Looking for a closed form for $sum_k=1^inftyleft( zeta(2k)-beta(2k)right)$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
12
down vote

favorite
7












For some time I've been playing with this kind of sums, for example I was able to find that
$$
fracpi2=1+2sum_k=1^inftyleft( zeta(2k+1)-beta(2k+1)right)
$$
where
$$
beta(x)=sum_k=1^inftyfrac(-1)^k-1(2k-1)^x
$$
is the Dirichlet's beta function and $zeta(x)$ is the Riemann's zeta function. I find this result very interesting, because we know that for odd integers $beta(x)$ reduces to
$$
beta(2k+1)=(-1)^kfracE_2kpi^2k+14^k+1(2k)!.
$$

Where $E_2k$ are the Euler's numbers:
$$
beginmatrix
E_0 &=& 1\
E_2 &=& -1\
E_4 &=& 5\
E_6 &=& -61\
E_8 &=& 1385\
vdots &=&vdots
endmatrix
$$
But there is no known similar simple relation for $zeta(2k+1)$. Nevertheless, when both are combined they give the above beautiful result.



Now, I'd like to know if there is something similar for
$$
sum_k=1^inftyleft( zeta(2k)-beta(2k)right)
$$
Any help would be appreciated.



Thanks.







share|cite|improve this question


















  • 1




    What exactly is $E_2k pi^2k+1$?
    – john_leo
    Oct 26 '14 at 13:01














up vote
12
down vote

favorite
7












For some time I've been playing with this kind of sums, for example I was able to find that
$$
fracpi2=1+2sum_k=1^inftyleft( zeta(2k+1)-beta(2k+1)right)
$$
where
$$
beta(x)=sum_k=1^inftyfrac(-1)^k-1(2k-1)^x
$$
is the Dirichlet's beta function and $zeta(x)$ is the Riemann's zeta function. I find this result very interesting, because we know that for odd integers $beta(x)$ reduces to
$$
beta(2k+1)=(-1)^kfracE_2kpi^2k+14^k+1(2k)!.
$$

Where $E_2k$ are the Euler's numbers:
$$
beginmatrix
E_0 &=& 1\
E_2 &=& -1\
E_4 &=& 5\
E_6 &=& -61\
E_8 &=& 1385\
vdots &=&vdots
endmatrix
$$
But there is no known similar simple relation for $zeta(2k+1)$. Nevertheless, when both are combined they give the above beautiful result.



Now, I'd like to know if there is something similar for
$$
sum_k=1^inftyleft( zeta(2k)-beta(2k)right)
$$
Any help would be appreciated.



Thanks.







share|cite|improve this question


















  • 1




    What exactly is $E_2k pi^2k+1$?
    – john_leo
    Oct 26 '14 at 13:01












up vote
12
down vote

favorite
7









up vote
12
down vote

favorite
7






7





For some time I've been playing with this kind of sums, for example I was able to find that
$$
fracpi2=1+2sum_k=1^inftyleft( zeta(2k+1)-beta(2k+1)right)
$$
where
$$
beta(x)=sum_k=1^inftyfrac(-1)^k-1(2k-1)^x
$$
is the Dirichlet's beta function and $zeta(x)$ is the Riemann's zeta function. I find this result very interesting, because we know that for odd integers $beta(x)$ reduces to
$$
beta(2k+1)=(-1)^kfracE_2kpi^2k+14^k+1(2k)!.
$$

Where $E_2k$ are the Euler's numbers:
$$
beginmatrix
E_0 &=& 1\
E_2 &=& -1\
E_4 &=& 5\
E_6 &=& -61\
E_8 &=& 1385\
vdots &=&vdots
endmatrix
$$
But there is no known similar simple relation for $zeta(2k+1)$. Nevertheless, when both are combined they give the above beautiful result.



Now, I'd like to know if there is something similar for
$$
sum_k=1^inftyleft( zeta(2k)-beta(2k)right)
$$
Any help would be appreciated.



Thanks.







share|cite|improve this question














For some time I've been playing with this kind of sums, for example I was able to find that
$$
fracpi2=1+2sum_k=1^inftyleft( zeta(2k+1)-beta(2k+1)right)
$$
where
$$
beta(x)=sum_k=1^inftyfrac(-1)^k-1(2k-1)^x
$$
is the Dirichlet's beta function and $zeta(x)$ is the Riemann's zeta function. I find this result very interesting, because we know that for odd integers $beta(x)$ reduces to
$$
beta(2k+1)=(-1)^kfracE_2kpi^2k+14^k+1(2k)!.
$$

Where $E_2k$ are the Euler's numbers:
$$
beginmatrix
E_0 &=& 1\
E_2 &=& -1\
E_4 &=& 5\
E_6 &=& -61\
E_8 &=& 1385\
vdots &=&vdots
endmatrix
$$
But there is no known similar simple relation for $zeta(2k+1)$. Nevertheless, when both are combined they give the above beautiful result.



Now, I'd like to know if there is something similar for
$$
sum_k=1^inftyleft( zeta(2k)-beta(2k)right)
$$
Any help would be appreciated.



Thanks.









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 7 '15 at 16:21









Olivier Oloa

106k17173293




106k17173293










asked Oct 26 '14 at 11:47









Neves

2,54212046




2,54212046







  • 1




    What exactly is $E_2k pi^2k+1$?
    – john_leo
    Oct 26 '14 at 13:01












  • 1




    What exactly is $E_2k pi^2k+1$?
    – john_leo
    Oct 26 '14 at 13:01







1




1




What exactly is $E_2k pi^2k+1$?
– john_leo
Oct 26 '14 at 13:01




What exactly is $E_2k pi^2k+1$?
– john_leo
Oct 26 '14 at 13:01










3 Answers
3






active

oldest

votes

















up vote
10
down vote



accepted










There is a closed form for your series:




$$
sum_k=1^inftyleft( zeta(2k)-beta(2k)right)=frac12+frac12ln2. tag1
$$




Proof.
Using absolute convergence of the series, you may write



$$beginalign
sum_k=1^inftyleft( zeta(2k)-beta(2k)right) & = sum_k=1^inftyleft( sum_n=1^inftyfrac1n^2k-sum_n=1^inftyfrac(-1)^n-1(2n-1)^2kright)\\
& = sum_k=1^inftyleft( sum_n=colorred2^inftyfrac1n^2k-sum_n=colorred2^inftyfrac(-1)^n-1(2n-1)^2kright)\\
& = sum_n=2^inftyleft( sum_k=1^inftyfrac1n^2k-sum_k=1^inftyfrac(-1)^n-1(2n-1)^2kright)\\
& = sum_n=2^inftyleft( frac1n^2frac11-frac1n^2+frac(-1)^n(2n-1)^2frac11-frac1(2n-1)^2right)\\
& = sum_n=2^inftyfrac1(n+1)(n-1)+sum_n=2^inftyfrac18n(2n-1)-sum_n=2^inftyfrac18(2n-1)(n-1)\\
& = frac12+frac12ln2,
endalign$$ where, in the last steps, we have used partial fraction decomposition, telescoping terms and a familiar series for $ln 2$.






share|cite|improve this answer



























    up vote
    2
    down vote













    Hint: Rewrite the general term as an infinite series, and then switch the order of summation. :-$)$






    share|cite|improve this answer



























      up vote
      1
      down vote













      $$
      beginalign
      colorredS,&=sum_n=1^inftyleft[,zeta(2n)-beta(2n),right] =sum_n=1^inftyfracGamma(2n)zeta(2n)-Gamma(2n)beta(2n)(2n-1)! \[2mm]
      &=int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(sum_n=1^inftyfracx^2n-1(2n-1)!right),dxqquadcolorbluesmallleftsinh(x)=sum_n=1^inftyfracx^2n-1(2n-1)!right \[2mm]
      &=int_0^inftyleft(frace^x+1e^2x-1-frace^xe^2x+1right)left(frace^2x-12e^xright),dx =frac12int_0^inftyleft(1+frac1e^x-frace^2x-1e^2x+1right),dx \[2mm]
      &=frac12int_0^inftyleft(frac1e^x+frac2e^2x+1right),dx =colorredfrac12left[,Gamma(1)+eta(1),right] =frac12left(1+log(2)right)
      endalign
      $$






      share|cite|improve this answer




















        Your Answer




        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        convertImagesToLinks: true,
        noModals: false,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );








         

        draft saved


        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f991608%2flooking-for-a-closed-form-for-sum-k-1-infty-left-zeta2k-beta2k-rig%23new-answer', 'question_page');

        );

        Post as a guest






























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        10
        down vote



        accepted










        There is a closed form for your series:




        $$
        sum_k=1^inftyleft( zeta(2k)-beta(2k)right)=frac12+frac12ln2. tag1
        $$




        Proof.
        Using absolute convergence of the series, you may write



        $$beginalign
        sum_k=1^inftyleft( zeta(2k)-beta(2k)right) & = sum_k=1^inftyleft( sum_n=1^inftyfrac1n^2k-sum_n=1^inftyfrac(-1)^n-1(2n-1)^2kright)\\
        & = sum_k=1^inftyleft( sum_n=colorred2^inftyfrac1n^2k-sum_n=colorred2^inftyfrac(-1)^n-1(2n-1)^2kright)\\
        & = sum_n=2^inftyleft( sum_k=1^inftyfrac1n^2k-sum_k=1^inftyfrac(-1)^n-1(2n-1)^2kright)\\
        & = sum_n=2^inftyleft( frac1n^2frac11-frac1n^2+frac(-1)^n(2n-1)^2frac11-frac1(2n-1)^2right)\\
        & = sum_n=2^inftyfrac1(n+1)(n-1)+sum_n=2^inftyfrac18n(2n-1)-sum_n=2^inftyfrac18(2n-1)(n-1)\\
        & = frac12+frac12ln2,
        endalign$$ where, in the last steps, we have used partial fraction decomposition, telescoping terms and a familiar series for $ln 2$.






        share|cite|improve this answer
























          up vote
          10
          down vote



          accepted










          There is a closed form for your series:




          $$
          sum_k=1^inftyleft( zeta(2k)-beta(2k)right)=frac12+frac12ln2. tag1
          $$




          Proof.
          Using absolute convergence of the series, you may write



          $$beginalign
          sum_k=1^inftyleft( zeta(2k)-beta(2k)right) & = sum_k=1^inftyleft( sum_n=1^inftyfrac1n^2k-sum_n=1^inftyfrac(-1)^n-1(2n-1)^2kright)\\
          & = sum_k=1^inftyleft( sum_n=colorred2^inftyfrac1n^2k-sum_n=colorred2^inftyfrac(-1)^n-1(2n-1)^2kright)\\
          & = sum_n=2^inftyleft( sum_k=1^inftyfrac1n^2k-sum_k=1^inftyfrac(-1)^n-1(2n-1)^2kright)\\
          & = sum_n=2^inftyleft( frac1n^2frac11-frac1n^2+frac(-1)^n(2n-1)^2frac11-frac1(2n-1)^2right)\\
          & = sum_n=2^inftyfrac1(n+1)(n-1)+sum_n=2^inftyfrac18n(2n-1)-sum_n=2^inftyfrac18(2n-1)(n-1)\\
          & = frac12+frac12ln2,
          endalign$$ where, in the last steps, we have used partial fraction decomposition, telescoping terms and a familiar series for $ln 2$.






          share|cite|improve this answer






















            up vote
            10
            down vote



            accepted







            up vote
            10
            down vote



            accepted






            There is a closed form for your series:




            $$
            sum_k=1^inftyleft( zeta(2k)-beta(2k)right)=frac12+frac12ln2. tag1
            $$




            Proof.
            Using absolute convergence of the series, you may write



            $$beginalign
            sum_k=1^inftyleft( zeta(2k)-beta(2k)right) & = sum_k=1^inftyleft( sum_n=1^inftyfrac1n^2k-sum_n=1^inftyfrac(-1)^n-1(2n-1)^2kright)\\
            & = sum_k=1^inftyleft( sum_n=colorred2^inftyfrac1n^2k-sum_n=colorred2^inftyfrac(-1)^n-1(2n-1)^2kright)\\
            & = sum_n=2^inftyleft( sum_k=1^inftyfrac1n^2k-sum_k=1^inftyfrac(-1)^n-1(2n-1)^2kright)\\
            & = sum_n=2^inftyleft( frac1n^2frac11-frac1n^2+frac(-1)^n(2n-1)^2frac11-frac1(2n-1)^2right)\\
            & = sum_n=2^inftyfrac1(n+1)(n-1)+sum_n=2^inftyfrac18n(2n-1)-sum_n=2^inftyfrac18(2n-1)(n-1)\\
            & = frac12+frac12ln2,
            endalign$$ where, in the last steps, we have used partial fraction decomposition, telescoping terms and a familiar series for $ln 2$.






            share|cite|improve this answer












            There is a closed form for your series:




            $$
            sum_k=1^inftyleft( zeta(2k)-beta(2k)right)=frac12+frac12ln2. tag1
            $$




            Proof.
            Using absolute convergence of the series, you may write



            $$beginalign
            sum_k=1^inftyleft( zeta(2k)-beta(2k)right) & = sum_k=1^inftyleft( sum_n=1^inftyfrac1n^2k-sum_n=1^inftyfrac(-1)^n-1(2n-1)^2kright)\\
            & = sum_k=1^inftyleft( sum_n=colorred2^inftyfrac1n^2k-sum_n=colorred2^inftyfrac(-1)^n-1(2n-1)^2kright)\\
            & = sum_n=2^inftyleft( sum_k=1^inftyfrac1n^2k-sum_k=1^inftyfrac(-1)^n-1(2n-1)^2kright)\\
            & = sum_n=2^inftyleft( frac1n^2frac11-frac1n^2+frac(-1)^n(2n-1)^2frac11-frac1(2n-1)^2right)\\
            & = sum_n=2^inftyfrac1(n+1)(n-1)+sum_n=2^inftyfrac18n(2n-1)-sum_n=2^inftyfrac18(2n-1)(n-1)\\
            & = frac12+frac12ln2,
            endalign$$ where, in the last steps, we have used partial fraction decomposition, telescoping terms and a familiar series for $ln 2$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Oct 26 '14 at 13:05









            Olivier Oloa

            106k17173293




            106k17173293




















                up vote
                2
                down vote













                Hint: Rewrite the general term as an infinite series, and then switch the order of summation. :-$)$






                share|cite|improve this answer
























                  up vote
                  2
                  down vote













                  Hint: Rewrite the general term as an infinite series, and then switch the order of summation. :-$)$






                  share|cite|improve this answer






















                    up vote
                    2
                    down vote










                    up vote
                    2
                    down vote









                    Hint: Rewrite the general term as an infinite series, and then switch the order of summation. :-$)$






                    share|cite|improve this answer












                    Hint: Rewrite the general term as an infinite series, and then switch the order of summation. :-$)$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Oct 26 '14 at 13:05









                    Lucian

                    40.7k157131




                    40.7k157131




















                        up vote
                        1
                        down vote













                        $$
                        beginalign
                        colorredS,&=sum_n=1^inftyleft[,zeta(2n)-beta(2n),right] =sum_n=1^inftyfracGamma(2n)zeta(2n)-Gamma(2n)beta(2n)(2n-1)! \[2mm]
                        &=int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(sum_n=1^inftyfracx^2n-1(2n-1)!right),dxqquadcolorbluesmallleftsinh(x)=sum_n=1^inftyfracx^2n-1(2n-1)!right \[2mm]
                        &=int_0^inftyleft(frace^x+1e^2x-1-frace^xe^2x+1right)left(frace^2x-12e^xright),dx =frac12int_0^inftyleft(1+frac1e^x-frace^2x-1e^2x+1right),dx \[2mm]
                        &=frac12int_0^inftyleft(frac1e^x+frac2e^2x+1right),dx =colorredfrac12left[,Gamma(1)+eta(1),right] =frac12left(1+log(2)right)
                        endalign
                        $$






                        share|cite|improve this answer
























                          up vote
                          1
                          down vote













                          $$
                          beginalign
                          colorredS,&=sum_n=1^inftyleft[,zeta(2n)-beta(2n),right] =sum_n=1^inftyfracGamma(2n)zeta(2n)-Gamma(2n)beta(2n)(2n-1)! \[2mm]
                          &=int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(sum_n=1^inftyfracx^2n-1(2n-1)!right),dxqquadcolorbluesmallleftsinh(x)=sum_n=1^inftyfracx^2n-1(2n-1)!right \[2mm]
                          &=int_0^inftyleft(frace^x+1e^2x-1-frace^xe^2x+1right)left(frace^2x-12e^xright),dx =frac12int_0^inftyleft(1+frac1e^x-frace^2x-1e^2x+1right),dx \[2mm]
                          &=frac12int_0^inftyleft(frac1e^x+frac2e^2x+1right),dx =colorredfrac12left[,Gamma(1)+eta(1),right] =frac12left(1+log(2)right)
                          endalign
                          $$






                          share|cite|improve this answer






















                            up vote
                            1
                            down vote










                            up vote
                            1
                            down vote









                            $$
                            beginalign
                            colorredS,&=sum_n=1^inftyleft[,zeta(2n)-beta(2n),right] =sum_n=1^inftyfracGamma(2n)zeta(2n)-Gamma(2n)beta(2n)(2n-1)! \[2mm]
                            &=int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(sum_n=1^inftyfracx^2n-1(2n-1)!right),dxqquadcolorbluesmallleftsinh(x)=sum_n=1^inftyfracx^2n-1(2n-1)!right \[2mm]
                            &=int_0^inftyleft(frace^x+1e^2x-1-frace^xe^2x+1right)left(frace^2x-12e^xright),dx =frac12int_0^inftyleft(1+frac1e^x-frace^2x-1e^2x+1right),dx \[2mm]
                            &=frac12int_0^inftyleft(frac1e^x+frac2e^2x+1right),dx =colorredfrac12left[,Gamma(1)+eta(1),right] =frac12left(1+log(2)right)
                            endalign
                            $$






                            share|cite|improve this answer












                            $$
                            beginalign
                            colorredS,&=sum_n=1^inftyleft[,zeta(2n)-beta(2n),right] =sum_n=1^inftyfracGamma(2n)zeta(2n)-Gamma(2n)beta(2n)(2n-1)! \[2mm]
                            &=int_0^inftyleft(frac1e^x-1-frace^xe^2x+1right)left(sum_n=1^inftyfracx^2n-1(2n-1)!right),dxqquadcolorbluesmallleftsinh(x)=sum_n=1^inftyfracx^2n-1(2n-1)!right \[2mm]
                            &=int_0^inftyleft(frace^x+1e^2x-1-frace^xe^2x+1right)left(frace^2x-12e^xright),dx =frac12int_0^inftyleft(1+frac1e^x-frace^2x-1e^2x+1right),dx \[2mm]
                            &=frac12int_0^inftyleft(frac1e^x+frac2e^2x+1right),dx =colorredfrac12left[,Gamma(1)+eta(1),right] =frac12left(1+log(2)right)
                            endalign
                            $$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Aug 17 at 22:19









                            Hazem Orabi

                            2,3812428




                            2,3812428






















                                 

                                draft saved


                                draft discarded


























                                 


                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f991608%2flooking-for-a-closed-form-for-sum-k-1-infty-left-zeta2k-beta2k-rig%23new-answer', 'question_page');

                                );

                                Post as a guest













































































                                這個網誌中的熱門文章

                                How to combine Bézier curves to a surface?

                                Mutual Information Always Non-negative

                                Why am i infinitely getting the same tweet with the Twitter Search API?