Dirac delta function like a “function” of an operator

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Let $mathcalSsubset mathcalH=L^2(mathbbR^n)subset mathcalS^*$ be the Schwartz space, the Hilbert space and the space of tempered distributions respectively. Consider an algebra $mathcalA$ of operators with continuous spectrum. We see delta function as the element of $mathcalS^*$, i.e. continuous (in kernal topology with seminorms $f mapsto |Af|, Ain mathcalA, fin mathcalH$) linear functional on $mathcalS$.



Question: how can we correctly define an action of $delta(A-vecx), Ain mathcalA, vecxin mathbbR^n$ on $fin mathcalH,?$



For example, here we have the algebra $mathcalA$ generated by operators $X colon f(vecx)mapsto vecx f(vecx)$ and $P colon f(vecx)mapsto partial_vecx f(vecx)$ with $[X,P]=iI$. Emilio Pisanty tell that functions of the position operator should work $⟨x|F(X)=F(vecx)⟨x|$ but I don't understand how it work with delta function.



Also we can find (here on p.13 formula (74)) the Fourier transform of operator $rho(vecx)=delta(X-vecx)$: $$rho(veck)=intlimits_mathbbR^n e^-iveckcdot vecxrho(vecx),dvecx=e^-iveckX.$$



I will be very grateful for any remarks and comments.







share|cite|improve this question




















  • What is $A-vecx$? and then what is $delta(A-vecx)$?
    – DisintegratingByParts
    Aug 18 at 4:14










  • @DisintegratingByParts, $(A-vecx)f(vecx)=Af-vecxf$ and I don't understand what is $delta(A-vecx)$, I think that it's wrong form of something correct. By anology we have $int f(vecx)delta(A-vecx), dvecx=f(A),$ but it looks senseless. Is it correct: $delta(A-vecx)=frac12pi int e^i(A-vecx)cdot vecy,dvecy , ?$
    – QuantumDK
    Aug 18 at 13:45







  • 1




    I don't know how to make sense of an operator minus a vector.
    – DisintegratingByParts
    Aug 18 at 15:27










  • @DisintegratingByParts, and how to make sense of $delta(A), Ain mathcalA ,?$
    – QuantumDK
    Aug 20 at 17:26










  • Maybe we can write formal expansion and put to it an operator: $$delta(A-x)=frac12pisum_k=-infty^inftye^ik(A-x)=frac12pisum_k=-infty^inftye^ik(-x)sum_n=0^inftyfrac(ikA)^nn! , ?$$
    – QuantumDK
    Aug 21 at 1:39















up vote
0
down vote

favorite












Let $mathcalSsubset mathcalH=L^2(mathbbR^n)subset mathcalS^*$ be the Schwartz space, the Hilbert space and the space of tempered distributions respectively. Consider an algebra $mathcalA$ of operators with continuous spectrum. We see delta function as the element of $mathcalS^*$, i.e. continuous (in kernal topology with seminorms $f mapsto |Af|, Ain mathcalA, fin mathcalH$) linear functional on $mathcalS$.



Question: how can we correctly define an action of $delta(A-vecx), Ain mathcalA, vecxin mathbbR^n$ on $fin mathcalH,?$



For example, here we have the algebra $mathcalA$ generated by operators $X colon f(vecx)mapsto vecx f(vecx)$ and $P colon f(vecx)mapsto partial_vecx f(vecx)$ with $[X,P]=iI$. Emilio Pisanty tell that functions of the position operator should work $⟨x|F(X)=F(vecx)⟨x|$ but I don't understand how it work with delta function.



Also we can find (here on p.13 formula (74)) the Fourier transform of operator $rho(vecx)=delta(X-vecx)$: $$rho(veck)=intlimits_mathbbR^n e^-iveckcdot vecxrho(vecx),dvecx=e^-iveckX.$$



I will be very grateful for any remarks and comments.







share|cite|improve this question




















  • What is $A-vecx$? and then what is $delta(A-vecx)$?
    – DisintegratingByParts
    Aug 18 at 4:14










  • @DisintegratingByParts, $(A-vecx)f(vecx)=Af-vecxf$ and I don't understand what is $delta(A-vecx)$, I think that it's wrong form of something correct. By anology we have $int f(vecx)delta(A-vecx), dvecx=f(A),$ but it looks senseless. Is it correct: $delta(A-vecx)=frac12pi int e^i(A-vecx)cdot vecy,dvecy , ?$
    – QuantumDK
    Aug 18 at 13:45







  • 1




    I don't know how to make sense of an operator minus a vector.
    – DisintegratingByParts
    Aug 18 at 15:27










  • @DisintegratingByParts, and how to make sense of $delta(A), Ain mathcalA ,?$
    – QuantumDK
    Aug 20 at 17:26










  • Maybe we can write formal expansion and put to it an operator: $$delta(A-x)=frac12pisum_k=-infty^inftye^ik(A-x)=frac12pisum_k=-infty^inftye^ik(-x)sum_n=0^inftyfrac(ikA)^nn! , ?$$
    – QuantumDK
    Aug 21 at 1:39













up vote
0
down vote

favorite









up vote
0
down vote

favorite











Let $mathcalSsubset mathcalH=L^2(mathbbR^n)subset mathcalS^*$ be the Schwartz space, the Hilbert space and the space of tempered distributions respectively. Consider an algebra $mathcalA$ of operators with continuous spectrum. We see delta function as the element of $mathcalS^*$, i.e. continuous (in kernal topology with seminorms $f mapsto |Af|, Ain mathcalA, fin mathcalH$) linear functional on $mathcalS$.



Question: how can we correctly define an action of $delta(A-vecx), Ain mathcalA, vecxin mathbbR^n$ on $fin mathcalH,?$



For example, here we have the algebra $mathcalA$ generated by operators $X colon f(vecx)mapsto vecx f(vecx)$ and $P colon f(vecx)mapsto partial_vecx f(vecx)$ with $[X,P]=iI$. Emilio Pisanty tell that functions of the position operator should work $⟨x|F(X)=F(vecx)⟨x|$ but I don't understand how it work with delta function.



Also we can find (here on p.13 formula (74)) the Fourier transform of operator $rho(vecx)=delta(X-vecx)$: $$rho(veck)=intlimits_mathbbR^n e^-iveckcdot vecxrho(vecx),dvecx=e^-iveckX.$$



I will be very grateful for any remarks and comments.







share|cite|improve this question












Let $mathcalSsubset mathcalH=L^2(mathbbR^n)subset mathcalS^*$ be the Schwartz space, the Hilbert space and the space of tempered distributions respectively. Consider an algebra $mathcalA$ of operators with continuous spectrum. We see delta function as the element of $mathcalS^*$, i.e. continuous (in kernal topology with seminorms $f mapsto |Af|, Ain mathcalA, fin mathcalH$) linear functional on $mathcalS$.



Question: how can we correctly define an action of $delta(A-vecx), Ain mathcalA, vecxin mathbbR^n$ on $fin mathcalH,?$



For example, here we have the algebra $mathcalA$ generated by operators $X colon f(vecx)mapsto vecx f(vecx)$ and $P colon f(vecx)mapsto partial_vecx f(vecx)$ with $[X,P]=iI$. Emilio Pisanty tell that functions of the position operator should work $⟨x|F(X)=F(vecx)⟨x|$ but I don't understand how it work with delta function.



Also we can find (here on p.13 formula (74)) the Fourier transform of operator $rho(vecx)=delta(X-vecx)$: $$rho(veck)=intlimits_mathbbR^n e^-iveckcdot vecxrho(vecx),dvecx=e^-iveckX.$$



I will be very grateful for any remarks and comments.









share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Aug 18 at 1:07









QuantumDK

64




64











  • What is $A-vecx$? and then what is $delta(A-vecx)$?
    – DisintegratingByParts
    Aug 18 at 4:14










  • @DisintegratingByParts, $(A-vecx)f(vecx)=Af-vecxf$ and I don't understand what is $delta(A-vecx)$, I think that it's wrong form of something correct. By anology we have $int f(vecx)delta(A-vecx), dvecx=f(A),$ but it looks senseless. Is it correct: $delta(A-vecx)=frac12pi int e^i(A-vecx)cdot vecy,dvecy , ?$
    – QuantumDK
    Aug 18 at 13:45







  • 1




    I don't know how to make sense of an operator minus a vector.
    – DisintegratingByParts
    Aug 18 at 15:27










  • @DisintegratingByParts, and how to make sense of $delta(A), Ain mathcalA ,?$
    – QuantumDK
    Aug 20 at 17:26










  • Maybe we can write formal expansion and put to it an operator: $$delta(A-x)=frac12pisum_k=-infty^inftye^ik(A-x)=frac12pisum_k=-infty^inftye^ik(-x)sum_n=0^inftyfrac(ikA)^nn! , ?$$
    – QuantumDK
    Aug 21 at 1:39

















  • What is $A-vecx$? and then what is $delta(A-vecx)$?
    – DisintegratingByParts
    Aug 18 at 4:14










  • @DisintegratingByParts, $(A-vecx)f(vecx)=Af-vecxf$ and I don't understand what is $delta(A-vecx)$, I think that it's wrong form of something correct. By anology we have $int f(vecx)delta(A-vecx), dvecx=f(A),$ but it looks senseless. Is it correct: $delta(A-vecx)=frac12pi int e^i(A-vecx)cdot vecy,dvecy , ?$
    – QuantumDK
    Aug 18 at 13:45







  • 1




    I don't know how to make sense of an operator minus a vector.
    – DisintegratingByParts
    Aug 18 at 15:27










  • @DisintegratingByParts, and how to make sense of $delta(A), Ain mathcalA ,?$
    – QuantumDK
    Aug 20 at 17:26










  • Maybe we can write formal expansion and put to it an operator: $$delta(A-x)=frac12pisum_k=-infty^inftye^ik(A-x)=frac12pisum_k=-infty^inftye^ik(-x)sum_n=0^inftyfrac(ikA)^nn! , ?$$
    – QuantumDK
    Aug 21 at 1:39
















What is $A-vecx$? and then what is $delta(A-vecx)$?
– DisintegratingByParts
Aug 18 at 4:14




What is $A-vecx$? and then what is $delta(A-vecx)$?
– DisintegratingByParts
Aug 18 at 4:14












@DisintegratingByParts, $(A-vecx)f(vecx)=Af-vecxf$ and I don't understand what is $delta(A-vecx)$, I think that it's wrong form of something correct. By anology we have $int f(vecx)delta(A-vecx), dvecx=f(A),$ but it looks senseless. Is it correct: $delta(A-vecx)=frac12pi int e^i(A-vecx)cdot vecy,dvecy , ?$
– QuantumDK
Aug 18 at 13:45





@DisintegratingByParts, $(A-vecx)f(vecx)=Af-vecxf$ and I don't understand what is $delta(A-vecx)$, I think that it's wrong form of something correct. By anology we have $int f(vecx)delta(A-vecx), dvecx=f(A),$ but it looks senseless. Is it correct: $delta(A-vecx)=frac12pi int e^i(A-vecx)cdot vecy,dvecy , ?$
– QuantumDK
Aug 18 at 13:45





1




1




I don't know how to make sense of an operator minus a vector.
– DisintegratingByParts
Aug 18 at 15:27




I don't know how to make sense of an operator minus a vector.
– DisintegratingByParts
Aug 18 at 15:27












@DisintegratingByParts, and how to make sense of $delta(A), Ain mathcalA ,?$
– QuantumDK
Aug 20 at 17:26




@DisintegratingByParts, and how to make sense of $delta(A), Ain mathcalA ,?$
– QuantumDK
Aug 20 at 17:26












Maybe we can write formal expansion and put to it an operator: $$delta(A-x)=frac12pisum_k=-infty^inftye^ik(A-x)=frac12pisum_k=-infty^inftye^ik(-x)sum_n=0^inftyfrac(ikA)^nn! , ?$$
– QuantumDK
Aug 21 at 1:39





Maybe we can write formal expansion and put to it an operator: $$delta(A-x)=frac12pisum_k=-infty^inftye^ik(A-x)=frac12pisum_k=-infty^inftye^ik(-x)sum_n=0^inftyfrac(ikA)^nn! , ?$$
– QuantumDK
Aug 21 at 1:39
















active

oldest

votes











Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2886323%2fdirac-delta-function-like-a-function-of-an-operator%23new-answer', 'question_page');

);

Post as a guest



































active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes










 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2886323%2fdirac-delta-function-like-a-function-of-an-operator%23new-answer', 'question_page');

);

Post as a guest













































































這個網誌中的熱門文章

How to combine Bézier curves to a surface?

Mutual Information Always Non-negative

Why am i infinitely getting the same tweet with the Twitter Search API?