Find the oblique asymptote of $sqrtx^2+3x$ for $xrightarrow-infty$
Clash Royale CLAN TAG#URR8PPP
up vote
4
down vote
favorite
I want to find the asymptote oblique of the following function for $xrightarrowpminfty$
$$f(x)=sqrtx^2+3x=sqrtx^2left(1+frac3xx^2right)simsqrtx^2=|x|$$
For $xrightarrow+infty$ we have:
$$fracf(x)xsimfracx=fracxx=1$$
which means that the function grows linearly.
$$f(x)-mx=sqrtx^2+3x-x=xleft(sqrtfracx^2x^2+frac3xx^2-1right)sim xleft(frac 12cdotfrac3xright)=frac32$$
The oblique asymptote is $y=x+frac 3 2$ which is correct. For $xrightarrow-infty$ we have:
$$fracf(x)x=fracx=frac-xx=-1$$
This means that
$$f(x)-mx=sqrtx^2+3x+x=xleft(sqrtfracx^2x^2+frac3xx^2+1right)=xleft(sqrt1+frac3x+1right)sim xcdot2rightarrow -infty$$
Which is not what my textbook reports ($-frac32$). Any hints on what I did wrong to find the $q$ for $xrightarrow-infty$?
limits asymptotics
add a comment |Â
up vote
4
down vote
favorite
I want to find the asymptote oblique of the following function for $xrightarrowpminfty$
$$f(x)=sqrtx^2+3x=sqrtx^2left(1+frac3xx^2right)simsqrtx^2=|x|$$
For $xrightarrow+infty$ we have:
$$fracf(x)xsimfracx=fracxx=1$$
which means that the function grows linearly.
$$f(x)-mx=sqrtx^2+3x-x=xleft(sqrtfracx^2x^2+frac3xx^2-1right)sim xleft(frac 12cdotfrac3xright)=frac32$$
The oblique asymptote is $y=x+frac 3 2$ which is correct. For $xrightarrow-infty$ we have:
$$fracf(x)x=fracx=frac-xx=-1$$
This means that
$$f(x)-mx=sqrtx^2+3x+x=xleft(sqrtfracx^2x^2+frac3xx^2+1right)=xleft(sqrt1+frac3x+1right)sim xcdot2rightarrow -infty$$
Which is not what my textbook reports ($-frac32$). Any hints on what I did wrong to find the $q$ for $xrightarrow-infty$?
limits asymptotics
If $x < 0$ (or, better, $xleq -3$), one has $sqrtx^2+3x = |x| sqrt1+3/x = -x sqrt1+3/x$.
â Rigel
Aug 18 at 9:17
Thanks that definitely makes sense @Rigel
â Cesare
Aug 18 at 9:29
For the second write $sqrtx^2+3x+x=dfrac3xsqrtx^2+3x-xto-dfrac32$.
â Nosrati
Aug 18 at 9:31
add a comment |Â
up vote
4
down vote
favorite
up vote
4
down vote
favorite
I want to find the asymptote oblique of the following function for $xrightarrowpminfty$
$$f(x)=sqrtx^2+3x=sqrtx^2left(1+frac3xx^2right)simsqrtx^2=|x|$$
For $xrightarrow+infty$ we have:
$$fracf(x)xsimfracx=fracxx=1$$
which means that the function grows linearly.
$$f(x)-mx=sqrtx^2+3x-x=xleft(sqrtfracx^2x^2+frac3xx^2-1right)sim xleft(frac 12cdotfrac3xright)=frac32$$
The oblique asymptote is $y=x+frac 3 2$ which is correct. For $xrightarrow-infty$ we have:
$$fracf(x)x=fracx=frac-xx=-1$$
This means that
$$f(x)-mx=sqrtx^2+3x+x=xleft(sqrtfracx^2x^2+frac3xx^2+1right)=xleft(sqrt1+frac3x+1right)sim xcdot2rightarrow -infty$$
Which is not what my textbook reports ($-frac32$). Any hints on what I did wrong to find the $q$ for $xrightarrow-infty$?
limits asymptotics
I want to find the asymptote oblique of the following function for $xrightarrowpminfty$
$$f(x)=sqrtx^2+3x=sqrtx^2left(1+frac3xx^2right)simsqrtx^2=|x|$$
For $xrightarrow+infty$ we have:
$$fracf(x)xsimfracx=fracxx=1$$
which means that the function grows linearly.
$$f(x)-mx=sqrtx^2+3x-x=xleft(sqrtfracx^2x^2+frac3xx^2-1right)sim xleft(frac 12cdotfrac3xright)=frac32$$
The oblique asymptote is $y=x+frac 3 2$ which is correct. For $xrightarrow-infty$ we have:
$$fracf(x)x=fracx=frac-xx=-1$$
This means that
$$f(x)-mx=sqrtx^2+3x+x=xleft(sqrtfracx^2x^2+frac3xx^2+1right)=xleft(sqrt1+frac3x+1right)sim xcdot2rightarrow -infty$$
Which is not what my textbook reports ($-frac32$). Any hints on what I did wrong to find the $q$ for $xrightarrow-infty$?
limits asymptotics
asked Aug 18 at 9:13
Cesare
575210
575210
If $x < 0$ (or, better, $xleq -3$), one has $sqrtx^2+3x = |x| sqrt1+3/x = -x sqrt1+3/x$.
â Rigel
Aug 18 at 9:17
Thanks that definitely makes sense @Rigel
â Cesare
Aug 18 at 9:29
For the second write $sqrtx^2+3x+x=dfrac3xsqrtx^2+3x-xto-dfrac32$.
â Nosrati
Aug 18 at 9:31
add a comment |Â
If $x < 0$ (or, better, $xleq -3$), one has $sqrtx^2+3x = |x| sqrt1+3/x = -x sqrt1+3/x$.
â Rigel
Aug 18 at 9:17
Thanks that definitely makes sense @Rigel
â Cesare
Aug 18 at 9:29
For the second write $sqrtx^2+3x+x=dfrac3xsqrtx^2+3x-xto-dfrac32$.
â Nosrati
Aug 18 at 9:31
If $x < 0$ (or, better, $xleq -3$), one has $sqrtx^2+3x = |x| sqrt1+3/x = -x sqrt1+3/x$.
â Rigel
Aug 18 at 9:17
If $x < 0$ (or, better, $xleq -3$), one has $sqrtx^2+3x = |x| sqrt1+3/x = -x sqrt1+3/x$.
â Rigel
Aug 18 at 9:17
Thanks that definitely makes sense @Rigel
â Cesare
Aug 18 at 9:29
Thanks that definitely makes sense @Rigel
â Cesare
Aug 18 at 9:29
For the second write $sqrtx^2+3x+x=dfrac3xsqrtx^2+3x-xto-dfrac32$.
â Nosrati
Aug 18 at 9:31
For the second write $sqrtx^2+3x+x=dfrac3xsqrtx^2+3x-xto-dfrac32$.
â Nosrati
Aug 18 at 9:31
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
2
down vote
accepted
The problem is in
$$
f(x)-mx=sqrtx^2+3x+xundersetbeginarrayc uparrow \ textproblemendarray=xleft(sqrtfracx^2x^2+frac3xx^2+1right)=xleft(sqrt1+frac3x+1right)sim xcdot2rightarrow -infty
$$
which should be
$$
f(x)-mx=sqrtx^2+3x+x=xleft(-sqrtfracx^2x^2+frac3xx^2+1right)
$$
because we are near $-infty$, so $sqrtx^2=-x$.
In order to avoid such common mistakes, I suggest to change $x=-t$, when the limit for $xto-infty$ is involved:
$$
lim_xto-inftybigl(sqrtx^2+3x+xbigr)=
lim_ttoinftybigl(sqrtt^2-3t-tbigr)=
lim_ttoinftyfrac-3tsqrtt^2-3t+t
$$
From here it should be clear.
Another strategy, in this case, is to set $x=-1/t$, that transforms the limit into
$$
lim_tto0^+left(sqrtfrac1t^2-frac3t-frac1tright)=
lim_tto0^+fracsqrt1-3t-1t
$$
which is a simple derivative: if $f(t)=sqrt1-3t$, then $f'(t)=frac-32sqrt1-3t$ and
$$
lim_tto0^+fracsqrt1-3t-1t=f'(0)=-frac32
$$
add a comment |Â
up vote
1
down vote
This is not a different way, but is better I think
$$f(x)=sqrtx^2+3x=sqrtx^2+3x+(frac32)^2-(frac32)^2=sqrtleft(x+frac32right)^2-(frac32)^2simleft|x+frac32right|$$
which gives both oblique asymptotes.
add a comment |Â
up vote
1
down vote
$$f(x)=sqrtx^2+3x=|x|left(1+3over xright)^1over2$$ which, as $xrightarrow -infty$, is equal to $$-xleft(1-3over2xright)^1over2 sim -xleft(1+3over2xright)= -x -3over2$$ using Taylor or Bernoulli
Thanks. I haven't studied Taylor nor Bernoulli yet.
â Cesare
Aug 18 at 9:26
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
The problem is in
$$
f(x)-mx=sqrtx^2+3x+xundersetbeginarrayc uparrow \ textproblemendarray=xleft(sqrtfracx^2x^2+frac3xx^2+1right)=xleft(sqrt1+frac3x+1right)sim xcdot2rightarrow -infty
$$
which should be
$$
f(x)-mx=sqrtx^2+3x+x=xleft(-sqrtfracx^2x^2+frac3xx^2+1right)
$$
because we are near $-infty$, so $sqrtx^2=-x$.
In order to avoid such common mistakes, I suggest to change $x=-t$, when the limit for $xto-infty$ is involved:
$$
lim_xto-inftybigl(sqrtx^2+3x+xbigr)=
lim_ttoinftybigl(sqrtt^2-3t-tbigr)=
lim_ttoinftyfrac-3tsqrtt^2-3t+t
$$
From here it should be clear.
Another strategy, in this case, is to set $x=-1/t$, that transforms the limit into
$$
lim_tto0^+left(sqrtfrac1t^2-frac3t-frac1tright)=
lim_tto0^+fracsqrt1-3t-1t
$$
which is a simple derivative: if $f(t)=sqrt1-3t$, then $f'(t)=frac-32sqrt1-3t$ and
$$
lim_tto0^+fracsqrt1-3t-1t=f'(0)=-frac32
$$
add a comment |Â
up vote
2
down vote
accepted
The problem is in
$$
f(x)-mx=sqrtx^2+3x+xundersetbeginarrayc uparrow \ textproblemendarray=xleft(sqrtfracx^2x^2+frac3xx^2+1right)=xleft(sqrt1+frac3x+1right)sim xcdot2rightarrow -infty
$$
which should be
$$
f(x)-mx=sqrtx^2+3x+x=xleft(-sqrtfracx^2x^2+frac3xx^2+1right)
$$
because we are near $-infty$, so $sqrtx^2=-x$.
In order to avoid such common mistakes, I suggest to change $x=-t$, when the limit for $xto-infty$ is involved:
$$
lim_xto-inftybigl(sqrtx^2+3x+xbigr)=
lim_ttoinftybigl(sqrtt^2-3t-tbigr)=
lim_ttoinftyfrac-3tsqrtt^2-3t+t
$$
From here it should be clear.
Another strategy, in this case, is to set $x=-1/t$, that transforms the limit into
$$
lim_tto0^+left(sqrtfrac1t^2-frac3t-frac1tright)=
lim_tto0^+fracsqrt1-3t-1t
$$
which is a simple derivative: if $f(t)=sqrt1-3t$, then $f'(t)=frac-32sqrt1-3t$ and
$$
lim_tto0^+fracsqrt1-3t-1t=f'(0)=-frac32
$$
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
The problem is in
$$
f(x)-mx=sqrtx^2+3x+xundersetbeginarrayc uparrow \ textproblemendarray=xleft(sqrtfracx^2x^2+frac3xx^2+1right)=xleft(sqrt1+frac3x+1right)sim xcdot2rightarrow -infty
$$
which should be
$$
f(x)-mx=sqrtx^2+3x+x=xleft(-sqrtfracx^2x^2+frac3xx^2+1right)
$$
because we are near $-infty$, so $sqrtx^2=-x$.
In order to avoid such common mistakes, I suggest to change $x=-t$, when the limit for $xto-infty$ is involved:
$$
lim_xto-inftybigl(sqrtx^2+3x+xbigr)=
lim_ttoinftybigl(sqrtt^2-3t-tbigr)=
lim_ttoinftyfrac-3tsqrtt^2-3t+t
$$
From here it should be clear.
Another strategy, in this case, is to set $x=-1/t$, that transforms the limit into
$$
lim_tto0^+left(sqrtfrac1t^2-frac3t-frac1tright)=
lim_tto0^+fracsqrt1-3t-1t
$$
which is a simple derivative: if $f(t)=sqrt1-3t$, then $f'(t)=frac-32sqrt1-3t$ and
$$
lim_tto0^+fracsqrt1-3t-1t=f'(0)=-frac32
$$
The problem is in
$$
f(x)-mx=sqrtx^2+3x+xundersetbeginarrayc uparrow \ textproblemendarray=xleft(sqrtfracx^2x^2+frac3xx^2+1right)=xleft(sqrt1+frac3x+1right)sim xcdot2rightarrow -infty
$$
which should be
$$
f(x)-mx=sqrtx^2+3x+x=xleft(-sqrtfracx^2x^2+frac3xx^2+1right)
$$
because we are near $-infty$, so $sqrtx^2=-x$.
In order to avoid such common mistakes, I suggest to change $x=-t$, when the limit for $xto-infty$ is involved:
$$
lim_xto-inftybigl(sqrtx^2+3x+xbigr)=
lim_ttoinftybigl(sqrtt^2-3t-tbigr)=
lim_ttoinftyfrac-3tsqrtt^2-3t+t
$$
From here it should be clear.
Another strategy, in this case, is to set $x=-1/t$, that transforms the limit into
$$
lim_tto0^+left(sqrtfrac1t^2-frac3t-frac1tright)=
lim_tto0^+fracsqrt1-3t-1t
$$
which is a simple derivative: if $f(t)=sqrt1-3t$, then $f'(t)=frac-32sqrt1-3t$ and
$$
lim_tto0^+fracsqrt1-3t-1t=f'(0)=-frac32
$$
answered Aug 18 at 9:41
egreg
165k1180187
165k1180187
add a comment |Â
add a comment |Â
up vote
1
down vote
This is not a different way, but is better I think
$$f(x)=sqrtx^2+3x=sqrtx^2+3x+(frac32)^2-(frac32)^2=sqrtleft(x+frac32right)^2-(frac32)^2simleft|x+frac32right|$$
which gives both oblique asymptotes.
add a comment |Â
up vote
1
down vote
This is not a different way, but is better I think
$$f(x)=sqrtx^2+3x=sqrtx^2+3x+(frac32)^2-(frac32)^2=sqrtleft(x+frac32right)^2-(frac32)^2simleft|x+frac32right|$$
which gives both oblique asymptotes.
add a comment |Â
up vote
1
down vote
up vote
1
down vote
This is not a different way, but is better I think
$$f(x)=sqrtx^2+3x=sqrtx^2+3x+(frac32)^2-(frac32)^2=sqrtleft(x+frac32right)^2-(frac32)^2simleft|x+frac32right|$$
which gives both oblique asymptotes.
This is not a different way, but is better I think
$$f(x)=sqrtx^2+3x=sqrtx^2+3x+(frac32)^2-(frac32)^2=sqrtleft(x+frac32right)^2-(frac32)^2simleft|x+frac32right|$$
which gives both oblique asymptotes.
answered Aug 18 at 9:27
Nosrati
20.7k41644
20.7k41644
add a comment |Â
add a comment |Â
up vote
1
down vote
$$f(x)=sqrtx^2+3x=|x|left(1+3over xright)^1over2$$ which, as $xrightarrow -infty$, is equal to $$-xleft(1-3over2xright)^1over2 sim -xleft(1+3over2xright)= -x -3over2$$ using Taylor or Bernoulli
Thanks. I haven't studied Taylor nor Bernoulli yet.
â Cesare
Aug 18 at 9:26
add a comment |Â
up vote
1
down vote
$$f(x)=sqrtx^2+3x=|x|left(1+3over xright)^1over2$$ which, as $xrightarrow -infty$, is equal to $$-xleft(1-3over2xright)^1over2 sim -xleft(1+3over2xright)= -x -3over2$$ using Taylor or Bernoulli
Thanks. I haven't studied Taylor nor Bernoulli yet.
â Cesare
Aug 18 at 9:26
add a comment |Â
up vote
1
down vote
up vote
1
down vote
$$f(x)=sqrtx^2+3x=|x|left(1+3over xright)^1over2$$ which, as $xrightarrow -infty$, is equal to $$-xleft(1-3over2xright)^1over2 sim -xleft(1+3over2xright)= -x -3over2$$ using Taylor or Bernoulli
$$f(x)=sqrtx^2+3x=|x|left(1+3over xright)^1over2$$ which, as $xrightarrow -infty$, is equal to $$-xleft(1-3over2xright)^1over2 sim -xleft(1+3over2xright)= -x -3over2$$ using Taylor or Bernoulli
edited Aug 18 at 9:31
Davide Morgante
2,336322
2,336322
answered Aug 18 at 9:22
Alex T
916
916
Thanks. I haven't studied Taylor nor Bernoulli yet.
â Cesare
Aug 18 at 9:26
add a comment |Â
Thanks. I haven't studied Taylor nor Bernoulli yet.
â Cesare
Aug 18 at 9:26
Thanks. I haven't studied Taylor nor Bernoulli yet.
â Cesare
Aug 18 at 9:26
Thanks. I haven't studied Taylor nor Bernoulli yet.
â Cesare
Aug 18 at 9:26
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2886545%2ffind-the-oblique-asymptote-of-sqrtx23x-for-x-rightarrow-infty%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
If $x < 0$ (or, better, $xleq -3$), one has $sqrtx^2+3x = |x| sqrt1+3/x = -x sqrt1+3/x$.
â Rigel
Aug 18 at 9:17
Thanks that definitely makes sense @Rigel
â Cesare
Aug 18 at 9:29
For the second write $sqrtx^2+3x+x=dfrac3xsqrtx^2+3x-xto-dfrac32$.
â Nosrati
Aug 18 at 9:31