Analytic integration of discontinuous function

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












I'm trying to calculate the convolution between a Gaussian and a discontinuous function:
$$(f*g)(t)=int_-infty^infty f(tau),g(t-tau),mathrmdtau$$



Where
$$f(tgeq0)=mathrmexp(-kt),,f(t<0)=0$$


$$g(t)=frac1sigmasqrt(2pi)mathrmexp(-frac12(fract- musigma)^2)$$



I've managed to calculate the positive part by limiting the integral domain:



$$int_0^infty f(tau),g(t-tau),mathrmdtau =frac12mathrmexp(-kt),mathrmexp(frack2(ksigma^2+2mu)),left(mathrmerfleft(fract-,k,sigma ^2-,musqrt2,sigma right)+1right)$$




Is there any way to calculate the negative part ?


Update:
$$(f*g)(t)=int_-infty^infty f(tau),g(t-tau),mathrmdtau=int_-infty^0 f(tau),g(t-tau),mathrmdtau+int_0^infty f(tau),g(t-tau),mathrmdtau=0+int_0^infty f(tau),g(t-tau),mathrmdtau$$







share|cite|improve this question






















  • What do you mean by "even $f(t)$ is zero, the integral is not"?
    – Sobi
    Aug 27 at 15:58






  • 1




    Maybe this will help. If $y<0$, then $f(y)=0$, so also $f(y)g(t-y)=0$, so $int_-infty^0 f(y)g(t-y)textdy = 0$
    – Rumpelstiltskin
    Aug 27 at 15:58











  • @Sobi at t<0, g(t) still overlap with the positive part of f(t), note that the integration is not with respect to t.
    – 7E10FC9A
    Aug 27 at 16:11










  • @7E10FC9A But you're integrating with respect to $tau$, and you have $f(tau)$ in your integral. So when $tau < 0,$ then $f(tau) = 0$ and the integral is $0$.
    – Sobi
    Aug 27 at 16:12














up vote
0
down vote

favorite












I'm trying to calculate the convolution between a Gaussian and a discontinuous function:
$$(f*g)(t)=int_-infty^infty f(tau),g(t-tau),mathrmdtau$$



Where
$$f(tgeq0)=mathrmexp(-kt),,f(t<0)=0$$


$$g(t)=frac1sigmasqrt(2pi)mathrmexp(-frac12(fract- musigma)^2)$$



I've managed to calculate the positive part by limiting the integral domain:



$$int_0^infty f(tau),g(t-tau),mathrmdtau =frac12mathrmexp(-kt),mathrmexp(frack2(ksigma^2+2mu)),left(mathrmerfleft(fract-,k,sigma ^2-,musqrt2,sigma right)+1right)$$




Is there any way to calculate the negative part ?


Update:
$$(f*g)(t)=int_-infty^infty f(tau),g(t-tau),mathrmdtau=int_-infty^0 f(tau),g(t-tau),mathrmdtau+int_0^infty f(tau),g(t-tau),mathrmdtau=0+int_0^infty f(tau),g(t-tau),mathrmdtau$$







share|cite|improve this question






















  • What do you mean by "even $f(t)$ is zero, the integral is not"?
    – Sobi
    Aug 27 at 15:58






  • 1




    Maybe this will help. If $y<0$, then $f(y)=0$, so also $f(y)g(t-y)=0$, so $int_-infty^0 f(y)g(t-y)textdy = 0$
    – Rumpelstiltskin
    Aug 27 at 15:58











  • @Sobi at t<0, g(t) still overlap with the positive part of f(t), note that the integration is not with respect to t.
    – 7E10FC9A
    Aug 27 at 16:11










  • @7E10FC9A But you're integrating with respect to $tau$, and you have $f(tau)$ in your integral. So when $tau < 0,$ then $f(tau) = 0$ and the integral is $0$.
    – Sobi
    Aug 27 at 16:12












up vote
0
down vote

favorite









up vote
0
down vote

favorite











I'm trying to calculate the convolution between a Gaussian and a discontinuous function:
$$(f*g)(t)=int_-infty^infty f(tau),g(t-tau),mathrmdtau$$



Where
$$f(tgeq0)=mathrmexp(-kt),,f(t<0)=0$$


$$g(t)=frac1sigmasqrt(2pi)mathrmexp(-frac12(fract- musigma)^2)$$



I've managed to calculate the positive part by limiting the integral domain:



$$int_0^infty f(tau),g(t-tau),mathrmdtau =frac12mathrmexp(-kt),mathrmexp(frack2(ksigma^2+2mu)),left(mathrmerfleft(fract-,k,sigma ^2-,musqrt2,sigma right)+1right)$$




Is there any way to calculate the negative part ?


Update:
$$(f*g)(t)=int_-infty^infty f(tau),g(t-tau),mathrmdtau=int_-infty^0 f(tau),g(t-tau),mathrmdtau+int_0^infty f(tau),g(t-tau),mathrmdtau=0+int_0^infty f(tau),g(t-tau),mathrmdtau$$







share|cite|improve this question














I'm trying to calculate the convolution between a Gaussian and a discontinuous function:
$$(f*g)(t)=int_-infty^infty f(tau),g(t-tau),mathrmdtau$$



Where
$$f(tgeq0)=mathrmexp(-kt),,f(t<0)=0$$


$$g(t)=frac1sigmasqrt(2pi)mathrmexp(-frac12(fract- musigma)^2)$$



I've managed to calculate the positive part by limiting the integral domain:



$$int_0^infty f(tau),g(t-tau),mathrmdtau =frac12mathrmexp(-kt),mathrmexp(frack2(ksigma^2+2mu)),left(mathrmerfleft(fract-,k,sigma ^2-,musqrt2,sigma right)+1right)$$




Is there any way to calculate the negative part ?


Update:
$$(f*g)(t)=int_-infty^infty f(tau),g(t-tau),mathrmdtau=int_-infty^0 f(tau),g(t-tau),mathrmdtau+int_0^infty f(tau),g(t-tau),mathrmdtau=0+int_0^infty f(tau),g(t-tau),mathrmdtau$$









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 27 at 16:34

























asked Aug 27 at 15:55









7E10FC9A

33




33











  • What do you mean by "even $f(t)$ is zero, the integral is not"?
    – Sobi
    Aug 27 at 15:58






  • 1




    Maybe this will help. If $y<0$, then $f(y)=0$, so also $f(y)g(t-y)=0$, so $int_-infty^0 f(y)g(t-y)textdy = 0$
    – Rumpelstiltskin
    Aug 27 at 15:58











  • @Sobi at t<0, g(t) still overlap with the positive part of f(t), note that the integration is not with respect to t.
    – 7E10FC9A
    Aug 27 at 16:11










  • @7E10FC9A But you're integrating with respect to $tau$, and you have $f(tau)$ in your integral. So when $tau < 0,$ then $f(tau) = 0$ and the integral is $0$.
    – Sobi
    Aug 27 at 16:12
















  • What do you mean by "even $f(t)$ is zero, the integral is not"?
    – Sobi
    Aug 27 at 15:58






  • 1




    Maybe this will help. If $y<0$, then $f(y)=0$, so also $f(y)g(t-y)=0$, so $int_-infty^0 f(y)g(t-y)textdy = 0$
    – Rumpelstiltskin
    Aug 27 at 15:58











  • @Sobi at t<0, g(t) still overlap with the positive part of f(t), note that the integration is not with respect to t.
    – 7E10FC9A
    Aug 27 at 16:11










  • @7E10FC9A But you're integrating with respect to $tau$, and you have $f(tau)$ in your integral. So when $tau < 0,$ then $f(tau) = 0$ and the integral is $0$.
    – Sobi
    Aug 27 at 16:12















What do you mean by "even $f(t)$ is zero, the integral is not"?
– Sobi
Aug 27 at 15:58




What do you mean by "even $f(t)$ is zero, the integral is not"?
– Sobi
Aug 27 at 15:58




1




1




Maybe this will help. If $y<0$, then $f(y)=0$, so also $f(y)g(t-y)=0$, so $int_-infty^0 f(y)g(t-y)textdy = 0$
– Rumpelstiltskin
Aug 27 at 15:58





Maybe this will help. If $y<0$, then $f(y)=0$, so also $f(y)g(t-y)=0$, so $int_-infty^0 f(y)g(t-y)textdy = 0$
– Rumpelstiltskin
Aug 27 at 15:58













@Sobi at t<0, g(t) still overlap with the positive part of f(t), note that the integration is not with respect to t.
– 7E10FC9A
Aug 27 at 16:11




@Sobi at t<0, g(t) still overlap with the positive part of f(t), note that the integration is not with respect to t.
– 7E10FC9A
Aug 27 at 16:11












@7E10FC9A But you're integrating with respect to $tau$, and you have $f(tau)$ in your integral. So when $tau < 0,$ then $f(tau) = 0$ and the integral is $0$.
– Sobi
Aug 27 at 16:12




@7E10FC9A But you're integrating with respect to $tau$, and you have $f(tau)$ in your integral. So when $tau < 0,$ then $f(tau) = 0$ and the integral is $0$.
– Sobi
Aug 27 at 16:12










1 Answer
1






active

oldest

votes

















up vote
2
down vote



accepted










You have
$$ (f*g)(t) = int_-infty^infty f(tau)g(t-tau) , dtau = int_0^infty f(tau)g(t-tau) , dtau + int_-infty^0 f(tau)g(t-tau) , dtau. $$
You already computed the first integral, and the second integral is $0$, since $f(tau) = 0$ for all $tau < 0$.






share|cite|improve this answer




















  • Yes, you are right. Thx.
    – 7E10FC9A
    Aug 27 at 16:35










Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2896332%2fanalytic-integration-of-discontinuous-function%23new-answer', 'question_page');

);

Post as a guest






























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
2
down vote



accepted










You have
$$ (f*g)(t) = int_-infty^infty f(tau)g(t-tau) , dtau = int_0^infty f(tau)g(t-tau) , dtau + int_-infty^0 f(tau)g(t-tau) , dtau. $$
You already computed the first integral, and the second integral is $0$, since $f(tau) = 0$ for all $tau < 0$.






share|cite|improve this answer




















  • Yes, you are right. Thx.
    – 7E10FC9A
    Aug 27 at 16:35














up vote
2
down vote



accepted










You have
$$ (f*g)(t) = int_-infty^infty f(tau)g(t-tau) , dtau = int_0^infty f(tau)g(t-tau) , dtau + int_-infty^0 f(tau)g(t-tau) , dtau. $$
You already computed the first integral, and the second integral is $0$, since $f(tau) = 0$ for all $tau < 0$.






share|cite|improve this answer




















  • Yes, you are right. Thx.
    – 7E10FC9A
    Aug 27 at 16:35












up vote
2
down vote



accepted







up vote
2
down vote



accepted






You have
$$ (f*g)(t) = int_-infty^infty f(tau)g(t-tau) , dtau = int_0^infty f(tau)g(t-tau) , dtau + int_-infty^0 f(tau)g(t-tau) , dtau. $$
You already computed the first integral, and the second integral is $0$, since $f(tau) = 0$ for all $tau < 0$.






share|cite|improve this answer












You have
$$ (f*g)(t) = int_-infty^infty f(tau)g(t-tau) , dtau = int_0^infty f(tau)g(t-tau) , dtau + int_-infty^0 f(tau)g(t-tau) , dtau. $$
You already computed the first integral, and the second integral is $0$, since $f(tau) = 0$ for all $tau < 0$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Aug 27 at 16:21









Sobi

2,418315




2,418315











  • Yes, you are right. Thx.
    – 7E10FC9A
    Aug 27 at 16:35
















  • Yes, you are right. Thx.
    – 7E10FC9A
    Aug 27 at 16:35















Yes, you are right. Thx.
– 7E10FC9A
Aug 27 at 16:35




Yes, you are right. Thx.
– 7E10FC9A
Aug 27 at 16:35

















 

draft saved


draft discarded















































 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2896332%2fanalytic-integration-of-discontinuous-function%23new-answer', 'question_page');

);

Post as a guest













































































這個網誌中的熱門文章

How to combine Bézier curves to a surface?

Mutual Information Always Non-negative

Why am i infinitely getting the same tweet with the Twitter Search API?