How I can define contour integration for Fox’s H function.

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Let $largeH_m,n^p,q$, the generalized upper incomplete Fox’s H function
given by
$$
largeH_m,n^p,qleft( z left| beginarraycc (a_1,alpha_1,A_1)cdots (a_p,alpha_p,A_p) \ (a_1,alpha_1,A_1)cdots (b_p,beta_p,B_p) endarray right. right).
$$
$$
frac12pi joint_L frac
prod_i=1^mGamma(b_i+beta_is,B_i)prod_i=1^nGamma(1-a_i-alpha_is,A_i)
prod_i=n+1^pGamma(a_i+alpha_is,A_i) prod_i=m+1^qGamma(1-b_i-beta_is,B_i)
z^-sds.
$$
I use this function and I get
$$
largeH_1,3^2,1left( beta x left| beginarraycc (1,1,0) \ (1,1,beta),(1,1,beta),(0,1,0) endarray right. right).
$$
$$
frac12pi joint_L frac
Gamma(1+s,beta)^2Gamma(-s,0)
Gamma(1-s,0)
(beta x)^-sds.
$$
where $x$ and $beta$ are real positive values ($beta$ diffrent from $beta_j$).
I write the last expression in mathematica.
Now in order to compute this integral the authors said
the contour $L$ is specially chosen such that it is a Mellin-Barnes contour in the complex
s-plane running from $c-iinfty$ to Ü¿$c+iinfty$ and the points
$$
s_1=(-b_j-k)/beta_j
$$
for $j=1,2,cdots,m$ and $k=1,2,cdots$ and the points
$$
s_2=(1-a_i+k)/alpha_i
$$
for $i=1,2,cdots,n$ and $k=1,2,cdots$ lie to the left and right of the
chosen contour $L$, respectively.



Now my value are $b_jin1,0$ and $beta_j=1$.
Also $a_i=1$ and $alpha_i=1$.



I run program to see value of $s_1$ and $s_2$, I found that the value of $s_1$ go from $0$ to $-infty$ and value of $s_2$ go from $0$ to $+infty$. Also both of them have one value the same, is $0$.



Now I have problem to define $c$ of $L$.



I would like if it possible how please I can chose this $c$ and $L$.



Thanks.







share|cite|improve this question
























    up vote
    0
    down vote

    favorite












    Let $largeH_m,n^p,q$, the generalized upper incomplete Fox’s H function
    given by
    $$
    largeH_m,n^p,qleft( z left| beginarraycc (a_1,alpha_1,A_1)cdots (a_p,alpha_p,A_p) \ (a_1,alpha_1,A_1)cdots (b_p,beta_p,B_p) endarray right. right).
    $$
    $$
    frac12pi joint_L frac
    prod_i=1^mGamma(b_i+beta_is,B_i)prod_i=1^nGamma(1-a_i-alpha_is,A_i)
    prod_i=n+1^pGamma(a_i+alpha_is,A_i) prod_i=m+1^qGamma(1-b_i-beta_is,B_i)
    z^-sds.
    $$
    I use this function and I get
    $$
    largeH_1,3^2,1left( beta x left| beginarraycc (1,1,0) \ (1,1,beta),(1,1,beta),(0,1,0) endarray right. right).
    $$
    $$
    frac12pi joint_L frac
    Gamma(1+s,beta)^2Gamma(-s,0)
    Gamma(1-s,0)
    (beta x)^-sds.
    $$
    where $x$ and $beta$ are real positive values ($beta$ diffrent from $beta_j$).
    I write the last expression in mathematica.
    Now in order to compute this integral the authors said
    the contour $L$ is specially chosen such that it is a Mellin-Barnes contour in the complex
    s-plane running from $c-iinfty$ to Ü¿$c+iinfty$ and the points
    $$
    s_1=(-b_j-k)/beta_j
    $$
    for $j=1,2,cdots,m$ and $k=1,2,cdots$ and the points
    $$
    s_2=(1-a_i+k)/alpha_i
    $$
    for $i=1,2,cdots,n$ and $k=1,2,cdots$ lie to the left and right of the
    chosen contour $L$, respectively.



    Now my value are $b_jin1,0$ and $beta_j=1$.
    Also $a_i=1$ and $alpha_i=1$.



    I run program to see value of $s_1$ and $s_2$, I found that the value of $s_1$ go from $0$ to $-infty$ and value of $s_2$ go from $0$ to $+infty$. Also both of them have one value the same, is $0$.



    Now I have problem to define $c$ of $L$.



    I would like if it possible how please I can chose this $c$ and $L$.



    Thanks.







    share|cite|improve this question






















      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Let $largeH_m,n^p,q$, the generalized upper incomplete Fox’s H function
      given by
      $$
      largeH_m,n^p,qleft( z left| beginarraycc (a_1,alpha_1,A_1)cdots (a_p,alpha_p,A_p) \ (a_1,alpha_1,A_1)cdots (b_p,beta_p,B_p) endarray right. right).
      $$
      $$
      frac12pi joint_L frac
      prod_i=1^mGamma(b_i+beta_is,B_i)prod_i=1^nGamma(1-a_i-alpha_is,A_i)
      prod_i=n+1^pGamma(a_i+alpha_is,A_i) prod_i=m+1^qGamma(1-b_i-beta_is,B_i)
      z^-sds.
      $$
      I use this function and I get
      $$
      largeH_1,3^2,1left( beta x left| beginarraycc (1,1,0) \ (1,1,beta),(1,1,beta),(0,1,0) endarray right. right).
      $$
      $$
      frac12pi joint_L frac
      Gamma(1+s,beta)^2Gamma(-s,0)
      Gamma(1-s,0)
      (beta x)^-sds.
      $$
      where $x$ and $beta$ are real positive values ($beta$ diffrent from $beta_j$).
      I write the last expression in mathematica.
      Now in order to compute this integral the authors said
      the contour $L$ is specially chosen such that it is a Mellin-Barnes contour in the complex
      s-plane running from $c-iinfty$ to Ü¿$c+iinfty$ and the points
      $$
      s_1=(-b_j-k)/beta_j
      $$
      for $j=1,2,cdots,m$ and $k=1,2,cdots$ and the points
      $$
      s_2=(1-a_i+k)/alpha_i
      $$
      for $i=1,2,cdots,n$ and $k=1,2,cdots$ lie to the left and right of the
      chosen contour $L$, respectively.



      Now my value are $b_jin1,0$ and $beta_j=1$.
      Also $a_i=1$ and $alpha_i=1$.



      I run program to see value of $s_1$ and $s_2$, I found that the value of $s_1$ go from $0$ to $-infty$ and value of $s_2$ go from $0$ to $+infty$. Also both of them have one value the same, is $0$.



      Now I have problem to define $c$ of $L$.



      I would like if it possible how please I can chose this $c$ and $L$.



      Thanks.







      share|cite|improve this question












      Let $largeH_m,n^p,q$, the generalized upper incomplete Fox’s H function
      given by
      $$
      largeH_m,n^p,qleft( z left| beginarraycc (a_1,alpha_1,A_1)cdots (a_p,alpha_p,A_p) \ (a_1,alpha_1,A_1)cdots (b_p,beta_p,B_p) endarray right. right).
      $$
      $$
      frac12pi joint_L frac
      prod_i=1^mGamma(b_i+beta_is,B_i)prod_i=1^nGamma(1-a_i-alpha_is,A_i)
      prod_i=n+1^pGamma(a_i+alpha_is,A_i) prod_i=m+1^qGamma(1-b_i-beta_is,B_i)
      z^-sds.
      $$
      I use this function and I get
      $$
      largeH_1,3^2,1left( beta x left| beginarraycc (1,1,0) \ (1,1,beta),(1,1,beta),(0,1,0) endarray right. right).
      $$
      $$
      frac12pi joint_L frac
      Gamma(1+s,beta)^2Gamma(-s,0)
      Gamma(1-s,0)
      (beta x)^-sds.
      $$
      where $x$ and $beta$ are real positive values ($beta$ diffrent from $beta_j$).
      I write the last expression in mathematica.
      Now in order to compute this integral the authors said
      the contour $L$ is specially chosen such that it is a Mellin-Barnes contour in the complex
      s-plane running from $c-iinfty$ to Ü¿$c+iinfty$ and the points
      $$
      s_1=(-b_j-k)/beta_j
      $$
      for $j=1,2,cdots,m$ and $k=1,2,cdots$ and the points
      $$
      s_2=(1-a_i+k)/alpha_i
      $$
      for $i=1,2,cdots,n$ and $k=1,2,cdots$ lie to the left and right of the
      chosen contour $L$, respectively.



      Now my value are $b_jin1,0$ and $beta_j=1$.
      Also $a_i=1$ and $alpha_i=1$.



      I run program to see value of $s_1$ and $s_2$, I found that the value of $s_1$ go from $0$ to $-infty$ and value of $s_2$ go from $0$ to $+infty$. Also both of them have one value the same, is $0$.



      Now I have problem to define $c$ of $L$.



      I would like if it possible how please I can chose this $c$ and $L$.



      Thanks.









      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Aug 27 at 16:03









      Monir

      12




      12

























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2896341%2fhow-i-can-define-contour-integration-for-fox-s-h-function%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















           

          draft saved


          draft discarded















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2896341%2fhow-i-can-define-contour-integration-for-fox-s-h-function%23new-answer', 'question_page');

          );

          Post as a guest













































































          這個網誌中的熱門文章

          How to combine Bézier curves to a surface?

          Mutual Information Always Non-negative

          Why am i infinitely getting the same tweet with the Twitter Search API?