Proving $zeta(2) - beta(1) + zeta(4) - beta(3) + zeta(6)- beta(5) + ldots=1$
Clash Royale CLAN TAG#URR8PPP
up vote
9
down vote
favorite
Trying to prove
$$zeta(2) - beta(1) + zeta(4) - beta(3) + zeta(6)- beta(5) + ldots=1$$
I found by numerical calculation that (when $k$ goes to infinity)
$$sum_n=1^kzeta (2n)=k+3/4+o(1),$$
$$sum_n=1^kbeta (2n-1)=(k-1)+3/4+o(1).$$
in order to prove the above formula. Now how can I prove it analytically?
sequences-and-series special-functions riemann-zeta zeta-functions
add a comment |Â
up vote
9
down vote
favorite
Trying to prove
$$zeta(2) - beta(1) + zeta(4) - beta(3) + zeta(6)- beta(5) + ldots=1$$
I found by numerical calculation that (when $k$ goes to infinity)
$$sum_n=1^kzeta (2n)=k+3/4+o(1),$$
$$sum_n=1^kbeta (2n-1)=(k-1)+3/4+o(1).$$
in order to prove the above formula. Now how can I prove it analytically?
sequences-and-series special-functions riemann-zeta zeta-functions
What definition of the Beta function are you using? The one I know depends on two parameters.
â rubik
Feb 22 '15 at 20:14
@rubik http://mathworld.wolfram.com/DirichletBetaFunction.html
â whacka
Feb 22 '15 at 20:15
@whacka: Thanks!
â rubik
Feb 22 '15 at 20:16
1
I would suppose someone is working on a proof using the exponential generating function of Bernoulli and Euler numbers for the Zeta function / Beta function terms respectively even as I type this comment.
â Marko Riedel
Feb 22 '15 at 20:54
add a comment |Â
up vote
9
down vote
favorite
up vote
9
down vote
favorite
Trying to prove
$$zeta(2) - beta(1) + zeta(4) - beta(3) + zeta(6)- beta(5) + ldots=1$$
I found by numerical calculation that (when $k$ goes to infinity)
$$sum_n=1^kzeta (2n)=k+3/4+o(1),$$
$$sum_n=1^kbeta (2n-1)=(k-1)+3/4+o(1).$$
in order to prove the above formula. Now how can I prove it analytically?
sequences-and-series special-functions riemann-zeta zeta-functions
Trying to prove
$$zeta(2) - beta(1) + zeta(4) - beta(3) + zeta(6)- beta(5) + ldots=1$$
I found by numerical calculation that (when $k$ goes to infinity)
$$sum_n=1^kzeta (2n)=k+3/4+o(1),$$
$$sum_n=1^kbeta (2n-1)=(k-1)+3/4+o(1).$$
in order to prove the above formula. Now how can I prove it analytically?
sequences-and-series special-functions riemann-zeta zeta-functions
edited Feb 22 '15 at 21:51
asked Feb 22 '15 at 19:40
E.H.E
15.5k11863
15.5k11863
What definition of the Beta function are you using? The one I know depends on two parameters.
â rubik
Feb 22 '15 at 20:14
@rubik http://mathworld.wolfram.com/DirichletBetaFunction.html
â whacka
Feb 22 '15 at 20:15
@whacka: Thanks!
â rubik
Feb 22 '15 at 20:16
1
I would suppose someone is working on a proof using the exponential generating function of Bernoulli and Euler numbers for the Zeta function / Beta function terms respectively even as I type this comment.
â Marko Riedel
Feb 22 '15 at 20:54
add a comment |Â
What definition of the Beta function are you using? The one I know depends on two parameters.
â rubik
Feb 22 '15 at 20:14
@rubik http://mathworld.wolfram.com/DirichletBetaFunction.html
â whacka
Feb 22 '15 at 20:15
@whacka: Thanks!
â rubik
Feb 22 '15 at 20:16
1
I would suppose someone is working on a proof using the exponential generating function of Bernoulli and Euler numbers for the Zeta function / Beta function terms respectively even as I type this comment.
â Marko Riedel
Feb 22 '15 at 20:54
What definition of the Beta function are you using? The one I know depends on two parameters.
â rubik
Feb 22 '15 at 20:14
What definition of the Beta function are you using? The one I know depends on two parameters.
â rubik
Feb 22 '15 at 20:14
@rubik http://mathworld.wolfram.com/DirichletBetaFunction.html
â whacka
Feb 22 '15 at 20:15
@rubik http://mathworld.wolfram.com/DirichletBetaFunction.html
â whacka
Feb 22 '15 at 20:15
@whacka: Thanks!
â rubik
Feb 22 '15 at 20:16
@whacka: Thanks!
â rubik
Feb 22 '15 at 20:16
1
1
I would suppose someone is working on a proof using the exponential generating function of Bernoulli and Euler numbers for the Zeta function / Beta function terms respectively even as I type this comment.
â Marko Riedel
Feb 22 '15 at 20:54
I would suppose someone is working on a proof using the exponential generating function of Bernoulli and Euler numbers for the Zeta function / Beta function terms respectively even as I type this comment.
â Marko Riedel
Feb 22 '15 at 20:54
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
8
down vote
accepted
We have:
$$zeta(2k) = frac1(2k-1)!int_0^+inftyfract^2k-1e^t-1 tag1 $$
and:
$$beta(2k-1)=sum_ngeq 0frac(-1)^n(2n+1)^2k-1=frac1(2k-2)!int_0^+inftyfract^2k-2e^te^2t+1,dt tag2$$
hence:
$$sum_ngeq 1 beta(2n-1), z^2n-1 = fracpi z4cdotsecfracpi z2,tag3 $$
$$sum_ngeq 1 zeta(2n),z^2n = frac1-pi z cot(pi z)2,tag4 $$
and:
$$ lim_zto 1^-sum_ngeq 1left(zeta(2n), z^2n-beta(2n-1), z^2n-1right) = colorred1.tag5$$
but numerically by using WolframAlph gives the $1$
â E.H.E
Feb 22 '15 at 21:25
ok Jack wait me to add some results in the question
â E.H.E
Feb 22 '15 at 21:46
add a comment |Â
up vote
0
down vote
$underlineleft(1^textstright)colon$
$$
beginalign
S&=sum_n=1^inftyleft[zeta(2n)colorred-1+1-beta(2n-1)right] ,=colorMagentasum_n=1^inftyleft[zeta(2n)-1right],+,colorbluesum_n=1^inftyleft[1-beta(2n-1)right] \[4mm]
colorMagentaS_1&=sum_n=1^inftyleft[zeta(2n)-1right] ,=sum_n=1^inftysum_m=colorred2^inftyleft[frac1m^2nright] ,=sum_m=colorred2^inftyfrac1m^2-1 ,=sum_m=colorred2^inftyfrac1(m-1)(m+1) ,=colorMagentafrac34 \[4mm]
colorblueS_2&=sum_n=1^inftyleft[1-beta(2n-1)right] ,=sum_n=1^inftysum_m=colorred2^inftyleft[frac(-1)^m(2m-1)^2n-1right] ,=sum_m=colorred1^inftysum_n=1^inftyleft[smallfrac4m-1(4m-1)^2n-smallfrac4m+1(4m+1)^2nright] \
&=sum_m=1^inftyleft[smallfrac4m-1(4m-1)^2-1-smallfrac4m+1(4m+1)^2-1right] ,=sum_m=1^inftyfrac18m^2-2 ,=sum_m=1^inftyfracsmall 1/8(m-small 1/2)(m+small 1/2) ,=colorbluefrac14 \[4mm]
colorredS&=frac34,+,frac14 ,=colorred1
endalign
$$
$underlineleft(2^textndright)colon$
$$
beginalign
S&=sum_n=1^inftyleft[-beta(2n-1)+zeta(2n)right] ,=-beta(1)+sum_n=1^infty-1left[zeta(2n)-beta(2n+1)right]+lim_small nrightarrowinftyzeta(2n) \
&=colorgreenleft[lim_small nrightarrowinftyzeta(2n)-beta(1)right] +colorMagentasum_n=1^inftyleft[zeta(2n)-zeta(2n+1)right] +colorbluesum_n=1^inftyleft[zeta(2n+1)-beta(2n+1)right] \[6mm]
colorMagentaS_1&=sum_n=1^inftyleft[zeta(2n)-zeta(2n+1)right] ,=sum_n=1^inftysum_m=2^inftyleft(frac1m^2n-fracsmall 1/mm^2nright) \
&=sum_m=2^inftyleft(fracm-1mright)left(frac1m^2-1right) ,=sum_m=2^inftyfrac1m(m+1) ,=colorMagentafrac12 \[6mm]
colorblueS_2&=sum_n=1^inftyleft[zeta(2n+1)-beta(2n+1)right] ,=sum_n=1^inftyfracGamma(2n+1)zeta(2n+1),-,Gamma(2n+1)beta(2n+1)(2n)! \
&=int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(smallsum_n=1^inftyfracx^2n(2n)!right)dx =int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(smallcoshx-1right)dx \[2mm]
&=int_0^inftyleft(frace^x+1e^2x-1-frace^xe^2x+1right)left(frace^2x+12e^x-1right),dx ,=int_0^inftyleft(frac(e^x+1)^2e^4x-1,frac(e^x-1)^22e^xright),dx \[2mm]
&=int_0^inftyleft(frace^2x-1e^2x+1,fracsmall 1/2e^xright),dx ,=int_0^inftyleft(frace^xe^2x+1-fracsmall 1/2e^xright),dx ,=colorbluebeta(1)-frac12 \[6mm]
colorredS&=left[,lim_small nrightarrowinftyzeta(2n)-beta(1),right],+,left[,frac12,right],+,left[,beta(1)-frac12,right] ,=lim_small nrightarrowinftyzeta(2n) ,=colorred1
endalign
$$
$underlineleft(textNBright)colon$
$$
beginalign
colorredS&=sum_n=1^inftyleft[zeta(2n)-beta(2n-1)right] =sum_n=1^inftyleft[fracGamma(2n),zeta(2n)(2n-1)!-fracGamma(2n-1),beta(2n-1)(2n-2)!right] \[2mm]
&=sum_n=1^inftyint_0^inftyleft[fracx^2n-1(2n-1)!frac1e^x-1,-,fracx^2n-2(2n-2)!frace^xe^2x+1right],dx \[2mm]
&=int_0^inftyleft[frac1e^x-1left(sum_n=1^inftyfracx^2n-1(2n-1)!right),-,frace^xe^2x+1left(sum_n=1^inftyfracx^2n-2(2n-2)!right)right],dx \[2mm]
&=int_0^inftyleft[fracsinh(x)e^x-1,-,frace^xcosh(x)e^2x+1right],dx =frac12int_0^inftyfracdxe^x =colorredfrac12,rightarrow,mathcalX,,smalltextincorrect!
endalign
$$
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
8
down vote
accepted
We have:
$$zeta(2k) = frac1(2k-1)!int_0^+inftyfract^2k-1e^t-1 tag1 $$
and:
$$beta(2k-1)=sum_ngeq 0frac(-1)^n(2n+1)^2k-1=frac1(2k-2)!int_0^+inftyfract^2k-2e^te^2t+1,dt tag2$$
hence:
$$sum_ngeq 1 beta(2n-1), z^2n-1 = fracpi z4cdotsecfracpi z2,tag3 $$
$$sum_ngeq 1 zeta(2n),z^2n = frac1-pi z cot(pi z)2,tag4 $$
and:
$$ lim_zto 1^-sum_ngeq 1left(zeta(2n), z^2n-beta(2n-1), z^2n-1right) = colorred1.tag5$$
but numerically by using WolframAlph gives the $1$
â E.H.E
Feb 22 '15 at 21:25
ok Jack wait me to add some results in the question
â E.H.E
Feb 22 '15 at 21:46
add a comment |Â
up vote
8
down vote
accepted
We have:
$$zeta(2k) = frac1(2k-1)!int_0^+inftyfract^2k-1e^t-1 tag1 $$
and:
$$beta(2k-1)=sum_ngeq 0frac(-1)^n(2n+1)^2k-1=frac1(2k-2)!int_0^+inftyfract^2k-2e^te^2t+1,dt tag2$$
hence:
$$sum_ngeq 1 beta(2n-1), z^2n-1 = fracpi z4cdotsecfracpi z2,tag3 $$
$$sum_ngeq 1 zeta(2n),z^2n = frac1-pi z cot(pi z)2,tag4 $$
and:
$$ lim_zto 1^-sum_ngeq 1left(zeta(2n), z^2n-beta(2n-1), z^2n-1right) = colorred1.tag5$$
but numerically by using WolframAlph gives the $1$
â E.H.E
Feb 22 '15 at 21:25
ok Jack wait me to add some results in the question
â E.H.E
Feb 22 '15 at 21:46
add a comment |Â
up vote
8
down vote
accepted
up vote
8
down vote
accepted
We have:
$$zeta(2k) = frac1(2k-1)!int_0^+inftyfract^2k-1e^t-1 tag1 $$
and:
$$beta(2k-1)=sum_ngeq 0frac(-1)^n(2n+1)^2k-1=frac1(2k-2)!int_0^+inftyfract^2k-2e^te^2t+1,dt tag2$$
hence:
$$sum_ngeq 1 beta(2n-1), z^2n-1 = fracpi z4cdotsecfracpi z2,tag3 $$
$$sum_ngeq 1 zeta(2n),z^2n = frac1-pi z cot(pi z)2,tag4 $$
and:
$$ lim_zto 1^-sum_ngeq 1left(zeta(2n), z^2n-beta(2n-1), z^2n-1right) = colorred1.tag5$$
We have:
$$zeta(2k) = frac1(2k-1)!int_0^+inftyfract^2k-1e^t-1 tag1 $$
and:
$$beta(2k-1)=sum_ngeq 0frac(-1)^n(2n+1)^2k-1=frac1(2k-2)!int_0^+inftyfract^2k-2e^te^2t+1,dt tag2$$
hence:
$$sum_ngeq 1 beta(2n-1), z^2n-1 = fracpi z4cdotsecfracpi z2,tag3 $$
$$sum_ngeq 1 zeta(2n),z^2n = frac1-pi z cot(pi z)2,tag4 $$
and:
$$ lim_zto 1^-sum_ngeq 1left(zeta(2n), z^2n-beta(2n-1), z^2n-1right) = colorred1.tag5$$
edited Feb 22 '15 at 22:00
answered Feb 22 '15 at 21:14
Jack D'Aurizioâ¦
272k32267632
272k32267632
but numerically by using WolframAlph gives the $1$
â E.H.E
Feb 22 '15 at 21:25
ok Jack wait me to add some results in the question
â E.H.E
Feb 22 '15 at 21:46
add a comment |Â
but numerically by using WolframAlph gives the $1$
â E.H.E
Feb 22 '15 at 21:25
ok Jack wait me to add some results in the question
â E.H.E
Feb 22 '15 at 21:46
but numerically by using WolframAlph gives the $1$
â E.H.E
Feb 22 '15 at 21:25
but numerically by using WolframAlph gives the $1$
â E.H.E
Feb 22 '15 at 21:25
ok Jack wait me to add some results in the question
â E.H.E
Feb 22 '15 at 21:46
ok Jack wait me to add some results in the question
â E.H.E
Feb 22 '15 at 21:46
add a comment |Â
up vote
0
down vote
$underlineleft(1^textstright)colon$
$$
beginalign
S&=sum_n=1^inftyleft[zeta(2n)colorred-1+1-beta(2n-1)right] ,=colorMagentasum_n=1^inftyleft[zeta(2n)-1right],+,colorbluesum_n=1^inftyleft[1-beta(2n-1)right] \[4mm]
colorMagentaS_1&=sum_n=1^inftyleft[zeta(2n)-1right] ,=sum_n=1^inftysum_m=colorred2^inftyleft[frac1m^2nright] ,=sum_m=colorred2^inftyfrac1m^2-1 ,=sum_m=colorred2^inftyfrac1(m-1)(m+1) ,=colorMagentafrac34 \[4mm]
colorblueS_2&=sum_n=1^inftyleft[1-beta(2n-1)right] ,=sum_n=1^inftysum_m=colorred2^inftyleft[frac(-1)^m(2m-1)^2n-1right] ,=sum_m=colorred1^inftysum_n=1^inftyleft[smallfrac4m-1(4m-1)^2n-smallfrac4m+1(4m+1)^2nright] \
&=sum_m=1^inftyleft[smallfrac4m-1(4m-1)^2-1-smallfrac4m+1(4m+1)^2-1right] ,=sum_m=1^inftyfrac18m^2-2 ,=sum_m=1^inftyfracsmall 1/8(m-small 1/2)(m+small 1/2) ,=colorbluefrac14 \[4mm]
colorredS&=frac34,+,frac14 ,=colorred1
endalign
$$
$underlineleft(2^textndright)colon$
$$
beginalign
S&=sum_n=1^inftyleft[-beta(2n-1)+zeta(2n)right] ,=-beta(1)+sum_n=1^infty-1left[zeta(2n)-beta(2n+1)right]+lim_small nrightarrowinftyzeta(2n) \
&=colorgreenleft[lim_small nrightarrowinftyzeta(2n)-beta(1)right] +colorMagentasum_n=1^inftyleft[zeta(2n)-zeta(2n+1)right] +colorbluesum_n=1^inftyleft[zeta(2n+1)-beta(2n+1)right] \[6mm]
colorMagentaS_1&=sum_n=1^inftyleft[zeta(2n)-zeta(2n+1)right] ,=sum_n=1^inftysum_m=2^inftyleft(frac1m^2n-fracsmall 1/mm^2nright) \
&=sum_m=2^inftyleft(fracm-1mright)left(frac1m^2-1right) ,=sum_m=2^inftyfrac1m(m+1) ,=colorMagentafrac12 \[6mm]
colorblueS_2&=sum_n=1^inftyleft[zeta(2n+1)-beta(2n+1)right] ,=sum_n=1^inftyfracGamma(2n+1)zeta(2n+1),-,Gamma(2n+1)beta(2n+1)(2n)! \
&=int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(smallsum_n=1^inftyfracx^2n(2n)!right)dx =int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(smallcoshx-1right)dx \[2mm]
&=int_0^inftyleft(frace^x+1e^2x-1-frace^xe^2x+1right)left(frace^2x+12e^x-1right),dx ,=int_0^inftyleft(frac(e^x+1)^2e^4x-1,frac(e^x-1)^22e^xright),dx \[2mm]
&=int_0^inftyleft(frace^2x-1e^2x+1,fracsmall 1/2e^xright),dx ,=int_0^inftyleft(frace^xe^2x+1-fracsmall 1/2e^xright),dx ,=colorbluebeta(1)-frac12 \[6mm]
colorredS&=left[,lim_small nrightarrowinftyzeta(2n)-beta(1),right],+,left[,frac12,right],+,left[,beta(1)-frac12,right] ,=lim_small nrightarrowinftyzeta(2n) ,=colorred1
endalign
$$
$underlineleft(textNBright)colon$
$$
beginalign
colorredS&=sum_n=1^inftyleft[zeta(2n)-beta(2n-1)right] =sum_n=1^inftyleft[fracGamma(2n),zeta(2n)(2n-1)!-fracGamma(2n-1),beta(2n-1)(2n-2)!right] \[2mm]
&=sum_n=1^inftyint_0^inftyleft[fracx^2n-1(2n-1)!frac1e^x-1,-,fracx^2n-2(2n-2)!frace^xe^2x+1right],dx \[2mm]
&=int_0^inftyleft[frac1e^x-1left(sum_n=1^inftyfracx^2n-1(2n-1)!right),-,frace^xe^2x+1left(sum_n=1^inftyfracx^2n-2(2n-2)!right)right],dx \[2mm]
&=int_0^inftyleft[fracsinh(x)e^x-1,-,frace^xcosh(x)e^2x+1right],dx =frac12int_0^inftyfracdxe^x =colorredfrac12,rightarrow,mathcalX,,smalltextincorrect!
endalign
$$
add a comment |Â
up vote
0
down vote
$underlineleft(1^textstright)colon$
$$
beginalign
S&=sum_n=1^inftyleft[zeta(2n)colorred-1+1-beta(2n-1)right] ,=colorMagentasum_n=1^inftyleft[zeta(2n)-1right],+,colorbluesum_n=1^inftyleft[1-beta(2n-1)right] \[4mm]
colorMagentaS_1&=sum_n=1^inftyleft[zeta(2n)-1right] ,=sum_n=1^inftysum_m=colorred2^inftyleft[frac1m^2nright] ,=sum_m=colorred2^inftyfrac1m^2-1 ,=sum_m=colorred2^inftyfrac1(m-1)(m+1) ,=colorMagentafrac34 \[4mm]
colorblueS_2&=sum_n=1^inftyleft[1-beta(2n-1)right] ,=sum_n=1^inftysum_m=colorred2^inftyleft[frac(-1)^m(2m-1)^2n-1right] ,=sum_m=colorred1^inftysum_n=1^inftyleft[smallfrac4m-1(4m-1)^2n-smallfrac4m+1(4m+1)^2nright] \
&=sum_m=1^inftyleft[smallfrac4m-1(4m-1)^2-1-smallfrac4m+1(4m+1)^2-1right] ,=sum_m=1^inftyfrac18m^2-2 ,=sum_m=1^inftyfracsmall 1/8(m-small 1/2)(m+small 1/2) ,=colorbluefrac14 \[4mm]
colorredS&=frac34,+,frac14 ,=colorred1
endalign
$$
$underlineleft(2^textndright)colon$
$$
beginalign
S&=sum_n=1^inftyleft[-beta(2n-1)+zeta(2n)right] ,=-beta(1)+sum_n=1^infty-1left[zeta(2n)-beta(2n+1)right]+lim_small nrightarrowinftyzeta(2n) \
&=colorgreenleft[lim_small nrightarrowinftyzeta(2n)-beta(1)right] +colorMagentasum_n=1^inftyleft[zeta(2n)-zeta(2n+1)right] +colorbluesum_n=1^inftyleft[zeta(2n+1)-beta(2n+1)right] \[6mm]
colorMagentaS_1&=sum_n=1^inftyleft[zeta(2n)-zeta(2n+1)right] ,=sum_n=1^inftysum_m=2^inftyleft(frac1m^2n-fracsmall 1/mm^2nright) \
&=sum_m=2^inftyleft(fracm-1mright)left(frac1m^2-1right) ,=sum_m=2^inftyfrac1m(m+1) ,=colorMagentafrac12 \[6mm]
colorblueS_2&=sum_n=1^inftyleft[zeta(2n+1)-beta(2n+1)right] ,=sum_n=1^inftyfracGamma(2n+1)zeta(2n+1),-,Gamma(2n+1)beta(2n+1)(2n)! \
&=int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(smallsum_n=1^inftyfracx^2n(2n)!right)dx =int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(smallcoshx-1right)dx \[2mm]
&=int_0^inftyleft(frace^x+1e^2x-1-frace^xe^2x+1right)left(frace^2x+12e^x-1right),dx ,=int_0^inftyleft(frac(e^x+1)^2e^4x-1,frac(e^x-1)^22e^xright),dx \[2mm]
&=int_0^inftyleft(frace^2x-1e^2x+1,fracsmall 1/2e^xright),dx ,=int_0^inftyleft(frace^xe^2x+1-fracsmall 1/2e^xright),dx ,=colorbluebeta(1)-frac12 \[6mm]
colorredS&=left[,lim_small nrightarrowinftyzeta(2n)-beta(1),right],+,left[,frac12,right],+,left[,beta(1)-frac12,right] ,=lim_small nrightarrowinftyzeta(2n) ,=colorred1
endalign
$$
$underlineleft(textNBright)colon$
$$
beginalign
colorredS&=sum_n=1^inftyleft[zeta(2n)-beta(2n-1)right] =sum_n=1^inftyleft[fracGamma(2n),zeta(2n)(2n-1)!-fracGamma(2n-1),beta(2n-1)(2n-2)!right] \[2mm]
&=sum_n=1^inftyint_0^inftyleft[fracx^2n-1(2n-1)!frac1e^x-1,-,fracx^2n-2(2n-2)!frace^xe^2x+1right],dx \[2mm]
&=int_0^inftyleft[frac1e^x-1left(sum_n=1^inftyfracx^2n-1(2n-1)!right),-,frace^xe^2x+1left(sum_n=1^inftyfracx^2n-2(2n-2)!right)right],dx \[2mm]
&=int_0^inftyleft[fracsinh(x)e^x-1,-,frace^xcosh(x)e^2x+1right],dx =frac12int_0^inftyfracdxe^x =colorredfrac12,rightarrow,mathcalX,,smalltextincorrect!
endalign
$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
$underlineleft(1^textstright)colon$
$$
beginalign
S&=sum_n=1^inftyleft[zeta(2n)colorred-1+1-beta(2n-1)right] ,=colorMagentasum_n=1^inftyleft[zeta(2n)-1right],+,colorbluesum_n=1^inftyleft[1-beta(2n-1)right] \[4mm]
colorMagentaS_1&=sum_n=1^inftyleft[zeta(2n)-1right] ,=sum_n=1^inftysum_m=colorred2^inftyleft[frac1m^2nright] ,=sum_m=colorred2^inftyfrac1m^2-1 ,=sum_m=colorred2^inftyfrac1(m-1)(m+1) ,=colorMagentafrac34 \[4mm]
colorblueS_2&=sum_n=1^inftyleft[1-beta(2n-1)right] ,=sum_n=1^inftysum_m=colorred2^inftyleft[frac(-1)^m(2m-1)^2n-1right] ,=sum_m=colorred1^inftysum_n=1^inftyleft[smallfrac4m-1(4m-1)^2n-smallfrac4m+1(4m+1)^2nright] \
&=sum_m=1^inftyleft[smallfrac4m-1(4m-1)^2-1-smallfrac4m+1(4m+1)^2-1right] ,=sum_m=1^inftyfrac18m^2-2 ,=sum_m=1^inftyfracsmall 1/8(m-small 1/2)(m+small 1/2) ,=colorbluefrac14 \[4mm]
colorredS&=frac34,+,frac14 ,=colorred1
endalign
$$
$underlineleft(2^textndright)colon$
$$
beginalign
S&=sum_n=1^inftyleft[-beta(2n-1)+zeta(2n)right] ,=-beta(1)+sum_n=1^infty-1left[zeta(2n)-beta(2n+1)right]+lim_small nrightarrowinftyzeta(2n) \
&=colorgreenleft[lim_small nrightarrowinftyzeta(2n)-beta(1)right] +colorMagentasum_n=1^inftyleft[zeta(2n)-zeta(2n+1)right] +colorbluesum_n=1^inftyleft[zeta(2n+1)-beta(2n+1)right] \[6mm]
colorMagentaS_1&=sum_n=1^inftyleft[zeta(2n)-zeta(2n+1)right] ,=sum_n=1^inftysum_m=2^inftyleft(frac1m^2n-fracsmall 1/mm^2nright) \
&=sum_m=2^inftyleft(fracm-1mright)left(frac1m^2-1right) ,=sum_m=2^inftyfrac1m(m+1) ,=colorMagentafrac12 \[6mm]
colorblueS_2&=sum_n=1^inftyleft[zeta(2n+1)-beta(2n+1)right] ,=sum_n=1^inftyfracGamma(2n+1)zeta(2n+1),-,Gamma(2n+1)beta(2n+1)(2n)! \
&=int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(smallsum_n=1^inftyfracx^2n(2n)!right)dx =int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(smallcoshx-1right)dx \[2mm]
&=int_0^inftyleft(frace^x+1e^2x-1-frace^xe^2x+1right)left(frace^2x+12e^x-1right),dx ,=int_0^inftyleft(frac(e^x+1)^2e^4x-1,frac(e^x-1)^22e^xright),dx \[2mm]
&=int_0^inftyleft(frace^2x-1e^2x+1,fracsmall 1/2e^xright),dx ,=int_0^inftyleft(frace^xe^2x+1-fracsmall 1/2e^xright),dx ,=colorbluebeta(1)-frac12 \[6mm]
colorredS&=left[,lim_small nrightarrowinftyzeta(2n)-beta(1),right],+,left[,frac12,right],+,left[,beta(1)-frac12,right] ,=lim_small nrightarrowinftyzeta(2n) ,=colorred1
endalign
$$
$underlineleft(textNBright)colon$
$$
beginalign
colorredS&=sum_n=1^inftyleft[zeta(2n)-beta(2n-1)right] =sum_n=1^inftyleft[fracGamma(2n),zeta(2n)(2n-1)!-fracGamma(2n-1),beta(2n-1)(2n-2)!right] \[2mm]
&=sum_n=1^inftyint_0^inftyleft[fracx^2n-1(2n-1)!frac1e^x-1,-,fracx^2n-2(2n-2)!frace^xe^2x+1right],dx \[2mm]
&=int_0^inftyleft[frac1e^x-1left(sum_n=1^inftyfracx^2n-1(2n-1)!right),-,frace^xe^2x+1left(sum_n=1^inftyfracx^2n-2(2n-2)!right)right],dx \[2mm]
&=int_0^inftyleft[fracsinh(x)e^x-1,-,frace^xcosh(x)e^2x+1right],dx =frac12int_0^inftyfracdxe^x =colorredfrac12,rightarrow,mathcalX,,smalltextincorrect!
endalign
$$
$underlineleft(1^textstright)colon$
$$
beginalign
S&=sum_n=1^inftyleft[zeta(2n)colorred-1+1-beta(2n-1)right] ,=colorMagentasum_n=1^inftyleft[zeta(2n)-1right],+,colorbluesum_n=1^inftyleft[1-beta(2n-1)right] \[4mm]
colorMagentaS_1&=sum_n=1^inftyleft[zeta(2n)-1right] ,=sum_n=1^inftysum_m=colorred2^inftyleft[frac1m^2nright] ,=sum_m=colorred2^inftyfrac1m^2-1 ,=sum_m=colorred2^inftyfrac1(m-1)(m+1) ,=colorMagentafrac34 \[4mm]
colorblueS_2&=sum_n=1^inftyleft[1-beta(2n-1)right] ,=sum_n=1^inftysum_m=colorred2^inftyleft[frac(-1)^m(2m-1)^2n-1right] ,=sum_m=colorred1^inftysum_n=1^inftyleft[smallfrac4m-1(4m-1)^2n-smallfrac4m+1(4m+1)^2nright] \
&=sum_m=1^inftyleft[smallfrac4m-1(4m-1)^2-1-smallfrac4m+1(4m+1)^2-1right] ,=sum_m=1^inftyfrac18m^2-2 ,=sum_m=1^inftyfracsmall 1/8(m-small 1/2)(m+small 1/2) ,=colorbluefrac14 \[4mm]
colorredS&=frac34,+,frac14 ,=colorred1
endalign
$$
$underlineleft(2^textndright)colon$
$$
beginalign
S&=sum_n=1^inftyleft[-beta(2n-1)+zeta(2n)right] ,=-beta(1)+sum_n=1^infty-1left[zeta(2n)-beta(2n+1)right]+lim_small nrightarrowinftyzeta(2n) \
&=colorgreenleft[lim_small nrightarrowinftyzeta(2n)-beta(1)right] +colorMagentasum_n=1^inftyleft[zeta(2n)-zeta(2n+1)right] +colorbluesum_n=1^inftyleft[zeta(2n+1)-beta(2n+1)right] \[6mm]
colorMagentaS_1&=sum_n=1^inftyleft[zeta(2n)-zeta(2n+1)right] ,=sum_n=1^inftysum_m=2^inftyleft(frac1m^2n-fracsmall 1/mm^2nright) \
&=sum_m=2^inftyleft(fracm-1mright)left(frac1m^2-1right) ,=sum_m=2^inftyfrac1m(m+1) ,=colorMagentafrac12 \[6mm]
colorblueS_2&=sum_n=1^inftyleft[zeta(2n+1)-beta(2n+1)right] ,=sum_n=1^inftyfracGamma(2n+1)zeta(2n+1),-,Gamma(2n+1)beta(2n+1)(2n)! \
&=int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(smallsum_n=1^inftyfracx^2n(2n)!right)dx =int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(smallcoshx-1right)dx \[2mm]
&=int_0^inftyleft(frace^x+1e^2x-1-frace^xe^2x+1right)left(frace^2x+12e^x-1right),dx ,=int_0^inftyleft(frac(e^x+1)^2e^4x-1,frac(e^x-1)^22e^xright),dx \[2mm]
&=int_0^inftyleft(frace^2x-1e^2x+1,fracsmall 1/2e^xright),dx ,=int_0^inftyleft(frace^xe^2x+1-fracsmall 1/2e^xright),dx ,=colorbluebeta(1)-frac12 \[6mm]
colorredS&=left[,lim_small nrightarrowinftyzeta(2n)-beta(1),right],+,left[,frac12,right],+,left[,beta(1)-frac12,right] ,=lim_small nrightarrowinftyzeta(2n) ,=colorred1
endalign
$$
$underlineleft(textNBright)colon$
$$
beginalign
colorredS&=sum_n=1^inftyleft[zeta(2n)-beta(2n-1)right] =sum_n=1^inftyleft[fracGamma(2n),zeta(2n)(2n-1)!-fracGamma(2n-1),beta(2n-1)(2n-2)!right] \[2mm]
&=sum_n=1^inftyint_0^inftyleft[fracx^2n-1(2n-1)!frac1e^x-1,-,fracx^2n-2(2n-2)!frace^xe^2x+1right],dx \[2mm]
&=int_0^inftyleft[frac1e^x-1left(sum_n=1^inftyfracx^2n-1(2n-1)!right),-,frace^xe^2x+1left(sum_n=1^inftyfracx^2n-2(2n-2)!right)right],dx \[2mm]
&=int_0^inftyleft[fracsinh(x)e^x-1,-,frace^xcosh(x)e^2x+1right],dx =frac12int_0^inftyfracdxe^x =colorredfrac12,rightarrow,mathcalX,,smalltextincorrect!
endalign
$$
edited Aug 21 at 17:04
answered Aug 18 at 8:15
Hazem Orabi
2,4012428
2,4012428
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1160563%2fproving-zeta2-beta1-zeta4-beta3-zeta6-beta5-ldots%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
What definition of the Beta function are you using? The one I know depends on two parameters.
â rubik
Feb 22 '15 at 20:14
@rubik http://mathworld.wolfram.com/DirichletBetaFunction.html
â whacka
Feb 22 '15 at 20:15
@whacka: Thanks!
â rubik
Feb 22 '15 at 20:16
1
I would suppose someone is working on a proof using the exponential generating function of Bernoulli and Euler numbers for the Zeta function / Beta function terms respectively even as I type this comment.
â Marko Riedel
Feb 22 '15 at 20:54