Roots of unity and large expression

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite













Let $omega$ be a complex number such that $omega^5 = 1$ and $omega neq 1$. Find
$$fracomega1 + omega^2 + fracomega^21 + omega^4 + fracomega^31 + omega + fracomega^41 + omega^3.$$




I have tried combining the first and third terms & first and last terms. Here is what I have so far:




beginalign*
fracomega1 + omega^2 + fracomega^21 + omega^4 + fracomega^31 + omega + fracomega^41 + omega^3
&= fracomega1 + omega^2 + fracomega^41 + omega^3 + fracomega^21 + omega^4 + fracomega^31 + omega \
&= dfracomega(1+omega^3) + omega^4(1+omega^2)(1+omega^2)(1+omega^3) + dfracomega^2(1+omega) + omega^3(1+omega^4)(1+omega^4)(1+omega) \
&= dfracomega + 2omega^4 +omega^61+omega^2 + omega^3 + omega^5 + dfracomega^2 + 2omega^3 + omega^71+omega + omega^4 + omega^5 \
&= dfrac2omega + 2omega^42+omega^2 + omega^3 +
dfrac2omega^2 + 2omega^32+omega+omega^4
endalign*




OR




beginalign*
fracomega1 + omega^2 + fracomega^21 + omega^4 + fracomega^31 + omega + fracomega^41 + omega^3
&= fracomega1 + omega^2 + fracomega^31 + omega + fracomega^41 + omega^3 + fracomega^21 + omega^4 \
&= dfracomega(1+omega) + omega^3(1+omega^2)(1+omega)(1+omega^2) + dfracomega^2(1+omega^3) + omega^4(1+omega^4)(1+omega^3)(1+omega^4) \
&= dfracomega + omega^2 + omega^3 + omega^51+omega + omega^2 + omega^3 + dfracomega^2 + omega^4 + omega^5 + omega^81 + omega^3 + omega^4 + omega^7 \
&= dfrac2omega+omega^2+omega^31+omega+omega^2+omega^4 + dfrac1+omega+omega^2+omega^41+2omega^3+omega^4
endalign*








share|cite|improve this question






















  • Please note that this is different from previous similar questions because of the denominators of the terms in the original question. Their signs are flipped. Thanks!
    – Ojasw Upadhyay
    Aug 18 at 6:08














up vote
2
down vote

favorite













Let $omega$ be a complex number such that $omega^5 = 1$ and $omega neq 1$. Find
$$fracomega1 + omega^2 + fracomega^21 + omega^4 + fracomega^31 + omega + fracomega^41 + omega^3.$$




I have tried combining the first and third terms & first and last terms. Here is what I have so far:




beginalign*
fracomega1 + omega^2 + fracomega^21 + omega^4 + fracomega^31 + omega + fracomega^41 + omega^3
&= fracomega1 + omega^2 + fracomega^41 + omega^3 + fracomega^21 + omega^4 + fracomega^31 + omega \
&= dfracomega(1+omega^3) + omega^4(1+omega^2)(1+omega^2)(1+omega^3) + dfracomega^2(1+omega) + omega^3(1+omega^4)(1+omega^4)(1+omega) \
&= dfracomega + 2omega^4 +omega^61+omega^2 + omega^3 + omega^5 + dfracomega^2 + 2omega^3 + omega^71+omega + omega^4 + omega^5 \
&= dfrac2omega + 2omega^42+omega^2 + omega^3 +
dfrac2omega^2 + 2omega^32+omega+omega^4
endalign*




OR




beginalign*
fracomega1 + omega^2 + fracomega^21 + omega^4 + fracomega^31 + omega + fracomega^41 + omega^3
&= fracomega1 + omega^2 + fracomega^31 + omega + fracomega^41 + omega^3 + fracomega^21 + omega^4 \
&= dfracomega(1+omega) + omega^3(1+omega^2)(1+omega)(1+omega^2) + dfracomega^2(1+omega^3) + omega^4(1+omega^4)(1+omega^3)(1+omega^4) \
&= dfracomega + omega^2 + omega^3 + omega^51+omega + omega^2 + omega^3 + dfracomega^2 + omega^4 + omega^5 + omega^81 + omega^3 + omega^4 + omega^7 \
&= dfrac2omega+omega^2+omega^31+omega+omega^2+omega^4 + dfrac1+omega+omega^2+omega^41+2omega^3+omega^4
endalign*








share|cite|improve this question






















  • Please note that this is different from previous similar questions because of the denominators of the terms in the original question. Their signs are flipped. Thanks!
    – Ojasw Upadhyay
    Aug 18 at 6:08












up vote
2
down vote

favorite









up vote
2
down vote

favorite












Let $omega$ be a complex number such that $omega^5 = 1$ and $omega neq 1$. Find
$$fracomega1 + omega^2 + fracomega^21 + omega^4 + fracomega^31 + omega + fracomega^41 + omega^3.$$




I have tried combining the first and third terms & first and last terms. Here is what I have so far:




beginalign*
fracomega1 + omega^2 + fracomega^21 + omega^4 + fracomega^31 + omega + fracomega^41 + omega^3
&= fracomega1 + omega^2 + fracomega^41 + omega^3 + fracomega^21 + omega^4 + fracomega^31 + omega \
&= dfracomega(1+omega^3) + omega^4(1+omega^2)(1+omega^2)(1+omega^3) + dfracomega^2(1+omega) + omega^3(1+omega^4)(1+omega^4)(1+omega) \
&= dfracomega + 2omega^4 +omega^61+omega^2 + omega^3 + omega^5 + dfracomega^2 + 2omega^3 + omega^71+omega + omega^4 + omega^5 \
&= dfrac2omega + 2omega^42+omega^2 + omega^3 +
dfrac2omega^2 + 2omega^32+omega+omega^4
endalign*




OR




beginalign*
fracomega1 + omega^2 + fracomega^21 + omega^4 + fracomega^31 + omega + fracomega^41 + omega^3
&= fracomega1 + omega^2 + fracomega^31 + omega + fracomega^41 + omega^3 + fracomega^21 + omega^4 \
&= dfracomega(1+omega) + omega^3(1+omega^2)(1+omega)(1+omega^2) + dfracomega^2(1+omega^3) + omega^4(1+omega^4)(1+omega^3)(1+omega^4) \
&= dfracomega + omega^2 + omega^3 + omega^51+omega + omega^2 + omega^3 + dfracomega^2 + omega^4 + omega^5 + omega^81 + omega^3 + omega^4 + omega^7 \
&= dfrac2omega+omega^2+omega^31+omega+omega^2+omega^4 + dfrac1+omega+omega^2+omega^41+2omega^3+omega^4
endalign*








share|cite|improve this question















Let $omega$ be a complex number such that $omega^5 = 1$ and $omega neq 1$. Find
$$fracomega1 + omega^2 + fracomega^21 + omega^4 + fracomega^31 + omega + fracomega^41 + omega^3.$$




I have tried combining the first and third terms & first and last terms. Here is what I have so far:




beginalign*
fracomega1 + omega^2 + fracomega^21 + omega^4 + fracomega^31 + omega + fracomega^41 + omega^3
&= fracomega1 + omega^2 + fracomega^41 + omega^3 + fracomega^21 + omega^4 + fracomega^31 + omega \
&= dfracomega(1+omega^3) + omega^4(1+omega^2)(1+omega^2)(1+omega^3) + dfracomega^2(1+omega) + omega^3(1+omega^4)(1+omega^4)(1+omega) \
&= dfracomega + 2omega^4 +omega^61+omega^2 + omega^3 + omega^5 + dfracomega^2 + 2omega^3 + omega^71+omega + omega^4 + omega^5 \
&= dfrac2omega + 2omega^42+omega^2 + omega^3 +
dfrac2omega^2 + 2omega^32+omega+omega^4
endalign*




OR




beginalign*
fracomega1 + omega^2 + fracomega^21 + omega^4 + fracomega^31 + omega + fracomega^41 + omega^3
&= fracomega1 + omega^2 + fracomega^31 + omega + fracomega^41 + omega^3 + fracomega^21 + omega^4 \
&= dfracomega(1+omega) + omega^3(1+omega^2)(1+omega)(1+omega^2) + dfracomega^2(1+omega^3) + omega^4(1+omega^4)(1+omega^3)(1+omega^4) \
&= dfracomega + omega^2 + omega^3 + omega^51+omega + omega^2 + omega^3 + dfracomega^2 + omega^4 + omega^5 + omega^81 + omega^3 + omega^4 + omega^7 \
&= dfrac2omega+omega^2+omega^31+omega+omega^2+omega^4 + dfrac1+omega+omega^2+omega^41+2omega^3+omega^4
endalign*










share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 18 at 12:43









greedoid

27k93575




27k93575










asked Aug 18 at 6:07









Ojasw Upadhyay

119111




119111











  • Please note that this is different from previous similar questions because of the denominators of the terms in the original question. Their signs are flipped. Thanks!
    – Ojasw Upadhyay
    Aug 18 at 6:08
















  • Please note that this is different from previous similar questions because of the denominators of the terms in the original question. Their signs are flipped. Thanks!
    – Ojasw Upadhyay
    Aug 18 at 6:08















Please note that this is different from previous similar questions because of the denominators of the terms in the original question. Their signs are flipped. Thanks!
– Ojasw Upadhyay
Aug 18 at 6:08




Please note that this is different from previous similar questions because of the denominators of the terms in the original question. Their signs are flipped. Thanks!
– Ojasw Upadhyay
Aug 18 at 6:08










2 Answers
2






active

oldest

votes

















up vote
4
down vote



accepted










Expand 2nd and 4th fraction with $omega $ and $omega ^2$ respectively: $$fracomega1 + omega^2 + fracomega^21 + omega^4 + fracomega^31 + omega + fracomega^41 + omega^3=fracomega1 + omega^2 + fracomega^3omega+ 1 + fracomega^31 + omega + fracomegaomega^2+1$$



$$=2fracomega1 + omega^2 + 2fracomega^3omega+ 1 $$
$$=2fracomega^2+omega + omega^3+1(omega^2+1)(omega+ 1)=2 $$






share|cite|improve this answer






















  • @henningmakholm nice
    – user2661923
    Aug 18 at 22:31

















up vote
1
down vote













Alt. hint:   let $,z=omega+dfrac1omega,$ so that $,z^2=omega^2+dfrac1omega^2+2,$, then use that $,omega^4=baromega,$ and $,omega^3=baromega^2,$ so the sum is:



$$fracomega1 + omega^2 + fracomega^21 + omega^4 + fracbaromega^21 + baromega^4 + fracbaromega1 + baromega^2 = 2 operatornameReleft(fracomega1 + omega^2 + fracomega^21 + omega^4 right) = 2 operatornameReleft(frac1z + frac1z^2-2right)$$



But $,0=omega^5-1=(omega-1)left(omega^4+omega^3+omega^2+omega+1right)=omega^2(omega-1)left(z^2 + z - 1right),$, so $,z^2+z-1=0,$ and:



$$requirecancel
frac1z + frac1z^2-2 = frac1z+frac1-z-1 = fraccancel-z-1+cancelz-z^2-z = frac-1-1
$$






share|cite|improve this answer




















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2886460%2froots-of-unity-and-large-expression%23new-answer', 'question_page');

    );

    Post as a guest






























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    4
    down vote



    accepted










    Expand 2nd and 4th fraction with $omega $ and $omega ^2$ respectively: $$fracomega1 + omega^2 + fracomega^21 + omega^4 + fracomega^31 + omega + fracomega^41 + omega^3=fracomega1 + omega^2 + fracomega^3omega+ 1 + fracomega^31 + omega + fracomegaomega^2+1$$



    $$=2fracomega1 + omega^2 + 2fracomega^3omega+ 1 $$
    $$=2fracomega^2+omega + omega^3+1(omega^2+1)(omega+ 1)=2 $$






    share|cite|improve this answer






















    • @henningmakholm nice
      – user2661923
      Aug 18 at 22:31














    up vote
    4
    down vote



    accepted










    Expand 2nd and 4th fraction with $omega $ and $omega ^2$ respectively: $$fracomega1 + omega^2 + fracomega^21 + omega^4 + fracomega^31 + omega + fracomega^41 + omega^3=fracomega1 + omega^2 + fracomega^3omega+ 1 + fracomega^31 + omega + fracomegaomega^2+1$$



    $$=2fracomega1 + omega^2 + 2fracomega^3omega+ 1 $$
    $$=2fracomega^2+omega + omega^3+1(omega^2+1)(omega+ 1)=2 $$






    share|cite|improve this answer






















    • @henningmakholm nice
      – user2661923
      Aug 18 at 22:31












    up vote
    4
    down vote



    accepted







    up vote
    4
    down vote



    accepted






    Expand 2nd and 4th fraction with $omega $ and $omega ^2$ respectively: $$fracomega1 + omega^2 + fracomega^21 + omega^4 + fracomega^31 + omega + fracomega^41 + omega^3=fracomega1 + omega^2 + fracomega^3omega+ 1 + fracomega^31 + omega + fracomegaomega^2+1$$



    $$=2fracomega1 + omega^2 + 2fracomega^3omega+ 1 $$
    $$=2fracomega^2+omega + omega^3+1(omega^2+1)(omega+ 1)=2 $$






    share|cite|improve this answer














    Expand 2nd and 4th fraction with $omega $ and $omega ^2$ respectively: $$fracomega1 + omega^2 + fracomega^21 + omega^4 + fracomega^31 + omega + fracomega^41 + omega^3=fracomega1 + omega^2 + fracomega^3omega+ 1 + fracomega^31 + omega + fracomegaomega^2+1$$



    $$=2fracomega1 + omega^2 + 2fracomega^3omega+ 1 $$
    $$=2fracomega^2+omega + omega^3+1(omega^2+1)(omega+ 1)=2 $$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Aug 18 at 21:45









    Henning Makholm

    229k16294525




    229k16294525










    answered Aug 18 at 6:12









    greedoid

    27k93575




    27k93575











    • @henningmakholm nice
      – user2661923
      Aug 18 at 22:31
















    • @henningmakholm nice
      – user2661923
      Aug 18 at 22:31















    @henningmakholm nice
    – user2661923
    Aug 18 at 22:31




    @henningmakholm nice
    – user2661923
    Aug 18 at 22:31










    up vote
    1
    down vote













    Alt. hint:   let $,z=omega+dfrac1omega,$ so that $,z^2=omega^2+dfrac1omega^2+2,$, then use that $,omega^4=baromega,$ and $,omega^3=baromega^2,$ so the sum is:



    $$fracomega1 + omega^2 + fracomega^21 + omega^4 + fracbaromega^21 + baromega^4 + fracbaromega1 + baromega^2 = 2 operatornameReleft(fracomega1 + omega^2 + fracomega^21 + omega^4 right) = 2 operatornameReleft(frac1z + frac1z^2-2right)$$



    But $,0=omega^5-1=(omega-1)left(omega^4+omega^3+omega^2+omega+1right)=omega^2(omega-1)left(z^2 + z - 1right),$, so $,z^2+z-1=0,$ and:



    $$requirecancel
    frac1z + frac1z^2-2 = frac1z+frac1-z-1 = fraccancel-z-1+cancelz-z^2-z = frac-1-1
    $$






    share|cite|improve this answer
























      up vote
      1
      down vote













      Alt. hint:   let $,z=omega+dfrac1omega,$ so that $,z^2=omega^2+dfrac1omega^2+2,$, then use that $,omega^4=baromega,$ and $,omega^3=baromega^2,$ so the sum is:



      $$fracomega1 + omega^2 + fracomega^21 + omega^4 + fracbaromega^21 + baromega^4 + fracbaromega1 + baromega^2 = 2 operatornameReleft(fracomega1 + omega^2 + fracomega^21 + omega^4 right) = 2 operatornameReleft(frac1z + frac1z^2-2right)$$



      But $,0=omega^5-1=(omega-1)left(omega^4+omega^3+omega^2+omega+1right)=omega^2(omega-1)left(z^2 + z - 1right),$, so $,z^2+z-1=0,$ and:



      $$requirecancel
      frac1z + frac1z^2-2 = frac1z+frac1-z-1 = fraccancel-z-1+cancelz-z^2-z = frac-1-1
      $$






      share|cite|improve this answer






















        up vote
        1
        down vote










        up vote
        1
        down vote









        Alt. hint:   let $,z=omega+dfrac1omega,$ so that $,z^2=omega^2+dfrac1omega^2+2,$, then use that $,omega^4=baromega,$ and $,omega^3=baromega^2,$ so the sum is:



        $$fracomega1 + omega^2 + fracomega^21 + omega^4 + fracbaromega^21 + baromega^4 + fracbaromega1 + baromega^2 = 2 operatornameReleft(fracomega1 + omega^2 + fracomega^21 + omega^4 right) = 2 operatornameReleft(frac1z + frac1z^2-2right)$$



        But $,0=omega^5-1=(omega-1)left(omega^4+omega^3+omega^2+omega+1right)=omega^2(omega-1)left(z^2 + z - 1right),$, so $,z^2+z-1=0,$ and:



        $$requirecancel
        frac1z + frac1z^2-2 = frac1z+frac1-z-1 = fraccancel-z-1+cancelz-z^2-z = frac-1-1
        $$






        share|cite|improve this answer












        Alt. hint:   let $,z=omega+dfrac1omega,$ so that $,z^2=omega^2+dfrac1omega^2+2,$, then use that $,omega^4=baromega,$ and $,omega^3=baromega^2,$ so the sum is:



        $$fracomega1 + omega^2 + fracomega^21 + omega^4 + fracbaromega^21 + baromega^4 + fracbaromega1 + baromega^2 = 2 operatornameReleft(fracomega1 + omega^2 + fracomega^21 + omega^4 right) = 2 operatornameReleft(frac1z + frac1z^2-2right)$$



        But $,0=omega^5-1=(omega-1)left(omega^4+omega^3+omega^2+omega+1right)=omega^2(omega-1)left(z^2 + z - 1right),$, so $,z^2+z-1=0,$ and:



        $$requirecancel
        frac1z + frac1z^2-2 = frac1z+frac1-z-1 = fraccancel-z-1+cancelz-z^2-z = frac-1-1
        $$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Aug 18 at 21:40









        dxiv

        55.2k64798




        55.2k64798






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2886460%2froots-of-unity-and-large-expression%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            How to combine Bézier curves to a surface?

            Mutual Information Always Non-negative

            Why am i infinitely getting the same tweet with the Twitter Search API?