Finding the hessian matrix of $f(x) = g^t(x)g(x)$
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Let $f:mathbbR^n to mathbbR$ defined by $f(x)=g^t(x)g(x)$, where $g:mathbbR^n to mathbbR^m$ and $x in mathbbR^n$.
Find the Hessian of $f$.
(The $^t$ means transpose)
My attempt:
The k-th element of gradient vector is:
$displaystyle f(x) = g^t(x)g(x) = sum_i=1^m g_i^2(x)$
$displaystyle fracpartialpartial x_k sum_i=1^m g_i^2(x)= sum_i=1^m fracpartialpartial x_kg_i^2(x)=sum_i=1^m2 g_i(x)fracpartialpartial x_kg_i(x)$
Then $nabla f(x) = 2g^t(x)Jg(x)$
The mk-th element of hessian matrix is:
$displaystyle dfracpartialpartial x_msum_i=1^m2 g_i(x)fracpartialpartial x_kg_i(x) = 2sum_i=1^m dfracpartialpartial x_mg_i(x)fracpartialpartial x_kg_i(x) = 2sum_i=1^m bigg(dfracpartialpartial x_mg_i(x)bigg)fracpartialpartial x_kg_i(x) +g_i(x)bigg(dfracpartial^2partial x_mpartial x_kg_i(x)bigg)$
Is this correct?
What matrix could then be this hessian?
Thanks
multivariable-calculus vector-analysis
add a comment |Â
up vote
0
down vote
favorite
Let $f:mathbbR^n to mathbbR$ defined by $f(x)=g^t(x)g(x)$, where $g:mathbbR^n to mathbbR^m$ and $x in mathbbR^n$.
Find the Hessian of $f$.
(The $^t$ means transpose)
My attempt:
The k-th element of gradient vector is:
$displaystyle f(x) = g^t(x)g(x) = sum_i=1^m g_i^2(x)$
$displaystyle fracpartialpartial x_k sum_i=1^m g_i^2(x)= sum_i=1^m fracpartialpartial x_kg_i^2(x)=sum_i=1^m2 g_i(x)fracpartialpartial x_kg_i(x)$
Then $nabla f(x) = 2g^t(x)Jg(x)$
The mk-th element of hessian matrix is:
$displaystyle dfracpartialpartial x_msum_i=1^m2 g_i(x)fracpartialpartial x_kg_i(x) = 2sum_i=1^m dfracpartialpartial x_mg_i(x)fracpartialpartial x_kg_i(x) = 2sum_i=1^m bigg(dfracpartialpartial x_mg_i(x)bigg)fracpartialpartial x_kg_i(x) +g_i(x)bigg(dfracpartial^2partial x_mpartial x_kg_i(x)bigg)$
Is this correct?
What matrix could then be this hessian?
Thanks
multivariable-calculus vector-analysis
is it $2(J^2g(x) + g^t(x)Hg(x))$?
â dude3221
Aug 18 at 3:10
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $f:mathbbR^n to mathbbR$ defined by $f(x)=g^t(x)g(x)$, where $g:mathbbR^n to mathbbR^m$ and $x in mathbbR^n$.
Find the Hessian of $f$.
(The $^t$ means transpose)
My attempt:
The k-th element of gradient vector is:
$displaystyle f(x) = g^t(x)g(x) = sum_i=1^m g_i^2(x)$
$displaystyle fracpartialpartial x_k sum_i=1^m g_i^2(x)= sum_i=1^m fracpartialpartial x_kg_i^2(x)=sum_i=1^m2 g_i(x)fracpartialpartial x_kg_i(x)$
Then $nabla f(x) = 2g^t(x)Jg(x)$
The mk-th element of hessian matrix is:
$displaystyle dfracpartialpartial x_msum_i=1^m2 g_i(x)fracpartialpartial x_kg_i(x) = 2sum_i=1^m dfracpartialpartial x_mg_i(x)fracpartialpartial x_kg_i(x) = 2sum_i=1^m bigg(dfracpartialpartial x_mg_i(x)bigg)fracpartialpartial x_kg_i(x) +g_i(x)bigg(dfracpartial^2partial x_mpartial x_kg_i(x)bigg)$
Is this correct?
What matrix could then be this hessian?
Thanks
multivariable-calculus vector-analysis
Let $f:mathbbR^n to mathbbR$ defined by $f(x)=g^t(x)g(x)$, where $g:mathbbR^n to mathbbR^m$ and $x in mathbbR^n$.
Find the Hessian of $f$.
(The $^t$ means transpose)
My attempt:
The k-th element of gradient vector is:
$displaystyle f(x) = g^t(x)g(x) = sum_i=1^m g_i^2(x)$
$displaystyle fracpartialpartial x_k sum_i=1^m g_i^2(x)= sum_i=1^m fracpartialpartial x_kg_i^2(x)=sum_i=1^m2 g_i(x)fracpartialpartial x_kg_i(x)$
Then $nabla f(x) = 2g^t(x)Jg(x)$
The mk-th element of hessian matrix is:
$displaystyle dfracpartialpartial x_msum_i=1^m2 g_i(x)fracpartialpartial x_kg_i(x) = 2sum_i=1^m dfracpartialpartial x_mg_i(x)fracpartialpartial x_kg_i(x) = 2sum_i=1^m bigg(dfracpartialpartial x_mg_i(x)bigg)fracpartialpartial x_kg_i(x) +g_i(x)bigg(dfracpartial^2partial x_mpartial x_kg_i(x)bigg)$
Is this correct?
What matrix could then be this hessian?
Thanks
multivariable-calculus vector-analysis
asked Aug 18 at 2:45
dude3221
31812
31812
is it $2(J^2g(x) + g^t(x)Hg(x))$?
â dude3221
Aug 18 at 3:10
add a comment |Â
is it $2(J^2g(x) + g^t(x)Hg(x))$?
â dude3221
Aug 18 at 3:10
is it $2(J^2g(x) + g^t(x)Hg(x))$?
â dude3221
Aug 18 at 3:10
is it $2(J^2g(x) + g^t(x)Hg(x))$?
â dude3221
Aug 18 at 3:10
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2886370%2ffinding-the-hessian-matrix-of-fx-gtxgx%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
is it $2(J^2g(x) + g^t(x)Hg(x))$?
â dude3221
Aug 18 at 3:10