Proving $zeta(2) - beta(1) + zeta(4) - beta(3) + zeta(6)- beta(5) + ldots=1$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
9
down vote

favorite
6












Trying to prove



$$zeta(2) - beta(1) + zeta(4) - beta(3) + zeta(6)- beta(5) + ldots=1$$
I found by numerical calculation that (when $k$ goes to infinity)



$$sum_n=1^kzeta (2n)=k+3/4+o(1),$$



$$sum_n=1^kbeta (2n-1)=(k-1)+3/4+o(1).$$



in order to prove the above formula. Now how can I prove it analytically?
enter image description hereenter image description hereenter image description here







share|cite|improve this question






















  • What definition of the Beta function are you using? The one I know depends on two parameters.
    – rubik
    Feb 22 '15 at 20:14










  • @rubik http://mathworld.wolfram.com/DirichletBetaFunction.html
    – whacka
    Feb 22 '15 at 20:15










  • @whacka: Thanks!
    – rubik
    Feb 22 '15 at 20:16






  • 1




    I would suppose someone is working on a proof using the exponential generating function of Bernoulli and Euler numbers for the Zeta function / Beta function terms respectively even as I type this comment.
    – Marko Riedel
    Feb 22 '15 at 20:54














up vote
9
down vote

favorite
6












Trying to prove



$$zeta(2) - beta(1) + zeta(4) - beta(3) + zeta(6)- beta(5) + ldots=1$$
I found by numerical calculation that (when $k$ goes to infinity)



$$sum_n=1^kzeta (2n)=k+3/4+o(1),$$



$$sum_n=1^kbeta (2n-1)=(k-1)+3/4+o(1).$$



in order to prove the above formula. Now how can I prove it analytically?
enter image description hereenter image description hereenter image description here







share|cite|improve this question






















  • What definition of the Beta function are you using? The one I know depends on two parameters.
    – rubik
    Feb 22 '15 at 20:14










  • @rubik http://mathworld.wolfram.com/DirichletBetaFunction.html
    – whacka
    Feb 22 '15 at 20:15










  • @whacka: Thanks!
    – rubik
    Feb 22 '15 at 20:16






  • 1




    I would suppose someone is working on a proof using the exponential generating function of Bernoulli and Euler numbers for the Zeta function / Beta function terms respectively even as I type this comment.
    – Marko Riedel
    Feb 22 '15 at 20:54












up vote
9
down vote

favorite
6









up vote
9
down vote

favorite
6






6





Trying to prove



$$zeta(2) - beta(1) + zeta(4) - beta(3) + zeta(6)- beta(5) + ldots=1$$
I found by numerical calculation that (when $k$ goes to infinity)



$$sum_n=1^kzeta (2n)=k+3/4+o(1),$$



$$sum_n=1^kbeta (2n-1)=(k-1)+3/4+o(1).$$



in order to prove the above formula. Now how can I prove it analytically?
enter image description hereenter image description hereenter image description here







share|cite|improve this question














Trying to prove



$$zeta(2) - beta(1) + zeta(4) - beta(3) + zeta(6)- beta(5) + ldots=1$$
I found by numerical calculation that (when $k$ goes to infinity)



$$sum_n=1^kzeta (2n)=k+3/4+o(1),$$



$$sum_n=1^kbeta (2n-1)=(k-1)+3/4+o(1).$$



in order to prove the above formula. Now how can I prove it analytically?
enter image description hereenter image description hereenter image description here









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 22 '15 at 21:51

























asked Feb 22 '15 at 19:40









E.H.E

15.5k11863




15.5k11863











  • What definition of the Beta function are you using? The one I know depends on two parameters.
    – rubik
    Feb 22 '15 at 20:14










  • @rubik http://mathworld.wolfram.com/DirichletBetaFunction.html
    – whacka
    Feb 22 '15 at 20:15










  • @whacka: Thanks!
    – rubik
    Feb 22 '15 at 20:16






  • 1




    I would suppose someone is working on a proof using the exponential generating function of Bernoulli and Euler numbers for the Zeta function / Beta function terms respectively even as I type this comment.
    – Marko Riedel
    Feb 22 '15 at 20:54
















  • What definition of the Beta function are you using? The one I know depends on two parameters.
    – rubik
    Feb 22 '15 at 20:14










  • @rubik http://mathworld.wolfram.com/DirichletBetaFunction.html
    – whacka
    Feb 22 '15 at 20:15










  • @whacka: Thanks!
    – rubik
    Feb 22 '15 at 20:16






  • 1




    I would suppose someone is working on a proof using the exponential generating function of Bernoulli and Euler numbers for the Zeta function / Beta function terms respectively even as I type this comment.
    – Marko Riedel
    Feb 22 '15 at 20:54















What definition of the Beta function are you using? The one I know depends on two parameters.
– rubik
Feb 22 '15 at 20:14




What definition of the Beta function are you using? The one I know depends on two parameters.
– rubik
Feb 22 '15 at 20:14












@rubik http://mathworld.wolfram.com/DirichletBetaFunction.html
– whacka
Feb 22 '15 at 20:15




@rubik http://mathworld.wolfram.com/DirichletBetaFunction.html
– whacka
Feb 22 '15 at 20:15












@whacka: Thanks!
– rubik
Feb 22 '15 at 20:16




@whacka: Thanks!
– rubik
Feb 22 '15 at 20:16




1




1




I would suppose someone is working on a proof using the exponential generating function of Bernoulli and Euler numbers for the Zeta function / Beta function terms respectively even as I type this comment.
– Marko Riedel
Feb 22 '15 at 20:54




I would suppose someone is working on a proof using the exponential generating function of Bernoulli and Euler numbers for the Zeta function / Beta function terms respectively even as I type this comment.
– Marko Riedel
Feb 22 '15 at 20:54










2 Answers
2






active

oldest

votes

















up vote
8
down vote



accepted










We have:
$$zeta(2k) = frac1(2k-1)!int_0^+inftyfract^2k-1e^t-1 tag1 $$
and:
$$beta(2k-1)=sum_ngeq 0frac(-1)^n(2n+1)^2k-1=frac1(2k-2)!int_0^+inftyfract^2k-2e^te^2t+1,dt tag2$$
hence:
$$sum_ngeq 1 beta(2n-1), z^2n-1 = fracpi z4cdotsecfracpi z2,tag3 $$
$$sum_ngeq 1 zeta(2n),z^2n = frac1-pi z cot(pi z)2,tag4 $$
and:
$$ lim_zto 1^-sum_ngeq 1left(zeta(2n), z^2n-beta(2n-1), z^2n-1right) = colorred1.tag5$$






share|cite|improve this answer






















  • but numerically by using WolframAlph gives the $1$
    – E.H.E
    Feb 22 '15 at 21:25










  • ok Jack wait me to add some results in the question
    – E.H.E
    Feb 22 '15 at 21:46

















up vote
0
down vote













$underlineleft(1^textstright)colon$



$$
beginalign
S&=sum_n=1^inftyleft[zeta(2n)colorred-1+1-beta(2n-1)right] ,=colorMagentasum_n=1^inftyleft[zeta(2n)-1right],+,colorbluesum_n=1^inftyleft[1-beta(2n-1)right] \[4mm]
colorMagentaS_1&=sum_n=1^inftyleft[zeta(2n)-1right] ,=sum_n=1^inftysum_m=colorred2^inftyleft[frac1m^2nright] ,=sum_m=colorred2^inftyfrac1m^2-1 ,=sum_m=colorred2^inftyfrac1(m-1)(m+1) ,=colorMagentafrac34 \[4mm]
colorblueS_2&=sum_n=1^inftyleft[1-beta(2n-1)right] ,=sum_n=1^inftysum_m=colorred2^inftyleft[frac(-1)^m(2m-1)^2n-1right] ,=sum_m=colorred1^inftysum_n=1^inftyleft[smallfrac4m-1(4m-1)^2n-smallfrac4m+1(4m+1)^2nright] \
&=sum_m=1^inftyleft[smallfrac4m-1(4m-1)^2-1-smallfrac4m+1(4m+1)^2-1right] ,=sum_m=1^inftyfrac18m^2-2 ,=sum_m=1^inftyfracsmall 1/8(m-small 1/2)(m+small 1/2) ,=colorbluefrac14 \[4mm]
colorredS&=frac34,+,frac14 ,=colorred1
endalign
$$







$underlineleft(2^textndright)colon$



$$
beginalign
S&=sum_n=1^inftyleft[-beta(2n-1)+zeta(2n)right] ,=-beta(1)+sum_n=1^infty-1left[zeta(2n)-beta(2n+1)right]+lim_small nrightarrowinftyzeta(2n) \
&=colorgreenleft[lim_small nrightarrowinftyzeta(2n)-beta(1)right] +colorMagentasum_n=1^inftyleft[zeta(2n)-zeta(2n+1)right] +colorbluesum_n=1^inftyleft[zeta(2n+1)-beta(2n+1)right] \[6mm]
colorMagentaS_1&=sum_n=1^inftyleft[zeta(2n)-zeta(2n+1)right] ,=sum_n=1^inftysum_m=2^inftyleft(frac1m^2n-fracsmall 1/mm^2nright) \
&=sum_m=2^inftyleft(fracm-1mright)left(frac1m^2-1right) ,=sum_m=2^inftyfrac1m(m+1) ,=colorMagentafrac12 \[6mm]
colorblueS_2&=sum_n=1^inftyleft[zeta(2n+1)-beta(2n+1)right] ,=sum_n=1^inftyfracGamma(2n+1)zeta(2n+1),-,Gamma(2n+1)beta(2n+1)(2n)! \
&=int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(smallsum_n=1^inftyfracx^2n(2n)!right)dx =int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(smallcoshx-1right)dx \[2mm]
&=int_0^inftyleft(frace^x+1e^2x-1-frace^xe^2x+1right)left(frace^2x+12e^x-1right),dx ,=int_0^inftyleft(frac(e^x+1)^2e^4x-1,frac(e^x-1)^22e^xright),dx \[2mm]
&=int_0^inftyleft(frace^2x-1e^2x+1,fracsmall 1/2e^xright),dx ,=int_0^inftyleft(frace^xe^2x+1-fracsmall 1/2e^xright),dx ,=colorbluebeta(1)-frac12 \[6mm]
colorredS&=left[,lim_small nrightarrowinftyzeta(2n)-beta(1),right],+,left[,frac12,right],+,left[,beta(1)-frac12,right] ,=lim_small nrightarrowinftyzeta(2n) ,=colorred1
endalign
$$







$underlineleft(textNBright)colon$



$$
beginalign
colorredS&=sum_n=1^inftyleft[zeta(2n)-beta(2n-1)right] =sum_n=1^inftyleft[fracGamma(2n),zeta(2n)(2n-1)!-fracGamma(2n-1),beta(2n-1)(2n-2)!right] \[2mm]
&=sum_n=1^inftyint_0^inftyleft[fracx^2n-1(2n-1)!frac1e^x-1,-,fracx^2n-2(2n-2)!frace^xe^2x+1right],dx \[2mm]
&=int_0^inftyleft[frac1e^x-1left(sum_n=1^inftyfracx^2n-1(2n-1)!right),-,frace^xe^2x+1left(sum_n=1^inftyfracx^2n-2(2n-2)!right)right],dx \[2mm]
&=int_0^inftyleft[fracsinh(x)e^x-1,-,frace^xcosh(x)e^2x+1right],dx =frac12int_0^inftyfracdxe^x =colorredfrac12,rightarrow,mathcalX,,smalltextincorrect!
endalign
$$






share|cite|improve this answer






















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1160563%2fproving-zeta2-beta1-zeta4-beta3-zeta6-beta5-ldots%23new-answer', 'question_page');

    );

    Post as a guest






























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    8
    down vote



    accepted










    We have:
    $$zeta(2k) = frac1(2k-1)!int_0^+inftyfract^2k-1e^t-1 tag1 $$
    and:
    $$beta(2k-1)=sum_ngeq 0frac(-1)^n(2n+1)^2k-1=frac1(2k-2)!int_0^+inftyfract^2k-2e^te^2t+1,dt tag2$$
    hence:
    $$sum_ngeq 1 beta(2n-1), z^2n-1 = fracpi z4cdotsecfracpi z2,tag3 $$
    $$sum_ngeq 1 zeta(2n),z^2n = frac1-pi z cot(pi z)2,tag4 $$
    and:
    $$ lim_zto 1^-sum_ngeq 1left(zeta(2n), z^2n-beta(2n-1), z^2n-1right) = colorred1.tag5$$






    share|cite|improve this answer






















    • but numerically by using WolframAlph gives the $1$
      – E.H.E
      Feb 22 '15 at 21:25










    • ok Jack wait me to add some results in the question
      – E.H.E
      Feb 22 '15 at 21:46














    up vote
    8
    down vote



    accepted










    We have:
    $$zeta(2k) = frac1(2k-1)!int_0^+inftyfract^2k-1e^t-1 tag1 $$
    and:
    $$beta(2k-1)=sum_ngeq 0frac(-1)^n(2n+1)^2k-1=frac1(2k-2)!int_0^+inftyfract^2k-2e^te^2t+1,dt tag2$$
    hence:
    $$sum_ngeq 1 beta(2n-1), z^2n-1 = fracpi z4cdotsecfracpi z2,tag3 $$
    $$sum_ngeq 1 zeta(2n),z^2n = frac1-pi z cot(pi z)2,tag4 $$
    and:
    $$ lim_zto 1^-sum_ngeq 1left(zeta(2n), z^2n-beta(2n-1), z^2n-1right) = colorred1.tag5$$






    share|cite|improve this answer






















    • but numerically by using WolframAlph gives the $1$
      – E.H.E
      Feb 22 '15 at 21:25










    • ok Jack wait me to add some results in the question
      – E.H.E
      Feb 22 '15 at 21:46












    up vote
    8
    down vote



    accepted







    up vote
    8
    down vote



    accepted






    We have:
    $$zeta(2k) = frac1(2k-1)!int_0^+inftyfract^2k-1e^t-1 tag1 $$
    and:
    $$beta(2k-1)=sum_ngeq 0frac(-1)^n(2n+1)^2k-1=frac1(2k-2)!int_0^+inftyfract^2k-2e^te^2t+1,dt tag2$$
    hence:
    $$sum_ngeq 1 beta(2n-1), z^2n-1 = fracpi z4cdotsecfracpi z2,tag3 $$
    $$sum_ngeq 1 zeta(2n),z^2n = frac1-pi z cot(pi z)2,tag4 $$
    and:
    $$ lim_zto 1^-sum_ngeq 1left(zeta(2n), z^2n-beta(2n-1), z^2n-1right) = colorred1.tag5$$






    share|cite|improve this answer














    We have:
    $$zeta(2k) = frac1(2k-1)!int_0^+inftyfract^2k-1e^t-1 tag1 $$
    and:
    $$beta(2k-1)=sum_ngeq 0frac(-1)^n(2n+1)^2k-1=frac1(2k-2)!int_0^+inftyfract^2k-2e^te^2t+1,dt tag2$$
    hence:
    $$sum_ngeq 1 beta(2n-1), z^2n-1 = fracpi z4cdotsecfracpi z2,tag3 $$
    $$sum_ngeq 1 zeta(2n),z^2n = frac1-pi z cot(pi z)2,tag4 $$
    and:
    $$ lim_zto 1^-sum_ngeq 1left(zeta(2n), z^2n-beta(2n-1), z^2n-1right) = colorred1.tag5$$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Feb 22 '15 at 22:00

























    answered Feb 22 '15 at 21:14









    Jack D'Aurizio♦

    272k32267632




    272k32267632











    • but numerically by using WolframAlph gives the $1$
      – E.H.E
      Feb 22 '15 at 21:25










    • ok Jack wait me to add some results in the question
      – E.H.E
      Feb 22 '15 at 21:46
















    • but numerically by using WolframAlph gives the $1$
      – E.H.E
      Feb 22 '15 at 21:25










    • ok Jack wait me to add some results in the question
      – E.H.E
      Feb 22 '15 at 21:46















    but numerically by using WolframAlph gives the $1$
    – E.H.E
    Feb 22 '15 at 21:25




    but numerically by using WolframAlph gives the $1$
    – E.H.E
    Feb 22 '15 at 21:25












    ok Jack wait me to add some results in the question
    – E.H.E
    Feb 22 '15 at 21:46




    ok Jack wait me to add some results in the question
    – E.H.E
    Feb 22 '15 at 21:46










    up vote
    0
    down vote













    $underlineleft(1^textstright)colon$



    $$
    beginalign
    S&=sum_n=1^inftyleft[zeta(2n)colorred-1+1-beta(2n-1)right] ,=colorMagentasum_n=1^inftyleft[zeta(2n)-1right],+,colorbluesum_n=1^inftyleft[1-beta(2n-1)right] \[4mm]
    colorMagentaS_1&=sum_n=1^inftyleft[zeta(2n)-1right] ,=sum_n=1^inftysum_m=colorred2^inftyleft[frac1m^2nright] ,=sum_m=colorred2^inftyfrac1m^2-1 ,=sum_m=colorred2^inftyfrac1(m-1)(m+1) ,=colorMagentafrac34 \[4mm]
    colorblueS_2&=sum_n=1^inftyleft[1-beta(2n-1)right] ,=sum_n=1^inftysum_m=colorred2^inftyleft[frac(-1)^m(2m-1)^2n-1right] ,=sum_m=colorred1^inftysum_n=1^inftyleft[smallfrac4m-1(4m-1)^2n-smallfrac4m+1(4m+1)^2nright] \
    &=sum_m=1^inftyleft[smallfrac4m-1(4m-1)^2-1-smallfrac4m+1(4m+1)^2-1right] ,=sum_m=1^inftyfrac18m^2-2 ,=sum_m=1^inftyfracsmall 1/8(m-small 1/2)(m+small 1/2) ,=colorbluefrac14 \[4mm]
    colorredS&=frac34,+,frac14 ,=colorred1
    endalign
    $$







    $underlineleft(2^textndright)colon$



    $$
    beginalign
    S&=sum_n=1^inftyleft[-beta(2n-1)+zeta(2n)right] ,=-beta(1)+sum_n=1^infty-1left[zeta(2n)-beta(2n+1)right]+lim_small nrightarrowinftyzeta(2n) \
    &=colorgreenleft[lim_small nrightarrowinftyzeta(2n)-beta(1)right] +colorMagentasum_n=1^inftyleft[zeta(2n)-zeta(2n+1)right] +colorbluesum_n=1^inftyleft[zeta(2n+1)-beta(2n+1)right] \[6mm]
    colorMagentaS_1&=sum_n=1^inftyleft[zeta(2n)-zeta(2n+1)right] ,=sum_n=1^inftysum_m=2^inftyleft(frac1m^2n-fracsmall 1/mm^2nright) \
    &=sum_m=2^inftyleft(fracm-1mright)left(frac1m^2-1right) ,=sum_m=2^inftyfrac1m(m+1) ,=colorMagentafrac12 \[6mm]
    colorblueS_2&=sum_n=1^inftyleft[zeta(2n+1)-beta(2n+1)right] ,=sum_n=1^inftyfracGamma(2n+1)zeta(2n+1),-,Gamma(2n+1)beta(2n+1)(2n)! \
    &=int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(smallsum_n=1^inftyfracx^2n(2n)!right)dx =int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(smallcoshx-1right)dx \[2mm]
    &=int_0^inftyleft(frace^x+1e^2x-1-frace^xe^2x+1right)left(frace^2x+12e^x-1right),dx ,=int_0^inftyleft(frac(e^x+1)^2e^4x-1,frac(e^x-1)^22e^xright),dx \[2mm]
    &=int_0^inftyleft(frace^2x-1e^2x+1,fracsmall 1/2e^xright),dx ,=int_0^inftyleft(frace^xe^2x+1-fracsmall 1/2e^xright),dx ,=colorbluebeta(1)-frac12 \[6mm]
    colorredS&=left[,lim_small nrightarrowinftyzeta(2n)-beta(1),right],+,left[,frac12,right],+,left[,beta(1)-frac12,right] ,=lim_small nrightarrowinftyzeta(2n) ,=colorred1
    endalign
    $$







    $underlineleft(textNBright)colon$



    $$
    beginalign
    colorredS&=sum_n=1^inftyleft[zeta(2n)-beta(2n-1)right] =sum_n=1^inftyleft[fracGamma(2n),zeta(2n)(2n-1)!-fracGamma(2n-1),beta(2n-1)(2n-2)!right] \[2mm]
    &=sum_n=1^inftyint_0^inftyleft[fracx^2n-1(2n-1)!frac1e^x-1,-,fracx^2n-2(2n-2)!frace^xe^2x+1right],dx \[2mm]
    &=int_0^inftyleft[frac1e^x-1left(sum_n=1^inftyfracx^2n-1(2n-1)!right),-,frace^xe^2x+1left(sum_n=1^inftyfracx^2n-2(2n-2)!right)right],dx \[2mm]
    &=int_0^inftyleft[fracsinh(x)e^x-1,-,frace^xcosh(x)e^2x+1right],dx =frac12int_0^inftyfracdxe^x =colorredfrac12,rightarrow,mathcalX,,smalltextincorrect!
    endalign
    $$






    share|cite|improve this answer


























      up vote
      0
      down vote













      $underlineleft(1^textstright)colon$



      $$
      beginalign
      S&=sum_n=1^inftyleft[zeta(2n)colorred-1+1-beta(2n-1)right] ,=colorMagentasum_n=1^inftyleft[zeta(2n)-1right],+,colorbluesum_n=1^inftyleft[1-beta(2n-1)right] \[4mm]
      colorMagentaS_1&=sum_n=1^inftyleft[zeta(2n)-1right] ,=sum_n=1^inftysum_m=colorred2^inftyleft[frac1m^2nright] ,=sum_m=colorred2^inftyfrac1m^2-1 ,=sum_m=colorred2^inftyfrac1(m-1)(m+1) ,=colorMagentafrac34 \[4mm]
      colorblueS_2&=sum_n=1^inftyleft[1-beta(2n-1)right] ,=sum_n=1^inftysum_m=colorred2^inftyleft[frac(-1)^m(2m-1)^2n-1right] ,=sum_m=colorred1^inftysum_n=1^inftyleft[smallfrac4m-1(4m-1)^2n-smallfrac4m+1(4m+1)^2nright] \
      &=sum_m=1^inftyleft[smallfrac4m-1(4m-1)^2-1-smallfrac4m+1(4m+1)^2-1right] ,=sum_m=1^inftyfrac18m^2-2 ,=sum_m=1^inftyfracsmall 1/8(m-small 1/2)(m+small 1/2) ,=colorbluefrac14 \[4mm]
      colorredS&=frac34,+,frac14 ,=colorred1
      endalign
      $$







      $underlineleft(2^textndright)colon$



      $$
      beginalign
      S&=sum_n=1^inftyleft[-beta(2n-1)+zeta(2n)right] ,=-beta(1)+sum_n=1^infty-1left[zeta(2n)-beta(2n+1)right]+lim_small nrightarrowinftyzeta(2n) \
      &=colorgreenleft[lim_small nrightarrowinftyzeta(2n)-beta(1)right] +colorMagentasum_n=1^inftyleft[zeta(2n)-zeta(2n+1)right] +colorbluesum_n=1^inftyleft[zeta(2n+1)-beta(2n+1)right] \[6mm]
      colorMagentaS_1&=sum_n=1^inftyleft[zeta(2n)-zeta(2n+1)right] ,=sum_n=1^inftysum_m=2^inftyleft(frac1m^2n-fracsmall 1/mm^2nright) \
      &=sum_m=2^inftyleft(fracm-1mright)left(frac1m^2-1right) ,=sum_m=2^inftyfrac1m(m+1) ,=colorMagentafrac12 \[6mm]
      colorblueS_2&=sum_n=1^inftyleft[zeta(2n+1)-beta(2n+1)right] ,=sum_n=1^inftyfracGamma(2n+1)zeta(2n+1),-,Gamma(2n+1)beta(2n+1)(2n)! \
      &=int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(smallsum_n=1^inftyfracx^2n(2n)!right)dx =int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(smallcoshx-1right)dx \[2mm]
      &=int_0^inftyleft(frace^x+1e^2x-1-frace^xe^2x+1right)left(frace^2x+12e^x-1right),dx ,=int_0^inftyleft(frac(e^x+1)^2e^4x-1,frac(e^x-1)^22e^xright),dx \[2mm]
      &=int_0^inftyleft(frace^2x-1e^2x+1,fracsmall 1/2e^xright),dx ,=int_0^inftyleft(frace^xe^2x+1-fracsmall 1/2e^xright),dx ,=colorbluebeta(1)-frac12 \[6mm]
      colorredS&=left[,lim_small nrightarrowinftyzeta(2n)-beta(1),right],+,left[,frac12,right],+,left[,beta(1)-frac12,right] ,=lim_small nrightarrowinftyzeta(2n) ,=colorred1
      endalign
      $$







      $underlineleft(textNBright)colon$



      $$
      beginalign
      colorredS&=sum_n=1^inftyleft[zeta(2n)-beta(2n-1)right] =sum_n=1^inftyleft[fracGamma(2n),zeta(2n)(2n-1)!-fracGamma(2n-1),beta(2n-1)(2n-2)!right] \[2mm]
      &=sum_n=1^inftyint_0^inftyleft[fracx^2n-1(2n-1)!frac1e^x-1,-,fracx^2n-2(2n-2)!frace^xe^2x+1right],dx \[2mm]
      &=int_0^inftyleft[frac1e^x-1left(sum_n=1^inftyfracx^2n-1(2n-1)!right),-,frace^xe^2x+1left(sum_n=1^inftyfracx^2n-2(2n-2)!right)right],dx \[2mm]
      &=int_0^inftyleft[fracsinh(x)e^x-1,-,frace^xcosh(x)e^2x+1right],dx =frac12int_0^inftyfracdxe^x =colorredfrac12,rightarrow,mathcalX,,smalltextincorrect!
      endalign
      $$






      share|cite|improve this answer
























        up vote
        0
        down vote










        up vote
        0
        down vote









        $underlineleft(1^textstright)colon$



        $$
        beginalign
        S&=sum_n=1^inftyleft[zeta(2n)colorred-1+1-beta(2n-1)right] ,=colorMagentasum_n=1^inftyleft[zeta(2n)-1right],+,colorbluesum_n=1^inftyleft[1-beta(2n-1)right] \[4mm]
        colorMagentaS_1&=sum_n=1^inftyleft[zeta(2n)-1right] ,=sum_n=1^inftysum_m=colorred2^inftyleft[frac1m^2nright] ,=sum_m=colorred2^inftyfrac1m^2-1 ,=sum_m=colorred2^inftyfrac1(m-1)(m+1) ,=colorMagentafrac34 \[4mm]
        colorblueS_2&=sum_n=1^inftyleft[1-beta(2n-1)right] ,=sum_n=1^inftysum_m=colorred2^inftyleft[frac(-1)^m(2m-1)^2n-1right] ,=sum_m=colorred1^inftysum_n=1^inftyleft[smallfrac4m-1(4m-1)^2n-smallfrac4m+1(4m+1)^2nright] \
        &=sum_m=1^inftyleft[smallfrac4m-1(4m-1)^2-1-smallfrac4m+1(4m+1)^2-1right] ,=sum_m=1^inftyfrac18m^2-2 ,=sum_m=1^inftyfracsmall 1/8(m-small 1/2)(m+small 1/2) ,=colorbluefrac14 \[4mm]
        colorredS&=frac34,+,frac14 ,=colorred1
        endalign
        $$







        $underlineleft(2^textndright)colon$



        $$
        beginalign
        S&=sum_n=1^inftyleft[-beta(2n-1)+zeta(2n)right] ,=-beta(1)+sum_n=1^infty-1left[zeta(2n)-beta(2n+1)right]+lim_small nrightarrowinftyzeta(2n) \
        &=colorgreenleft[lim_small nrightarrowinftyzeta(2n)-beta(1)right] +colorMagentasum_n=1^inftyleft[zeta(2n)-zeta(2n+1)right] +colorbluesum_n=1^inftyleft[zeta(2n+1)-beta(2n+1)right] \[6mm]
        colorMagentaS_1&=sum_n=1^inftyleft[zeta(2n)-zeta(2n+1)right] ,=sum_n=1^inftysum_m=2^inftyleft(frac1m^2n-fracsmall 1/mm^2nright) \
        &=sum_m=2^inftyleft(fracm-1mright)left(frac1m^2-1right) ,=sum_m=2^inftyfrac1m(m+1) ,=colorMagentafrac12 \[6mm]
        colorblueS_2&=sum_n=1^inftyleft[zeta(2n+1)-beta(2n+1)right] ,=sum_n=1^inftyfracGamma(2n+1)zeta(2n+1),-,Gamma(2n+1)beta(2n+1)(2n)! \
        &=int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(smallsum_n=1^inftyfracx^2n(2n)!right)dx =int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(smallcoshx-1right)dx \[2mm]
        &=int_0^inftyleft(frace^x+1e^2x-1-frace^xe^2x+1right)left(frace^2x+12e^x-1right),dx ,=int_0^inftyleft(frac(e^x+1)^2e^4x-1,frac(e^x-1)^22e^xright),dx \[2mm]
        &=int_0^inftyleft(frace^2x-1e^2x+1,fracsmall 1/2e^xright),dx ,=int_0^inftyleft(frace^xe^2x+1-fracsmall 1/2e^xright),dx ,=colorbluebeta(1)-frac12 \[6mm]
        colorredS&=left[,lim_small nrightarrowinftyzeta(2n)-beta(1),right],+,left[,frac12,right],+,left[,beta(1)-frac12,right] ,=lim_small nrightarrowinftyzeta(2n) ,=colorred1
        endalign
        $$







        $underlineleft(textNBright)colon$



        $$
        beginalign
        colorredS&=sum_n=1^inftyleft[zeta(2n)-beta(2n-1)right] =sum_n=1^inftyleft[fracGamma(2n),zeta(2n)(2n-1)!-fracGamma(2n-1),beta(2n-1)(2n-2)!right] \[2mm]
        &=sum_n=1^inftyint_0^inftyleft[fracx^2n-1(2n-1)!frac1e^x-1,-,fracx^2n-2(2n-2)!frace^xe^2x+1right],dx \[2mm]
        &=int_0^inftyleft[frac1e^x-1left(sum_n=1^inftyfracx^2n-1(2n-1)!right),-,frace^xe^2x+1left(sum_n=1^inftyfracx^2n-2(2n-2)!right)right],dx \[2mm]
        &=int_0^inftyleft[fracsinh(x)e^x-1,-,frace^xcosh(x)e^2x+1right],dx =frac12int_0^inftyfracdxe^x =colorredfrac12,rightarrow,mathcalX,,smalltextincorrect!
        endalign
        $$






        share|cite|improve this answer














        $underlineleft(1^textstright)colon$



        $$
        beginalign
        S&=sum_n=1^inftyleft[zeta(2n)colorred-1+1-beta(2n-1)right] ,=colorMagentasum_n=1^inftyleft[zeta(2n)-1right],+,colorbluesum_n=1^inftyleft[1-beta(2n-1)right] \[4mm]
        colorMagentaS_1&=sum_n=1^inftyleft[zeta(2n)-1right] ,=sum_n=1^inftysum_m=colorred2^inftyleft[frac1m^2nright] ,=sum_m=colorred2^inftyfrac1m^2-1 ,=sum_m=colorred2^inftyfrac1(m-1)(m+1) ,=colorMagentafrac34 \[4mm]
        colorblueS_2&=sum_n=1^inftyleft[1-beta(2n-1)right] ,=sum_n=1^inftysum_m=colorred2^inftyleft[frac(-1)^m(2m-1)^2n-1right] ,=sum_m=colorred1^inftysum_n=1^inftyleft[smallfrac4m-1(4m-1)^2n-smallfrac4m+1(4m+1)^2nright] \
        &=sum_m=1^inftyleft[smallfrac4m-1(4m-1)^2-1-smallfrac4m+1(4m+1)^2-1right] ,=sum_m=1^inftyfrac18m^2-2 ,=sum_m=1^inftyfracsmall 1/8(m-small 1/2)(m+small 1/2) ,=colorbluefrac14 \[4mm]
        colorredS&=frac34,+,frac14 ,=colorred1
        endalign
        $$







        $underlineleft(2^textndright)colon$



        $$
        beginalign
        S&=sum_n=1^inftyleft[-beta(2n-1)+zeta(2n)right] ,=-beta(1)+sum_n=1^infty-1left[zeta(2n)-beta(2n+1)right]+lim_small nrightarrowinftyzeta(2n) \
        &=colorgreenleft[lim_small nrightarrowinftyzeta(2n)-beta(1)right] +colorMagentasum_n=1^inftyleft[zeta(2n)-zeta(2n+1)right] +colorbluesum_n=1^inftyleft[zeta(2n+1)-beta(2n+1)right] \[6mm]
        colorMagentaS_1&=sum_n=1^inftyleft[zeta(2n)-zeta(2n+1)right] ,=sum_n=1^inftysum_m=2^inftyleft(frac1m^2n-fracsmall 1/mm^2nright) \
        &=sum_m=2^inftyleft(fracm-1mright)left(frac1m^2-1right) ,=sum_m=2^inftyfrac1m(m+1) ,=colorMagentafrac12 \[6mm]
        colorblueS_2&=sum_n=1^inftyleft[zeta(2n+1)-beta(2n+1)right] ,=sum_n=1^inftyfracGamma(2n+1)zeta(2n+1),-,Gamma(2n+1)beta(2n+1)(2n)! \
        &=int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(smallsum_n=1^inftyfracx^2n(2n)!right)dx =int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(smallcoshx-1right)dx \[2mm]
        &=int_0^inftyleft(frace^x+1e^2x-1-frace^xe^2x+1right)left(frace^2x+12e^x-1right),dx ,=int_0^inftyleft(frac(e^x+1)^2e^4x-1,frac(e^x-1)^22e^xright),dx \[2mm]
        &=int_0^inftyleft(frace^2x-1e^2x+1,fracsmall 1/2e^xright),dx ,=int_0^inftyleft(frace^xe^2x+1-fracsmall 1/2e^xright),dx ,=colorbluebeta(1)-frac12 \[6mm]
        colorredS&=left[,lim_small nrightarrowinftyzeta(2n)-beta(1),right],+,left[,frac12,right],+,left[,beta(1)-frac12,right] ,=lim_small nrightarrowinftyzeta(2n) ,=colorred1
        endalign
        $$







        $underlineleft(textNBright)colon$



        $$
        beginalign
        colorredS&=sum_n=1^inftyleft[zeta(2n)-beta(2n-1)right] =sum_n=1^inftyleft[fracGamma(2n),zeta(2n)(2n-1)!-fracGamma(2n-1),beta(2n-1)(2n-2)!right] \[2mm]
        &=sum_n=1^inftyint_0^inftyleft[fracx^2n-1(2n-1)!frac1e^x-1,-,fracx^2n-2(2n-2)!frace^xe^2x+1right],dx \[2mm]
        &=int_0^inftyleft[frac1e^x-1left(sum_n=1^inftyfracx^2n-1(2n-1)!right),-,frace^xe^2x+1left(sum_n=1^inftyfracx^2n-2(2n-2)!right)right],dx \[2mm]
        &=int_0^inftyleft[fracsinh(x)e^x-1,-,frace^xcosh(x)e^2x+1right],dx =frac12int_0^inftyfracdxe^x =colorredfrac12,rightarrow,mathcalX,,smalltextincorrect!
        endalign
        $$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Aug 21 at 17:04

























        answered Aug 18 at 8:15









        Hazem Orabi

        2,4012428




        2,4012428






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1160563%2fproving-zeta2-beta1-zeta4-beta3-zeta6-beta5-ldots%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            How to combine Bézier curves to a surface?

            Mutual Information Always Non-negative

            Why am i infinitely getting the same tweet with the Twitter Search API?