Finding the hessian matrix of $f(x) = g^t(x)g(x)$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Let $f:mathbbR^n to mathbbR$ defined by $f(x)=g^t(x)g(x)$, where $g:mathbbR^n to mathbbR^m$ and $x in mathbbR^n$.
Find the Hessian of $f$.



(The $^t$ means transpose)



My attempt:



The k-th element of gradient vector is:



$displaystyle f(x) = g^t(x)g(x) = sum_i=1^m g_i^2(x)$



$displaystyle fracpartialpartial x_k sum_i=1^m g_i^2(x)= sum_i=1^m fracpartialpartial x_kg_i^2(x)=sum_i=1^m2 g_i(x)fracpartialpartial x_kg_i(x)$



Then $nabla f(x) = 2g^t(x)Jg(x)$



The mk-th element of hessian matrix is:



$displaystyle dfracpartialpartial x_msum_i=1^m2 g_i(x)fracpartialpartial x_kg_i(x) = 2sum_i=1^m dfracpartialpartial x_mg_i(x)fracpartialpartial x_kg_i(x) = 2sum_i=1^m bigg(dfracpartialpartial x_mg_i(x)bigg)fracpartialpartial x_kg_i(x) +g_i(x)bigg(dfracpartial^2partial x_mpartial x_kg_i(x)bigg)$



Is this correct?
What matrix could then be this hessian?



Thanks







share|cite|improve this question




















  • is it $2(J^2g(x) + g^t(x)Hg(x))$?
    – dude3221
    Aug 18 at 3:10














up vote
0
down vote

favorite












Let $f:mathbbR^n to mathbbR$ defined by $f(x)=g^t(x)g(x)$, where $g:mathbbR^n to mathbbR^m$ and $x in mathbbR^n$.
Find the Hessian of $f$.



(The $^t$ means transpose)



My attempt:



The k-th element of gradient vector is:



$displaystyle f(x) = g^t(x)g(x) = sum_i=1^m g_i^2(x)$



$displaystyle fracpartialpartial x_k sum_i=1^m g_i^2(x)= sum_i=1^m fracpartialpartial x_kg_i^2(x)=sum_i=1^m2 g_i(x)fracpartialpartial x_kg_i(x)$



Then $nabla f(x) = 2g^t(x)Jg(x)$



The mk-th element of hessian matrix is:



$displaystyle dfracpartialpartial x_msum_i=1^m2 g_i(x)fracpartialpartial x_kg_i(x) = 2sum_i=1^m dfracpartialpartial x_mg_i(x)fracpartialpartial x_kg_i(x) = 2sum_i=1^m bigg(dfracpartialpartial x_mg_i(x)bigg)fracpartialpartial x_kg_i(x) +g_i(x)bigg(dfracpartial^2partial x_mpartial x_kg_i(x)bigg)$



Is this correct?
What matrix could then be this hessian?



Thanks







share|cite|improve this question




















  • is it $2(J^2g(x) + g^t(x)Hg(x))$?
    – dude3221
    Aug 18 at 3:10












up vote
0
down vote

favorite









up vote
0
down vote

favorite











Let $f:mathbbR^n to mathbbR$ defined by $f(x)=g^t(x)g(x)$, where $g:mathbbR^n to mathbbR^m$ and $x in mathbbR^n$.
Find the Hessian of $f$.



(The $^t$ means transpose)



My attempt:



The k-th element of gradient vector is:



$displaystyle f(x) = g^t(x)g(x) = sum_i=1^m g_i^2(x)$



$displaystyle fracpartialpartial x_k sum_i=1^m g_i^2(x)= sum_i=1^m fracpartialpartial x_kg_i^2(x)=sum_i=1^m2 g_i(x)fracpartialpartial x_kg_i(x)$



Then $nabla f(x) = 2g^t(x)Jg(x)$



The mk-th element of hessian matrix is:



$displaystyle dfracpartialpartial x_msum_i=1^m2 g_i(x)fracpartialpartial x_kg_i(x) = 2sum_i=1^m dfracpartialpartial x_mg_i(x)fracpartialpartial x_kg_i(x) = 2sum_i=1^m bigg(dfracpartialpartial x_mg_i(x)bigg)fracpartialpartial x_kg_i(x) +g_i(x)bigg(dfracpartial^2partial x_mpartial x_kg_i(x)bigg)$



Is this correct?
What matrix could then be this hessian?



Thanks







share|cite|improve this question












Let $f:mathbbR^n to mathbbR$ defined by $f(x)=g^t(x)g(x)$, where $g:mathbbR^n to mathbbR^m$ and $x in mathbbR^n$.
Find the Hessian of $f$.



(The $^t$ means transpose)



My attempt:



The k-th element of gradient vector is:



$displaystyle f(x) = g^t(x)g(x) = sum_i=1^m g_i^2(x)$



$displaystyle fracpartialpartial x_k sum_i=1^m g_i^2(x)= sum_i=1^m fracpartialpartial x_kg_i^2(x)=sum_i=1^m2 g_i(x)fracpartialpartial x_kg_i(x)$



Then $nabla f(x) = 2g^t(x)Jg(x)$



The mk-th element of hessian matrix is:



$displaystyle dfracpartialpartial x_msum_i=1^m2 g_i(x)fracpartialpartial x_kg_i(x) = 2sum_i=1^m dfracpartialpartial x_mg_i(x)fracpartialpartial x_kg_i(x) = 2sum_i=1^m bigg(dfracpartialpartial x_mg_i(x)bigg)fracpartialpartial x_kg_i(x) +g_i(x)bigg(dfracpartial^2partial x_mpartial x_kg_i(x)bigg)$



Is this correct?
What matrix could then be this hessian?



Thanks









share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Aug 18 at 2:45









dude3221

31812




31812











  • is it $2(J^2g(x) + g^t(x)Hg(x))$?
    – dude3221
    Aug 18 at 3:10
















  • is it $2(J^2g(x) + g^t(x)Hg(x))$?
    – dude3221
    Aug 18 at 3:10















is it $2(J^2g(x) + g^t(x)Hg(x))$?
– dude3221
Aug 18 at 3:10




is it $2(J^2g(x) + g^t(x)Hg(x))$?
– dude3221
Aug 18 at 3:10















active

oldest

votes











Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2886370%2ffinding-the-hessian-matrix-of-fx-gtxgx%23new-answer', 'question_page');

);

Post as a guest



































active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes










 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2886370%2ffinding-the-hessian-matrix-of-fx-gtxgx%23new-answer', 'question_page');

);

Post as a guest













































































這個網誌中的熱門文章

How to combine Bézier curves to a surface?

Mutual Information Always Non-negative

Why am i infinitely getting the same tweet with the Twitter Search API?