Analytic integration of discontinuous function
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
I'm trying to calculate the convolution between a Gaussian and a discontinuous function:
$$(f*g)(t)=int_-infty^infty f(tau),g(t-tau),mathrmdtau$$
Where
$$f(tgeq0)=mathrmexp(-kt),,f(t<0)=0$$
$$g(t)=frac1sigmasqrt(2pi)mathrmexp(-frac12(fract- musigma)^2)$$
I've managed to calculate the positive part by limiting the integral domain:
$$int_0^infty f(tau),g(t-tau),mathrmdtau =frac12mathrmexp(-kt),mathrmexp(frack2(ksigma^2+2mu)),left(mathrmerfleft(fract-,k,sigma ^2-,musqrt2,sigma right)+1right)$$
Is there any way to calculate the negative part ?
Update:
$$(f*g)(t)=int_-infty^infty f(tau),g(t-tau),mathrmdtau=int_-infty^0 f(tau),g(t-tau),mathrmdtau+int_0^infty f(tau),g(t-tau),mathrmdtau=0+int_0^infty f(tau),g(t-tau),mathrmdtau$$
integration definite-integrals convolution discontinuous-functions
add a comment |Â
up vote
0
down vote
favorite
I'm trying to calculate the convolution between a Gaussian and a discontinuous function:
$$(f*g)(t)=int_-infty^infty f(tau),g(t-tau),mathrmdtau$$
Where
$$f(tgeq0)=mathrmexp(-kt),,f(t<0)=0$$
$$g(t)=frac1sigmasqrt(2pi)mathrmexp(-frac12(fract- musigma)^2)$$
I've managed to calculate the positive part by limiting the integral domain:
$$int_0^infty f(tau),g(t-tau),mathrmdtau =frac12mathrmexp(-kt),mathrmexp(frack2(ksigma^2+2mu)),left(mathrmerfleft(fract-,k,sigma ^2-,musqrt2,sigma right)+1right)$$
Is there any way to calculate the negative part ?
Update:
$$(f*g)(t)=int_-infty^infty f(tau),g(t-tau),mathrmdtau=int_-infty^0 f(tau),g(t-tau),mathrmdtau+int_0^infty f(tau),g(t-tau),mathrmdtau=0+int_0^infty f(tau),g(t-tau),mathrmdtau$$
integration definite-integrals convolution discontinuous-functions
What do you mean by "even $f(t)$ is zero, the integral is not"?
â Sobi
Aug 27 at 15:58
1
Maybe this will help. If $y<0$, then $f(y)=0$, so also $f(y)g(t-y)=0$, so $int_-infty^0 f(y)g(t-y)textdy = 0$
â Rumpelstiltskin
Aug 27 at 15:58
@Sobi at t<0, g(t) still overlap with the positive part of f(t), note that the integration is not with respect to t.
â 7E10FC9A
Aug 27 at 16:11
@7E10FC9A But you're integrating with respect to $tau$, and you have $f(tau)$ in your integral. So when $tau < 0,$ then $f(tau) = 0$ and the integral is $0$.
â Sobi
Aug 27 at 16:12
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I'm trying to calculate the convolution between a Gaussian and a discontinuous function:
$$(f*g)(t)=int_-infty^infty f(tau),g(t-tau),mathrmdtau$$
Where
$$f(tgeq0)=mathrmexp(-kt),,f(t<0)=0$$
$$g(t)=frac1sigmasqrt(2pi)mathrmexp(-frac12(fract- musigma)^2)$$
I've managed to calculate the positive part by limiting the integral domain:
$$int_0^infty f(tau),g(t-tau),mathrmdtau =frac12mathrmexp(-kt),mathrmexp(frack2(ksigma^2+2mu)),left(mathrmerfleft(fract-,k,sigma ^2-,musqrt2,sigma right)+1right)$$
Is there any way to calculate the negative part ?
Update:
$$(f*g)(t)=int_-infty^infty f(tau),g(t-tau),mathrmdtau=int_-infty^0 f(tau),g(t-tau),mathrmdtau+int_0^infty f(tau),g(t-tau),mathrmdtau=0+int_0^infty f(tau),g(t-tau),mathrmdtau$$
integration definite-integrals convolution discontinuous-functions
I'm trying to calculate the convolution between a Gaussian and a discontinuous function:
$$(f*g)(t)=int_-infty^infty f(tau),g(t-tau),mathrmdtau$$
Where
$$f(tgeq0)=mathrmexp(-kt),,f(t<0)=0$$
$$g(t)=frac1sigmasqrt(2pi)mathrmexp(-frac12(fract- musigma)^2)$$
I've managed to calculate the positive part by limiting the integral domain:
$$int_0^infty f(tau),g(t-tau),mathrmdtau =frac12mathrmexp(-kt),mathrmexp(frack2(ksigma^2+2mu)),left(mathrmerfleft(fract-,k,sigma ^2-,musqrt2,sigma right)+1right)$$
Is there any way to calculate the negative part ?
Update:
$$(f*g)(t)=int_-infty^infty f(tau),g(t-tau),mathrmdtau=int_-infty^0 f(tau),g(t-tau),mathrmdtau+int_0^infty f(tau),g(t-tau),mathrmdtau=0+int_0^infty f(tau),g(t-tau),mathrmdtau$$
integration definite-integrals convolution discontinuous-functions
edited Aug 27 at 16:34
asked Aug 27 at 15:55
7E10FC9A
33
33
What do you mean by "even $f(t)$ is zero, the integral is not"?
â Sobi
Aug 27 at 15:58
1
Maybe this will help. If $y<0$, then $f(y)=0$, so also $f(y)g(t-y)=0$, so $int_-infty^0 f(y)g(t-y)textdy = 0$
â Rumpelstiltskin
Aug 27 at 15:58
@Sobi at t<0, g(t) still overlap with the positive part of f(t), note that the integration is not with respect to t.
â 7E10FC9A
Aug 27 at 16:11
@7E10FC9A But you're integrating with respect to $tau$, and you have $f(tau)$ in your integral. So when $tau < 0,$ then $f(tau) = 0$ and the integral is $0$.
â Sobi
Aug 27 at 16:12
add a comment |Â
What do you mean by "even $f(t)$ is zero, the integral is not"?
â Sobi
Aug 27 at 15:58
1
Maybe this will help. If $y<0$, then $f(y)=0$, so also $f(y)g(t-y)=0$, so $int_-infty^0 f(y)g(t-y)textdy = 0$
â Rumpelstiltskin
Aug 27 at 15:58
@Sobi at t<0, g(t) still overlap with the positive part of f(t), note that the integration is not with respect to t.
â 7E10FC9A
Aug 27 at 16:11
@7E10FC9A But you're integrating with respect to $tau$, and you have $f(tau)$ in your integral. So when $tau < 0,$ then $f(tau) = 0$ and the integral is $0$.
â Sobi
Aug 27 at 16:12
What do you mean by "even $f(t)$ is zero, the integral is not"?
â Sobi
Aug 27 at 15:58
What do you mean by "even $f(t)$ is zero, the integral is not"?
â Sobi
Aug 27 at 15:58
1
1
Maybe this will help. If $y<0$, then $f(y)=0$, so also $f(y)g(t-y)=0$, so $int_-infty^0 f(y)g(t-y)textdy = 0$
â Rumpelstiltskin
Aug 27 at 15:58
Maybe this will help. If $y<0$, then $f(y)=0$, so also $f(y)g(t-y)=0$, so $int_-infty^0 f(y)g(t-y)textdy = 0$
â Rumpelstiltskin
Aug 27 at 15:58
@Sobi at t<0, g(t) still overlap with the positive part of f(t), note that the integration is not with respect to t.
â 7E10FC9A
Aug 27 at 16:11
@Sobi at t<0, g(t) still overlap with the positive part of f(t), note that the integration is not with respect to t.
â 7E10FC9A
Aug 27 at 16:11
@7E10FC9A But you're integrating with respect to $tau$, and you have $f(tau)$ in your integral. So when $tau < 0,$ then $f(tau) = 0$ and the integral is $0$.
â Sobi
Aug 27 at 16:12
@7E10FC9A But you're integrating with respect to $tau$, and you have $f(tau)$ in your integral. So when $tau < 0,$ then $f(tau) = 0$ and the integral is $0$.
â Sobi
Aug 27 at 16:12
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
2
down vote
accepted
You have
$$ (f*g)(t) = int_-infty^infty f(tau)g(t-tau) , dtau = int_0^infty f(tau)g(t-tau) , dtau + int_-infty^0 f(tau)g(t-tau) , dtau. $$
You already computed the first integral, and the second integral is $0$, since $f(tau) = 0$ for all $tau < 0$.
Yes, you are right. Thx.
â 7E10FC9A
Aug 27 at 16:35
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
You have
$$ (f*g)(t) = int_-infty^infty f(tau)g(t-tau) , dtau = int_0^infty f(tau)g(t-tau) , dtau + int_-infty^0 f(tau)g(t-tau) , dtau. $$
You already computed the first integral, and the second integral is $0$, since $f(tau) = 0$ for all $tau < 0$.
Yes, you are right. Thx.
â 7E10FC9A
Aug 27 at 16:35
add a comment |Â
up vote
2
down vote
accepted
You have
$$ (f*g)(t) = int_-infty^infty f(tau)g(t-tau) , dtau = int_0^infty f(tau)g(t-tau) , dtau + int_-infty^0 f(tau)g(t-tau) , dtau. $$
You already computed the first integral, and the second integral is $0$, since $f(tau) = 0$ for all $tau < 0$.
Yes, you are right. Thx.
â 7E10FC9A
Aug 27 at 16:35
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
You have
$$ (f*g)(t) = int_-infty^infty f(tau)g(t-tau) , dtau = int_0^infty f(tau)g(t-tau) , dtau + int_-infty^0 f(tau)g(t-tau) , dtau. $$
You already computed the first integral, and the second integral is $0$, since $f(tau) = 0$ for all $tau < 0$.
You have
$$ (f*g)(t) = int_-infty^infty f(tau)g(t-tau) , dtau = int_0^infty f(tau)g(t-tau) , dtau + int_-infty^0 f(tau)g(t-tau) , dtau. $$
You already computed the first integral, and the second integral is $0$, since $f(tau) = 0$ for all $tau < 0$.
answered Aug 27 at 16:21
Sobi
2,418315
2,418315
Yes, you are right. Thx.
â 7E10FC9A
Aug 27 at 16:35
add a comment |Â
Yes, you are right. Thx.
â 7E10FC9A
Aug 27 at 16:35
Yes, you are right. Thx.
â 7E10FC9A
Aug 27 at 16:35
Yes, you are right. Thx.
â 7E10FC9A
Aug 27 at 16:35
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2896332%2fanalytic-integration-of-discontinuous-function%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
What do you mean by "even $f(t)$ is zero, the integral is not"?
â Sobi
Aug 27 at 15:58
1
Maybe this will help. If $y<0$, then $f(y)=0$, so also $f(y)g(t-y)=0$, so $int_-infty^0 f(y)g(t-y)textdy = 0$
â Rumpelstiltskin
Aug 27 at 15:58
@Sobi at t<0, g(t) still overlap with the positive part of f(t), note that the integration is not with respect to t.
â 7E10FC9A
Aug 27 at 16:11
@7E10FC9A But you're integrating with respect to $tau$, and you have $f(tau)$ in your integral. So when $tau < 0,$ then $f(tau) = 0$ and the integral is $0$.
â Sobi
Aug 27 at 16:12