of cubic and booth quadratics
y = roots([1 -b (a*c - 4*d) (-a^2*d - c^2 + 4*b*d)]);
y = y(3); %Use the real root
g = roots([1 -a (b - y)]);
h = roots([1 -y d]);
%Check the conditions
C11 = g(1) + g(2); %OK
C21 = g(1) * g(2) + h(1) + h(2); %OK
C31 = g(1) * h(2) + g(2) *h(1); % WRONG !
C41 = h(1) * h(2); %OK
%Roots of the quartic
x1 = 0.5*(-g(1) + sqrt(g(1)^2-4*h(1)))
x2 = 0.5*(-g(1) - sqrt(g(1)^2-4*h(1)))
x3 = 0.5*(-g(2) + sqrt(g(2)^2-4*h(2)))
x4 = 0.5*(-g(2) - sqrt(g(2)^2-4*h(2)))
algebra-precalculus polynomials quadratics quartic-equations
add a comment |Â
up vote
0
down vote
favorite
I would like to factor the quartic into two quadratic polynomials
$F(g),G(h)$:
beginalign*
x^4+ax^3+bx^2+cx+d & =(x^2+g_1x+h_1)(x^2+g_2x+h_2),\
& =x^4+(g_1+g_2)x^3+(g_1g_2+h_1+h_2)x^2+(g_1h_2+g_2h_1)x+h_1h_2,
endalign*
which leads to the following conditions (C1,C2,C3,C4) between the
roots $g_1,g_2$ and $h_1,h_2$
beginalign*
g_1+g_2 & =a,\
g_1g_2+h_1+h_2 & =b,\
g_1h_2+g_2h_1 & =c,\
h_1h_2 & =d.
endalign*
of the quadratic polynomials $F(g)$ and $F(h)$
beginalign*
F(g) & =g^2+Ag+B,\
G(h) & =h^2+Ch+D
endalign*
Using the Vieta's theorem, it obvious that 2 coefficients may be determined
directly $A=-a$, and $D=d$. However, the remaining coefficients
$B,C$ look more difficult. In the paper
https://ijpam.eu/contents/2011-71-2/7/7.pdf
I found the following solution. These quadratic polynomials
beginalign*
F(g,y) & =g^2-ag+b-y=0,\
G(h,y) & =h^2-yh+d=0,
endalign*
hold C1,C2,C4, their roots are
beginalign*
g_1,2 & =fraca2pmfracsqrta^2-4b+4y2,\
h_12 & =fracy2pmfracsqrty^2-4d2.
endalign*
Using the C3 condition, $y$ is determined from
beginalign*
g_1h_2+g_2h_1 & =left(fraca2+fracsqrta^2-4b+4y2right)left(fracy2-fracsqrty^2-4d2right)+left(fraca2-fracsqrta^2-4b+4y2right)left(fracy2+fracsqrty^2-4d2right)=c\
& =fracay-sqrty^2-4dsqrta^2-4*b+4*y2=c,
endalign*
which leads to the cubic equation for $y$
$$
y^3-by^2+(ac-4d)y+4bd-da^2-c^2=0.
$$
Let us do the following example: $a=-0.25,$ $b=-0.85$, $c=1.45$,
$d=-4.35$. There are two complex and 1 real roots of the cubic
y1=-0.043202328926409 + 4.119424154478284i
y2=-0.043202328926409 - 4.119424154478284i
y3=-0.763595342147182
The roots of $F(g,y)$ are real
g1=-0.444420816248437, g2= 0.194420816248437
as well as for the $G(h,y)$
h1=-2.502120632708732, h2 = 1.738525290561551
The back substitution leads to
beginalign*
g_1+g_2 & =-0.25,\
g_1g_2+h_1+h_2 & =-0.85,\
g_1h_2+g_2h_1 & =-1.259101164463204,\
h_1h_2 & =-4.35.
endalign*
Unfortunately, the relationship C3 is not held even for the complex
roots. This issue affects the quartic roots, which are incorrect:
beginalign*
x_12 & =frac12(-g_1pmsqrtg_1^2-4h_1),\
x_34 & =frac12(-g_2pmsqrtg_2^2-4h_2).
endalign*
Where is the problem? An incorrect formulas for $F(g,y)$ or
$G(h,y)$?
Thanks for your help.
The Matlab code:
clc
clear
syms a b c d y g h
format long
%Roots of quadratics
g = solve(g^2 - a*g + b - y, g)
h = solve(h^2 - y*h + d, h)
g1 = g(1); g2 = g(2);
h1 = h(1); h2 = h(2);
%Verifying the conditions
C1 = g1 + g2; %OK
C2 = simplify(g1 * g2 + h1 + h2); %OK
C4 = simplify(h1 * h2); %OK
%Cubic for C3
C3 = simplify(g1 * h2 + g2 *h1);
Q = expand(((y^2 - 4*d)*(a^2 - 4*b + 4*y))/4-((a*y)/2 -c)^2);
%Numerical verification
a = -0.25; b=-0.85; c = 1.45; d =-4.35;
%Roots of cubic and booth quadratics
y = roots([1 -b (a*c - 4*d) (-a^2*d - c^2 + 4*b*d)]);
y = y(3); %Use the real root
g = roots([1 -a (b - y)]);
h = roots([1 -y d]);
%Check the conditions
C11 = g(1) + g(2); %OK
C21 = g(1) * g(2) + h(1) + h(2); %OK
C31 = g(1) * h(2) + g(2) *h(1); % WRONG !
C41 = h(1) * h(2); %OK
%Roots of the quartic
x1 = 0.5*(-g(1) + sqrt(g(1)^2-4*h(1)))
x2 = 0.5*(-g(1) - sqrt(g(1)^2-4*h(1)))
x3 = 0.5*(-g(2) + sqrt(g(2)^2-4*h(2)))
x4 = 0.5*(-g(2) - sqrt(g(2)^2-4*h(2)))
algebra-precalculus polynomials quadratics quartic-equations
Did you try using $ g_1h_2+g_2h_1 =left(fraca2+fracsqrta^2-4b+4y2right)left(fracy2+fracsqrty^2-4d2right)+left(fraca2-fracsqrta^2-4b+4y2right)left(fracy2-fracsqrty^2-4d2right)=c$ ?
â N74
Aug 13 at 9:55
@ N74: Yes, it leads to the cubic equation for $y$, which is discussed in my post...
â justik
Aug 13 at 9:59
1
Note that I switched signs!
â N74
Aug 13 at 19:02
@ N74: Of course, you are right! Thank you very much.
â justik
Aug 13 at 19:54
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I would like to factor the quartic into two quadratic polynomials
$F(g),G(h)$:
beginalign*
x^4+ax^3+bx^2+cx+d & =(x^2+g_1x+h_1)(x^2+g_2x+h_2),\
& =x^4+(g_1+g_2)x^3+(g_1g_2+h_1+h_2)x^2+(g_1h_2+g_2h_1)x+h_1h_2,
endalign*
which leads to the following conditions (C1,C2,C3,C4) between the
roots $g_1,g_2$ and $h_1,h_2$
beginalign*
g_1+g_2 & =a,\
g_1g_2+h_1+h_2 & =b,\
g_1h_2+g_2h_1 & =c,\
h_1h_2 & =d.
endalign*
of the quadratic polynomials $F(g)$ and $F(h)$
beginalign*
F(g) & =g^2+Ag+B,\
G(h) & =h^2+Ch+D
endalign*
Using the Vieta's theorem, it obvious that 2 coefficients may be determined
directly $A=-a$, and $D=d$. However, the remaining coefficients
$B,C$ look more difficult. In the paper
https://ijpam.eu/contents/2011-71-2/7/7.pdf
I found the following solution. These quadratic polynomials
beginalign*
F(g,y) & =g^2-ag+b-y=0,\
G(h,y) & =h^2-yh+d=0,
endalign*
hold C1,C2,C4, their roots are
beginalign*
g_1,2 & =fraca2pmfracsqrta^2-4b+4y2,\
h_12 & =fracy2pmfracsqrty^2-4d2.
endalign*
Using the C3 condition, $y$ is determined from
beginalign*
g_1h_2+g_2h_1 & =left(fraca2+fracsqrta^2-4b+4y2right)left(fracy2-fracsqrty^2-4d2right)+left(fraca2-fracsqrta^2-4b+4y2right)left(fracy2+fracsqrty^2-4d2right)=c\
& =fracay-sqrty^2-4dsqrta^2-4*b+4*y2=c,
endalign*
which leads to the cubic equation for $y$
$$
y^3-by^2+(ac-4d)y+4bd-da^2-c^2=0.
$$
Let us do the following example: $a=-0.25,$ $b=-0.85$, $c=1.45$,
$d=-4.35$. There are two complex and 1 real roots of the cubic
y1=-0.043202328926409 + 4.119424154478284i
y2=-0.043202328926409 - 4.119424154478284i
y3=-0.763595342147182
The roots of $F(g,y)$ are real
g1=-0.444420816248437, g2= 0.194420816248437
as well as for the $G(h,y)$
h1=-2.502120632708732, h2 = 1.738525290561551
The back substitution leads to
beginalign*
g_1+g_2 & =-0.25,\
g_1g_2+h_1+h_2 & =-0.85,\
g_1h_2+g_2h_1 & =-1.259101164463204,\
h_1h_2 & =-4.35.
endalign*
Unfortunately, the relationship C3 is not held even for the complex
roots. This issue affects the quartic roots, which are incorrect:
beginalign*
x_12 & =frac12(-g_1pmsqrtg_1^2-4h_1),\
x_34 & =frac12(-g_2pmsqrtg_2^2-4h_2).
endalign*
Where is the problem? An incorrect formulas for $F(g,y)$ or
$G(h,y)$?
Thanks for your help.
The Matlab code:
clc
clear
syms a b c d y g h
format long
%Roots of quadratics
g = solve(g^2 - a*g + b - y, g)
h = solve(h^2 - y*h + d, h)
g1 = g(1); g2 = g(2);
h1 = h(1); h2 = h(2);
%Verifying the conditions
C1 = g1 + g2; %OK
C2 = simplify(g1 * g2 + h1 + h2); %OK
C4 = simplify(h1 * h2); %OK
%Cubic for C3
C3 = simplify(g1 * h2 + g2 *h1);
Q = expand(((y^2 - 4*d)*(a^2 - 4*b + 4*y))/4-((a*y)/2 -c)^2);
%Numerical verification
a = -0.25; b=-0.85; c = 1.45; d =-4.35;
%Roots of cubic and booth quadratics
y = roots([1 -b (a*c - 4*d) (-a^2*d - c^2 + 4*b*d)]);
y = y(3); %Use the real root
g = roots([1 -a (b - y)]);
h = roots([1 -y d]);
%Check the conditions
C11 = g(1) + g(2); %OK
C21 = g(1) * g(2) + h(1) + h(2); %OK
C31 = g(1) * h(2) + g(2) *h(1); % WRONG !
C41 = h(1) * h(2); %OK
%Roots of the quartic
x1 = 0.5*(-g(1) + sqrt(g(1)^2-4*h(1)))
x2 = 0.5*(-g(1) - sqrt(g(1)^2-4*h(1)))
x3 = 0.5*(-g(2) + sqrt(g(2)^2-4*h(2)))
x4 = 0.5*(-g(2) - sqrt(g(2)^2-4*h(2)))
algebra-precalculus polynomials quadratics quartic-equations
I would like to factor the quartic into two quadratic polynomials
$F(g),G(h)$:
beginalign*
x^4+ax^3+bx^2+cx+d & =(x^2+g_1x+h_1)(x^2+g_2x+h_2),\
& =x^4+(g_1+g_2)x^3+(g_1g_2+h_1+h_2)x^2+(g_1h_2+g_2h_1)x+h_1h_2,
endalign*
which leads to the following conditions (C1,C2,C3,C4) between the
roots $g_1,g_2$ and $h_1,h_2$
beginalign*
g_1+g_2 & =a,\
g_1g_2+h_1+h_2 & =b,\
g_1h_2+g_2h_1 & =c,\
h_1h_2 & =d.
endalign*
of the quadratic polynomials $F(g)$ and $F(h)$
beginalign*
F(g) & =g^2+Ag+B,\
G(h) & =h^2+Ch+D
endalign*
Using the Vieta's theorem, it obvious that 2 coefficients may be determined
directly $A=-a$, and $D=d$. However, the remaining coefficients
$B,C$ look more difficult. In the paper
https://ijpam.eu/contents/2011-71-2/7/7.pdf
I found the following solution. These quadratic polynomials
beginalign*
F(g,y) & =g^2-ag+b-y=0,\
G(h,y) & =h^2-yh+d=0,
endalign*
hold C1,C2,C4, their roots are
beginalign*
g_1,2 & =fraca2pmfracsqrta^2-4b+4y2,\
h_12 & =fracy2pmfracsqrty^2-4d2.
endalign*
Using the C3 condition, $y$ is determined from
beginalign*
g_1h_2+g_2h_1 & =left(fraca2+fracsqrta^2-4b+4y2right)left(fracy2-fracsqrty^2-4d2right)+left(fraca2-fracsqrta^2-4b+4y2right)left(fracy2+fracsqrty^2-4d2right)=c\
& =fracay-sqrty^2-4dsqrta^2-4*b+4*y2=c,
endalign*
which leads to the cubic equation for $y$
$$
y^3-by^2+(ac-4d)y+4bd-da^2-c^2=0.
$$
Let us do the following example: $a=-0.25,$ $b=-0.85$, $c=1.45$,
$d=-4.35$. There are two complex and 1 real roots of the cubic
y1=-0.043202328926409 + 4.119424154478284i
y2=-0.043202328926409 - 4.119424154478284i
y3=-0.763595342147182
The roots of $F(g,y)$ are real
g1=-0.444420816248437, g2= 0.194420816248437
as well as for the $G(h,y)$
h1=-2.502120632708732, h2 = 1.738525290561551
The back substitution leads to
beginalign*
g_1+g_2 & =-0.25,\
g_1g_2+h_1+h_2 & =-0.85,\
g_1h_2+g_2h_1 & =-1.259101164463204,\
h_1h_2 & =-4.35.
endalign*
Unfortunately, the relationship C3 is not held even for the complex
roots. This issue affects the quartic roots, which are incorrect:
beginalign*
x_12 & =frac12(-g_1pmsqrtg_1^2-4h_1),\
x_34 & =frac12(-g_2pmsqrtg_2^2-4h_2).
endalign*
Where is the problem? An incorrect formulas for $F(g,y)$ or
$G(h,y)$?
Thanks for your help.
The Matlab code:
clc
clear
syms a b c d y g h
format long
%Roots of quadratics
g = solve(g^2 - a*g + b - y, g)
h = solve(h^2 - y*h + d, h)
g1 = g(1); g2 = g(2);
h1 = h(1); h2 = h(2);
%Verifying the conditions
C1 = g1 + g2; %OK
C2 = simplify(g1 * g2 + h1 + h2); %OK
C4 = simplify(h1 * h2); %OK
%Cubic for C3
C3 = simplify(g1 * h2 + g2 *h1);
Q = expand(((y^2 - 4*d)*(a^2 - 4*b + 4*y))/4-((a*y)/2 -c)^2);
%Numerical verification
a = -0.25; b=-0.85; c = 1.45; d =-4.35;
%Roots of cubic and booth quadratics
y = roots([1 -b (a*c - 4*d) (-a^2*d - c^2 + 4*b*d)]);
y = y(3); %Use the real root
g = roots([1 -a (b - y)]);
h = roots([1 -y d]);
%Check the conditions
C11 = g(1) + g(2); %OK
C21 = g(1) * g(2) + h(1) + h(2); %OK
C31 = g(1) * h(2) + g(2) *h(1); % WRONG !
C41 = h(1) * h(2); %OK
%Roots of the quartic
x1 = 0.5*(-g(1) + sqrt(g(1)^2-4*h(1)))
x2 = 0.5*(-g(1) - sqrt(g(1)^2-4*h(1)))
x3 = 0.5*(-g(2) + sqrt(g(2)^2-4*h(2)))
x4 = 0.5*(-g(2) - sqrt(g(2)^2-4*h(2)))
algebra-precalculus polynomials quadratics quartic-equations
edited Aug 13 at 12:13
asked Aug 13 at 9:03
justik
23139
23139
Did you try using $ g_1h_2+g_2h_1 =left(fraca2+fracsqrta^2-4b+4y2right)left(fracy2+fracsqrty^2-4d2right)+left(fraca2-fracsqrta^2-4b+4y2right)left(fracy2-fracsqrty^2-4d2right)=c$ ?
â N74
Aug 13 at 9:55
@ N74: Yes, it leads to the cubic equation for $y$, which is discussed in my post...
â justik
Aug 13 at 9:59
1
Note that I switched signs!
â N74
Aug 13 at 19:02
@ N74: Of course, you are right! Thank you very much.
â justik
Aug 13 at 19:54
add a comment |Â
Did you try using $ g_1h_2+g_2h_1 =left(fraca2+fracsqrta^2-4b+4y2right)left(fracy2+fracsqrty^2-4d2right)+left(fraca2-fracsqrta^2-4b+4y2right)left(fracy2-fracsqrty^2-4d2right)=c$ ?
â N74
Aug 13 at 9:55
@ N74: Yes, it leads to the cubic equation for $y$, which is discussed in my post...
â justik
Aug 13 at 9:59
1
Note that I switched signs!
â N74
Aug 13 at 19:02
@ N74: Of course, you are right! Thank you very much.
â justik
Aug 13 at 19:54
Did you try using $ g_1h_2+g_2h_1 =left(fraca2+fracsqrta^2-4b+4y2right)left(fracy2+fracsqrty^2-4d2right)+left(fraca2-fracsqrta^2-4b+4y2right)left(fracy2-fracsqrty^2-4d2right)=c$ ?
â N74
Aug 13 at 9:55
Did you try using $ g_1h_2+g_2h_1 =left(fraca2+fracsqrta^2-4b+4y2right)left(fracy2+fracsqrty^2-4d2right)+left(fraca2-fracsqrta^2-4b+4y2right)left(fracy2-fracsqrty^2-4d2right)=c$ ?
â N74
Aug 13 at 9:55
@ N74: Yes, it leads to the cubic equation for $y$, which is discussed in my post...
â justik
Aug 13 at 9:59
@ N74: Yes, it leads to the cubic equation for $y$, which is discussed in my post...
â justik
Aug 13 at 9:59
1
1
Note that I switched signs!
â N74
Aug 13 at 19:02
Note that I switched signs!
â N74
Aug 13 at 19:02
@ N74: Of course, you are right! Thank you very much.
â justik
Aug 13 at 19:54
@ N74: Of course, you are right! Thank you very much.
â justik
Aug 13 at 19:54
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2881160%2ffactoring-quartic-into-2-quadratic-polynomials-x4ax3bx2cxd-x2%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Did you try using $ g_1h_2+g_2h_1 =left(fraca2+fracsqrta^2-4b+4y2right)left(fracy2+fracsqrty^2-4d2right)+left(fraca2-fracsqrta^2-4b+4y2right)left(fracy2-fracsqrty^2-4d2right)=c$ ?
â N74
Aug 13 at 9:55
@ N74: Yes, it leads to the cubic equation for $y$, which is discussed in my post...
â justik
Aug 13 at 9:59
1
Note that I switched signs!
â N74
Aug 13 at 19:02
@ N74: Of course, you are right! Thank you very much.
â justik
Aug 13 at 19:54