Not able to drop columns in a matrix using Drop [closed]
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
R= (1/2 Cos[b z1] - 1/2 Cos[b z1] Cos[t]) Sin[b (L - z1)] +
Cosh[b (L - z1)] (-(1/2) Sin[b z1] - 1/2 Cos[t] Sin[b z1]) +
Cos[b (L - z1)] (1/2 Sin[b z1] -
1/2 Cos[t] Sin[b z1]) + (1/2 Cos[b z1] +
1/2 Cos[b z1] Cos[t]) Sinh[b (L - z1)],
Cos[b (L - z1)] (1/2 Cos[b z1] -
1/2 Cos[b z1] Cos[t]) + (-(1/2) Cos[b z1] -
1/2 Cos[b z1] Cos[t]) Cosh[b (L - z1)] +
Sin[b (L - z1)] (-(1/2) Sin[b z1] +
1/2 Cos[t] Sin[b z1]) + (-(1/2) Sin[b z1] -
1/2 Cos[t] Sin[b z1]) Sinh[
b (L - z1)], (1/2 Cosh[b z1] + 1/2 Cos[t] Cosh[b z1]) Sin[
b (L - z1)] + (1/2 Cosh[b z1] - 1/2 Cos[t/2]^2 Cosh[b z1] +
1/2 Cosh[b z1] Sin[t/2]^2) Sinh[b (L - z1)] +
Cos[b (L - z1)] (-(1/2) Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]) +
Cosh[b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]),
Cos[b (L - z1)] (-(1/2) Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) +
Cosh[b (L - z1)] (1/2 Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) +
Sin[b (L - z1)] (1/2 Sinh[b z1] + 1/2 Cos[t] Sinh[b z1]) +
Sinh[b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t/2]^2 Sinh[b z1] +
1/2 Sin[t/2]^2 Sinh[b z1]),
1/2 Cos[b (L - z1)] Cos[a b^2 z1] Sin[t] +
1/2 Cos[a b^2 z1] Cosh[b (L - z1)] Sin[t] - (
a A L^2 Sin[b (L - z1)] Sin[a b^2 z1] Sin[t])/(2 b Iyy) + (
a A L^2 Sin[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(2 b Iyy), (
a A L^2 Cos[a b^2 z1] Sin[b (L - z1)] Sin[t])/(2 b Iyy) +
1/2 Cos[b (L - z1)] Sin[a b^2 z1] Sin[t] +
1/2 Cosh[b (L - z1)] Sin[a b^2 z1] Sin[t] - (
a A L^2 Cos[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(
2 b Iyy), -b^2 (1/2 Cos[b z1] - 1/2 Cos[b z1] Cos[t]) Sin[
b (L - z1)] +
b^2 Cosh[b (L - z1)] (-(1/2) Sin[b z1] - 1/2 Cos[t] Sin[b z1]) -
b^2 Cos[b (L - z1)] (1/2 Sin[b z1] - 1/2 Cos[t] Sin[b z1]) +
b^2 (1/2 Cos[b z1] + 1/2 Cos[b z1] Cos[t]) Sinh[
b (L - z1)], -b^2 Cos[
b (L - z1)] (1/2 Cos[b z1] - 1/2 Cos[b z1] Cos[t]) +
b^2 (-(1/2) Cos[b z1] - 1/2 Cos[b z1] Cos[t]) Cosh[b (L - z1)] -
b^2 Sin[b (L - z1)] (-(1/2) Sin[b z1] + 1/2 Cos[t] Sin[b z1]) +
b^2 (-(1/2) Sin[b z1] - 1/2 Cos[t] Sin[b z1]) Sinh[
b (L - z1)], -b^2 (1/2 Cosh[b z1] + 1/2 Cos[t] Cosh[b z1]) Sin[
b (L - z1)] +
b^2 (1/2 Cosh[b z1] - 1/2 Cos[t/2]^2 Cosh[b z1] +
1/2 Cosh[b z1] Sin[t/2]^2) Sinh[b (L - z1)] -
b^2 Cos[b (L - z1)] (-(1/2) Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]) +
b^2 Cosh[
b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]), -b^2 Cos[
b (L - z1)] (-(1/2) Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) +
b^2 Cosh[b (L - z1)] (1/2 Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) -
b^2 Sin[b (L - z1)] (1/2 Sinh[b z1] + 1/2 Cos[t] Sinh[b z1]) +
b^2 Sinh[
b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t/2]^2 Sinh[b z1] +
1/2 Sin[t/2]^2 Sinh[b z1]), -(1/2) b^2 Cos[b (L - z1)] Cos[
a b^2 z1] Sin[t] +
1/2 b^2 Cos[a b^2 z1] Cosh[b (L - z1)] Sin[t] + (
a A b L^2 Sin[b (L - z1)] Sin[a b^2 z1] Sin[t])/(2 Iyy) + (
a A b L^2 Sin[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(
2 Iyy), -((a A b L^2 Cos[a b^2 z1] Sin[b (L - z1)] Sin[t])/(
2 Iyy)) - 1/2 b^2 Cos[b (L - z1)] Sin[a b^2 z1] Sin[t] +
1/2 b^2 Cosh[b (L - z1)] Sin[a b^2 z1] Sin[t] - (
a A b L^2 Cos[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(
2 Iyy), -b^2 (1/2 Cos[b z1] - 1/2 Cos[b z1] Cos[t]) Sin[
b (L - z1)] +
b^2 Cosh[b (L - z1)] (-(1/2) Sin[b z1] - 1/2 Cos[t] Sin[b z1]) -
b^2 Cos[b (L - z1)] (1/2 Sin[b z1] - 1/2 Cos[t] Sin[b z1]) +
b^2 (1/2 Cos[b z1] + 1/2 Cos[b z1] Cos[t]) Sinh[
b (L - z1)], -b^2 Cos[
b (L - z1)] (1/2 Cos[b z1] - 1/2 Cos[b z1] Cos[t]) +
b^2 (-(1/2) Cos[b z1] - 1/2 Cos[b z1] Cos[t]) Cosh[b (L - z1)] -
b^2 Sin[b (L - z1)] (-(1/2) Sin[b z1] + 1/2 Cos[t] Sin[b z1]) +
b^2 (-(1/2) Sin[b z1] - 1/2 Cos[t] Sin[b z1]) Sinh[
b (L - z1)], -b^2 (1/2 Cosh[b z1] + 1/2 Cos[t] Cosh[b z1]) Sin[
b (L - z1)] +
b^2 (1/2 Cosh[b z1] - 1/2 Cos[t/2]^2 Cosh[b z1] +
1/2 Cosh[b z1] Sin[t/2]^2) Sinh[b (L - z1)] -
b^2 Cos[b (L - z1)] (-(1/2) Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]) +
b^2 Cosh[
b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]), -b^2 Cos[
b (L - z1)] (-(1/2) Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) +
b^2 Cosh[b (L - z1)] (1/2 Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) -
b^2 Sin[b (L - z1)] (1/2 Sinh[b z1] + 1/2 Cos[t] Sinh[b z1]) +
b^2 Sinh[
b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t/2]^2 Sinh[b z1] +
1/2 Sin[t/2]^2 Sinh[b z1]), -(1/2) b^2 Cos[b (L - z1)] Cos[
a b^2 z1] Sin[t] +
1/2 b^2 Cos[a b^2 z1] Cosh[b (L - z1)] Sin[t] + (
a A b L^2 Sin[b (L - z1)] Sin[a b^2 z1] Sin[t])/(2 Iyy) + (
a A b L^2 Sin[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(
2 Iyy), -((a A b L^2 Cos[a b^2 z1] Sin[b (L - z1)] Sin[t])/(
2 Iyy)) - 1/2 b^2 Cos[b (L - z1)] Sin[a b^2 z1] Sin[t] +
1/2 b^2 Cosh[b (L - z1)] Sin[a b^2 z1] Sin[t] - (
a A b L^2 Cos[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(2 Iyy);
Dimensions[R]
MatrixForm[R];
R = Drop[R, , 2, 4, 5];
MatrixForm[R]
Dimensions[R]
I have a matrix R
with dimension 3*6
, I want to delete columns (2, 4, 5)
. I tried Drop
, but it seems like it is not working. The matrix is reducing to dimension 3*5
. Drop
works for a matrix containing numbers, but not working well if the matrix consists of symbolic variables.
How do I overcome this?
Also, I tried DeleteCases
and Delete
, but I still did not get what I wanted.
Mathematica is not giving an error messsage, but the answer it is giving is wrong.
list-manipulation matrix
closed as off-topic by m_goldberg, José Antonio DÃaz Navas, MarcoB, Yves Klett, rhermans Aug 31 at 8:05
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question arises due to a simple mistake such as a trivial syntax error, incorrect capitalization, spelling mistake, or other typographical error and is unlikely to help any future visitors, or else it is easily found in the documentation." â m_goldberg, José Antonio DÃÂaz Navas, MarcoB, Yves Klett, rhermans
 |Â
show 1 more comment
up vote
3
down vote
favorite
R= (1/2 Cos[b z1] - 1/2 Cos[b z1] Cos[t]) Sin[b (L - z1)] +
Cosh[b (L - z1)] (-(1/2) Sin[b z1] - 1/2 Cos[t] Sin[b z1]) +
Cos[b (L - z1)] (1/2 Sin[b z1] -
1/2 Cos[t] Sin[b z1]) + (1/2 Cos[b z1] +
1/2 Cos[b z1] Cos[t]) Sinh[b (L - z1)],
Cos[b (L - z1)] (1/2 Cos[b z1] -
1/2 Cos[b z1] Cos[t]) + (-(1/2) Cos[b z1] -
1/2 Cos[b z1] Cos[t]) Cosh[b (L - z1)] +
Sin[b (L - z1)] (-(1/2) Sin[b z1] +
1/2 Cos[t] Sin[b z1]) + (-(1/2) Sin[b z1] -
1/2 Cos[t] Sin[b z1]) Sinh[
b (L - z1)], (1/2 Cosh[b z1] + 1/2 Cos[t] Cosh[b z1]) Sin[
b (L - z1)] + (1/2 Cosh[b z1] - 1/2 Cos[t/2]^2 Cosh[b z1] +
1/2 Cosh[b z1] Sin[t/2]^2) Sinh[b (L - z1)] +
Cos[b (L - z1)] (-(1/2) Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]) +
Cosh[b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]),
Cos[b (L - z1)] (-(1/2) Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) +
Cosh[b (L - z1)] (1/2 Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) +
Sin[b (L - z1)] (1/2 Sinh[b z1] + 1/2 Cos[t] Sinh[b z1]) +
Sinh[b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t/2]^2 Sinh[b z1] +
1/2 Sin[t/2]^2 Sinh[b z1]),
1/2 Cos[b (L - z1)] Cos[a b^2 z1] Sin[t] +
1/2 Cos[a b^2 z1] Cosh[b (L - z1)] Sin[t] - (
a A L^2 Sin[b (L - z1)] Sin[a b^2 z1] Sin[t])/(2 b Iyy) + (
a A L^2 Sin[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(2 b Iyy), (
a A L^2 Cos[a b^2 z1] Sin[b (L - z1)] Sin[t])/(2 b Iyy) +
1/2 Cos[b (L - z1)] Sin[a b^2 z1] Sin[t] +
1/2 Cosh[b (L - z1)] Sin[a b^2 z1] Sin[t] - (
a A L^2 Cos[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(
2 b Iyy), -b^2 (1/2 Cos[b z1] - 1/2 Cos[b z1] Cos[t]) Sin[
b (L - z1)] +
b^2 Cosh[b (L - z1)] (-(1/2) Sin[b z1] - 1/2 Cos[t] Sin[b z1]) -
b^2 Cos[b (L - z1)] (1/2 Sin[b z1] - 1/2 Cos[t] Sin[b z1]) +
b^2 (1/2 Cos[b z1] + 1/2 Cos[b z1] Cos[t]) Sinh[
b (L - z1)], -b^2 Cos[
b (L - z1)] (1/2 Cos[b z1] - 1/2 Cos[b z1] Cos[t]) +
b^2 (-(1/2) Cos[b z1] - 1/2 Cos[b z1] Cos[t]) Cosh[b (L - z1)] -
b^2 Sin[b (L - z1)] (-(1/2) Sin[b z1] + 1/2 Cos[t] Sin[b z1]) +
b^2 (-(1/2) Sin[b z1] - 1/2 Cos[t] Sin[b z1]) Sinh[
b (L - z1)], -b^2 (1/2 Cosh[b z1] + 1/2 Cos[t] Cosh[b z1]) Sin[
b (L - z1)] +
b^2 (1/2 Cosh[b z1] - 1/2 Cos[t/2]^2 Cosh[b z1] +
1/2 Cosh[b z1] Sin[t/2]^2) Sinh[b (L - z1)] -
b^2 Cos[b (L - z1)] (-(1/2) Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]) +
b^2 Cosh[
b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]), -b^2 Cos[
b (L - z1)] (-(1/2) Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) +
b^2 Cosh[b (L - z1)] (1/2 Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) -
b^2 Sin[b (L - z1)] (1/2 Sinh[b z1] + 1/2 Cos[t] Sinh[b z1]) +
b^2 Sinh[
b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t/2]^2 Sinh[b z1] +
1/2 Sin[t/2]^2 Sinh[b z1]), -(1/2) b^2 Cos[b (L - z1)] Cos[
a b^2 z1] Sin[t] +
1/2 b^2 Cos[a b^2 z1] Cosh[b (L - z1)] Sin[t] + (
a A b L^2 Sin[b (L - z1)] Sin[a b^2 z1] Sin[t])/(2 Iyy) + (
a A b L^2 Sin[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(
2 Iyy), -((a A b L^2 Cos[a b^2 z1] Sin[b (L - z1)] Sin[t])/(
2 Iyy)) - 1/2 b^2 Cos[b (L - z1)] Sin[a b^2 z1] Sin[t] +
1/2 b^2 Cosh[b (L - z1)] Sin[a b^2 z1] Sin[t] - (
a A b L^2 Cos[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(
2 Iyy), -b^2 (1/2 Cos[b z1] - 1/2 Cos[b z1] Cos[t]) Sin[
b (L - z1)] +
b^2 Cosh[b (L - z1)] (-(1/2) Sin[b z1] - 1/2 Cos[t] Sin[b z1]) -
b^2 Cos[b (L - z1)] (1/2 Sin[b z1] - 1/2 Cos[t] Sin[b z1]) +
b^2 (1/2 Cos[b z1] + 1/2 Cos[b z1] Cos[t]) Sinh[
b (L - z1)], -b^2 Cos[
b (L - z1)] (1/2 Cos[b z1] - 1/2 Cos[b z1] Cos[t]) +
b^2 (-(1/2) Cos[b z1] - 1/2 Cos[b z1] Cos[t]) Cosh[b (L - z1)] -
b^2 Sin[b (L - z1)] (-(1/2) Sin[b z1] + 1/2 Cos[t] Sin[b z1]) +
b^2 (-(1/2) Sin[b z1] - 1/2 Cos[t] Sin[b z1]) Sinh[
b (L - z1)], -b^2 (1/2 Cosh[b z1] + 1/2 Cos[t] Cosh[b z1]) Sin[
b (L - z1)] +
b^2 (1/2 Cosh[b z1] - 1/2 Cos[t/2]^2 Cosh[b z1] +
1/2 Cosh[b z1] Sin[t/2]^2) Sinh[b (L - z1)] -
b^2 Cos[b (L - z1)] (-(1/2) Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]) +
b^2 Cosh[
b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]), -b^2 Cos[
b (L - z1)] (-(1/2) Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) +
b^2 Cosh[b (L - z1)] (1/2 Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) -
b^2 Sin[b (L - z1)] (1/2 Sinh[b z1] + 1/2 Cos[t] Sinh[b z1]) +
b^2 Sinh[
b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t/2]^2 Sinh[b z1] +
1/2 Sin[t/2]^2 Sinh[b z1]), -(1/2) b^2 Cos[b (L - z1)] Cos[
a b^2 z1] Sin[t] +
1/2 b^2 Cos[a b^2 z1] Cosh[b (L - z1)] Sin[t] + (
a A b L^2 Sin[b (L - z1)] Sin[a b^2 z1] Sin[t])/(2 Iyy) + (
a A b L^2 Sin[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(
2 Iyy), -((a A b L^2 Cos[a b^2 z1] Sin[b (L - z1)] Sin[t])/(
2 Iyy)) - 1/2 b^2 Cos[b (L - z1)] Sin[a b^2 z1] Sin[t] +
1/2 b^2 Cosh[b (L - z1)] Sin[a b^2 z1] Sin[t] - (
a A b L^2 Cos[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(2 Iyy);
Dimensions[R]
MatrixForm[R];
R = Drop[R, , 2, 4, 5];
MatrixForm[R]
Dimensions[R]
I have a matrix R
with dimension 3*6
, I want to delete columns (2, 4, 5)
. I tried Drop
, but it seems like it is not working. The matrix is reducing to dimension 3*5
. Drop
works for a matrix containing numbers, but not working well if the matrix consists of symbolic variables.
How do I overcome this?
Also, I tried DeleteCases
and Delete
, but I still did not get what I wanted.
Mathematica is not giving an error messsage, but the answer it is giving is wrong.
list-manipulation matrix
closed as off-topic by m_goldberg, José Antonio DÃaz Navas, MarcoB, Yves Klett, rhermans Aug 31 at 8:05
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question arises due to a simple mistake such as a trivial syntax error, incorrect capitalization, spelling mistake, or other typographical error and is unlikely to help any future visitors, or else it is easily found in the documentation." â m_goldberg, José Antonio DÃÂaz Navas, MarcoB, Yves Klett, rhermans
Why don't you give simplyR = Array[r, 3,6]
as a minima example?
â Henrik Schumacher
Aug 24 at 18:57
2
The syntaxDrop[R, , 2, 4, 5]
tells Mathematica to drop colums 2 to 4 in steps of 5. Since 2+5>4, only column 2 is dropped.
â Henrik Schumacher
Aug 24 at 19:03
I know drop function is working for a matrix with the number. But for a matrix with symbols, it is not working. That is why I put everything in the question.
â vijay
Aug 24 at 19:05
No, there is no difference in the behavior for matrices with or without symbols.
â Henrik Schumacher
Aug 24 at 19:07
sorry my mistake, I did not understand the syntax properly.
â vijay
Aug 24 at 19:11
 |Â
show 1 more comment
up vote
3
down vote
favorite
up vote
3
down vote
favorite
R= (1/2 Cos[b z1] - 1/2 Cos[b z1] Cos[t]) Sin[b (L - z1)] +
Cosh[b (L - z1)] (-(1/2) Sin[b z1] - 1/2 Cos[t] Sin[b z1]) +
Cos[b (L - z1)] (1/2 Sin[b z1] -
1/2 Cos[t] Sin[b z1]) + (1/2 Cos[b z1] +
1/2 Cos[b z1] Cos[t]) Sinh[b (L - z1)],
Cos[b (L - z1)] (1/2 Cos[b z1] -
1/2 Cos[b z1] Cos[t]) + (-(1/2) Cos[b z1] -
1/2 Cos[b z1] Cos[t]) Cosh[b (L - z1)] +
Sin[b (L - z1)] (-(1/2) Sin[b z1] +
1/2 Cos[t] Sin[b z1]) + (-(1/2) Sin[b z1] -
1/2 Cos[t] Sin[b z1]) Sinh[
b (L - z1)], (1/2 Cosh[b z1] + 1/2 Cos[t] Cosh[b z1]) Sin[
b (L - z1)] + (1/2 Cosh[b z1] - 1/2 Cos[t/2]^2 Cosh[b z1] +
1/2 Cosh[b z1] Sin[t/2]^2) Sinh[b (L - z1)] +
Cos[b (L - z1)] (-(1/2) Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]) +
Cosh[b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]),
Cos[b (L - z1)] (-(1/2) Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) +
Cosh[b (L - z1)] (1/2 Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) +
Sin[b (L - z1)] (1/2 Sinh[b z1] + 1/2 Cos[t] Sinh[b z1]) +
Sinh[b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t/2]^2 Sinh[b z1] +
1/2 Sin[t/2]^2 Sinh[b z1]),
1/2 Cos[b (L - z1)] Cos[a b^2 z1] Sin[t] +
1/2 Cos[a b^2 z1] Cosh[b (L - z1)] Sin[t] - (
a A L^2 Sin[b (L - z1)] Sin[a b^2 z1] Sin[t])/(2 b Iyy) + (
a A L^2 Sin[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(2 b Iyy), (
a A L^2 Cos[a b^2 z1] Sin[b (L - z1)] Sin[t])/(2 b Iyy) +
1/2 Cos[b (L - z1)] Sin[a b^2 z1] Sin[t] +
1/2 Cosh[b (L - z1)] Sin[a b^2 z1] Sin[t] - (
a A L^2 Cos[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(
2 b Iyy), -b^2 (1/2 Cos[b z1] - 1/2 Cos[b z1] Cos[t]) Sin[
b (L - z1)] +
b^2 Cosh[b (L - z1)] (-(1/2) Sin[b z1] - 1/2 Cos[t] Sin[b z1]) -
b^2 Cos[b (L - z1)] (1/2 Sin[b z1] - 1/2 Cos[t] Sin[b z1]) +
b^2 (1/2 Cos[b z1] + 1/2 Cos[b z1] Cos[t]) Sinh[
b (L - z1)], -b^2 Cos[
b (L - z1)] (1/2 Cos[b z1] - 1/2 Cos[b z1] Cos[t]) +
b^2 (-(1/2) Cos[b z1] - 1/2 Cos[b z1] Cos[t]) Cosh[b (L - z1)] -
b^2 Sin[b (L - z1)] (-(1/2) Sin[b z1] + 1/2 Cos[t] Sin[b z1]) +
b^2 (-(1/2) Sin[b z1] - 1/2 Cos[t] Sin[b z1]) Sinh[
b (L - z1)], -b^2 (1/2 Cosh[b z1] + 1/2 Cos[t] Cosh[b z1]) Sin[
b (L - z1)] +
b^2 (1/2 Cosh[b z1] - 1/2 Cos[t/2]^2 Cosh[b z1] +
1/2 Cosh[b z1] Sin[t/2]^2) Sinh[b (L - z1)] -
b^2 Cos[b (L - z1)] (-(1/2) Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]) +
b^2 Cosh[
b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]), -b^2 Cos[
b (L - z1)] (-(1/2) Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) +
b^2 Cosh[b (L - z1)] (1/2 Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) -
b^2 Sin[b (L - z1)] (1/2 Sinh[b z1] + 1/2 Cos[t] Sinh[b z1]) +
b^2 Sinh[
b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t/2]^2 Sinh[b z1] +
1/2 Sin[t/2]^2 Sinh[b z1]), -(1/2) b^2 Cos[b (L - z1)] Cos[
a b^2 z1] Sin[t] +
1/2 b^2 Cos[a b^2 z1] Cosh[b (L - z1)] Sin[t] + (
a A b L^2 Sin[b (L - z1)] Sin[a b^2 z1] Sin[t])/(2 Iyy) + (
a A b L^2 Sin[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(
2 Iyy), -((a A b L^2 Cos[a b^2 z1] Sin[b (L - z1)] Sin[t])/(
2 Iyy)) - 1/2 b^2 Cos[b (L - z1)] Sin[a b^2 z1] Sin[t] +
1/2 b^2 Cosh[b (L - z1)] Sin[a b^2 z1] Sin[t] - (
a A b L^2 Cos[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(
2 Iyy), -b^2 (1/2 Cos[b z1] - 1/2 Cos[b z1] Cos[t]) Sin[
b (L - z1)] +
b^2 Cosh[b (L - z1)] (-(1/2) Sin[b z1] - 1/2 Cos[t] Sin[b z1]) -
b^2 Cos[b (L - z1)] (1/2 Sin[b z1] - 1/2 Cos[t] Sin[b z1]) +
b^2 (1/2 Cos[b z1] + 1/2 Cos[b z1] Cos[t]) Sinh[
b (L - z1)], -b^2 Cos[
b (L - z1)] (1/2 Cos[b z1] - 1/2 Cos[b z1] Cos[t]) +
b^2 (-(1/2) Cos[b z1] - 1/2 Cos[b z1] Cos[t]) Cosh[b (L - z1)] -
b^2 Sin[b (L - z1)] (-(1/2) Sin[b z1] + 1/2 Cos[t] Sin[b z1]) +
b^2 (-(1/2) Sin[b z1] - 1/2 Cos[t] Sin[b z1]) Sinh[
b (L - z1)], -b^2 (1/2 Cosh[b z1] + 1/2 Cos[t] Cosh[b z1]) Sin[
b (L - z1)] +
b^2 (1/2 Cosh[b z1] - 1/2 Cos[t/2]^2 Cosh[b z1] +
1/2 Cosh[b z1] Sin[t/2]^2) Sinh[b (L - z1)] -
b^2 Cos[b (L - z1)] (-(1/2) Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]) +
b^2 Cosh[
b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]), -b^2 Cos[
b (L - z1)] (-(1/2) Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) +
b^2 Cosh[b (L - z1)] (1/2 Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) -
b^2 Sin[b (L - z1)] (1/2 Sinh[b z1] + 1/2 Cos[t] Sinh[b z1]) +
b^2 Sinh[
b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t/2]^2 Sinh[b z1] +
1/2 Sin[t/2]^2 Sinh[b z1]), -(1/2) b^2 Cos[b (L - z1)] Cos[
a b^2 z1] Sin[t] +
1/2 b^2 Cos[a b^2 z1] Cosh[b (L - z1)] Sin[t] + (
a A b L^2 Sin[b (L - z1)] Sin[a b^2 z1] Sin[t])/(2 Iyy) + (
a A b L^2 Sin[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(
2 Iyy), -((a A b L^2 Cos[a b^2 z1] Sin[b (L - z1)] Sin[t])/(
2 Iyy)) - 1/2 b^2 Cos[b (L - z1)] Sin[a b^2 z1] Sin[t] +
1/2 b^2 Cosh[b (L - z1)] Sin[a b^2 z1] Sin[t] - (
a A b L^2 Cos[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(2 Iyy);
Dimensions[R]
MatrixForm[R];
R = Drop[R, , 2, 4, 5];
MatrixForm[R]
Dimensions[R]
I have a matrix R
with dimension 3*6
, I want to delete columns (2, 4, 5)
. I tried Drop
, but it seems like it is not working. The matrix is reducing to dimension 3*5
. Drop
works for a matrix containing numbers, but not working well if the matrix consists of symbolic variables.
How do I overcome this?
Also, I tried DeleteCases
and Delete
, but I still did not get what I wanted.
Mathematica is not giving an error messsage, but the answer it is giving is wrong.
list-manipulation matrix
R= (1/2 Cos[b z1] - 1/2 Cos[b z1] Cos[t]) Sin[b (L - z1)] +
Cosh[b (L - z1)] (-(1/2) Sin[b z1] - 1/2 Cos[t] Sin[b z1]) +
Cos[b (L - z1)] (1/2 Sin[b z1] -
1/2 Cos[t] Sin[b z1]) + (1/2 Cos[b z1] +
1/2 Cos[b z1] Cos[t]) Sinh[b (L - z1)],
Cos[b (L - z1)] (1/2 Cos[b z1] -
1/2 Cos[b z1] Cos[t]) + (-(1/2) Cos[b z1] -
1/2 Cos[b z1] Cos[t]) Cosh[b (L - z1)] +
Sin[b (L - z1)] (-(1/2) Sin[b z1] +
1/2 Cos[t] Sin[b z1]) + (-(1/2) Sin[b z1] -
1/2 Cos[t] Sin[b z1]) Sinh[
b (L - z1)], (1/2 Cosh[b z1] + 1/2 Cos[t] Cosh[b z1]) Sin[
b (L - z1)] + (1/2 Cosh[b z1] - 1/2 Cos[t/2]^2 Cosh[b z1] +
1/2 Cosh[b z1] Sin[t/2]^2) Sinh[b (L - z1)] +
Cos[b (L - z1)] (-(1/2) Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]) +
Cosh[b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]),
Cos[b (L - z1)] (-(1/2) Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) +
Cosh[b (L - z1)] (1/2 Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) +
Sin[b (L - z1)] (1/2 Sinh[b z1] + 1/2 Cos[t] Sinh[b z1]) +
Sinh[b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t/2]^2 Sinh[b z1] +
1/2 Sin[t/2]^2 Sinh[b z1]),
1/2 Cos[b (L - z1)] Cos[a b^2 z1] Sin[t] +
1/2 Cos[a b^2 z1] Cosh[b (L - z1)] Sin[t] - (
a A L^2 Sin[b (L - z1)] Sin[a b^2 z1] Sin[t])/(2 b Iyy) + (
a A L^2 Sin[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(2 b Iyy), (
a A L^2 Cos[a b^2 z1] Sin[b (L - z1)] Sin[t])/(2 b Iyy) +
1/2 Cos[b (L - z1)] Sin[a b^2 z1] Sin[t] +
1/2 Cosh[b (L - z1)] Sin[a b^2 z1] Sin[t] - (
a A L^2 Cos[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(
2 b Iyy), -b^2 (1/2 Cos[b z1] - 1/2 Cos[b z1] Cos[t]) Sin[
b (L - z1)] +
b^2 Cosh[b (L - z1)] (-(1/2) Sin[b z1] - 1/2 Cos[t] Sin[b z1]) -
b^2 Cos[b (L - z1)] (1/2 Sin[b z1] - 1/2 Cos[t] Sin[b z1]) +
b^2 (1/2 Cos[b z1] + 1/2 Cos[b z1] Cos[t]) Sinh[
b (L - z1)], -b^2 Cos[
b (L - z1)] (1/2 Cos[b z1] - 1/2 Cos[b z1] Cos[t]) +
b^2 (-(1/2) Cos[b z1] - 1/2 Cos[b z1] Cos[t]) Cosh[b (L - z1)] -
b^2 Sin[b (L - z1)] (-(1/2) Sin[b z1] + 1/2 Cos[t] Sin[b z1]) +
b^2 (-(1/2) Sin[b z1] - 1/2 Cos[t] Sin[b z1]) Sinh[
b (L - z1)], -b^2 (1/2 Cosh[b z1] + 1/2 Cos[t] Cosh[b z1]) Sin[
b (L - z1)] +
b^2 (1/2 Cosh[b z1] - 1/2 Cos[t/2]^2 Cosh[b z1] +
1/2 Cosh[b z1] Sin[t/2]^2) Sinh[b (L - z1)] -
b^2 Cos[b (L - z1)] (-(1/2) Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]) +
b^2 Cosh[
b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]), -b^2 Cos[
b (L - z1)] (-(1/2) Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) +
b^2 Cosh[b (L - z1)] (1/2 Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) -
b^2 Sin[b (L - z1)] (1/2 Sinh[b z1] + 1/2 Cos[t] Sinh[b z1]) +
b^2 Sinh[
b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t/2]^2 Sinh[b z1] +
1/2 Sin[t/2]^2 Sinh[b z1]), -(1/2) b^2 Cos[b (L - z1)] Cos[
a b^2 z1] Sin[t] +
1/2 b^2 Cos[a b^2 z1] Cosh[b (L - z1)] Sin[t] + (
a A b L^2 Sin[b (L - z1)] Sin[a b^2 z1] Sin[t])/(2 Iyy) + (
a A b L^2 Sin[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(
2 Iyy), -((a A b L^2 Cos[a b^2 z1] Sin[b (L - z1)] Sin[t])/(
2 Iyy)) - 1/2 b^2 Cos[b (L - z1)] Sin[a b^2 z1] Sin[t] +
1/2 b^2 Cosh[b (L - z1)] Sin[a b^2 z1] Sin[t] - (
a A b L^2 Cos[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(
2 Iyy), -b^2 (1/2 Cos[b z1] - 1/2 Cos[b z1] Cos[t]) Sin[
b (L - z1)] +
b^2 Cosh[b (L - z1)] (-(1/2) Sin[b z1] - 1/2 Cos[t] Sin[b z1]) -
b^2 Cos[b (L - z1)] (1/2 Sin[b z1] - 1/2 Cos[t] Sin[b z1]) +
b^2 (1/2 Cos[b z1] + 1/2 Cos[b z1] Cos[t]) Sinh[
b (L - z1)], -b^2 Cos[
b (L - z1)] (1/2 Cos[b z1] - 1/2 Cos[b z1] Cos[t]) +
b^2 (-(1/2) Cos[b z1] - 1/2 Cos[b z1] Cos[t]) Cosh[b (L - z1)] -
b^2 Sin[b (L - z1)] (-(1/2) Sin[b z1] + 1/2 Cos[t] Sin[b z1]) +
b^2 (-(1/2) Sin[b z1] - 1/2 Cos[t] Sin[b z1]) Sinh[
b (L - z1)], -b^2 (1/2 Cosh[b z1] + 1/2 Cos[t] Cosh[b z1]) Sin[
b (L - z1)] +
b^2 (1/2 Cosh[b z1] - 1/2 Cos[t/2]^2 Cosh[b z1] +
1/2 Cosh[b z1] Sin[t/2]^2) Sinh[b (L - z1)] -
b^2 Cos[b (L - z1)] (-(1/2) Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]) +
b^2 Cosh[
b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t] Sinh[b z1]), -b^2 Cos[
b (L - z1)] (-(1/2) Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) +
b^2 Cosh[b (L - z1)] (1/2 Cosh[b z1] - 1/2 Cos[t] Cosh[b z1]) -
b^2 Sin[b (L - z1)] (1/2 Sinh[b z1] + 1/2 Cos[t] Sinh[b z1]) +
b^2 Sinh[
b (L - z1)] (1/2 Sinh[b z1] - 1/2 Cos[t/2]^2 Sinh[b z1] +
1/2 Sin[t/2]^2 Sinh[b z1]), -(1/2) b^2 Cos[b (L - z1)] Cos[
a b^2 z1] Sin[t] +
1/2 b^2 Cos[a b^2 z1] Cosh[b (L - z1)] Sin[t] + (
a A b L^2 Sin[b (L - z1)] Sin[a b^2 z1] Sin[t])/(2 Iyy) + (
a A b L^2 Sin[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(
2 Iyy), -((a A b L^2 Cos[a b^2 z1] Sin[b (L - z1)] Sin[t])/(
2 Iyy)) - 1/2 b^2 Cos[b (L - z1)] Sin[a b^2 z1] Sin[t] +
1/2 b^2 Cosh[b (L - z1)] Sin[a b^2 z1] Sin[t] - (
a A b L^2 Cos[a b^2 z1] Sin[t] Sinh[b (L - z1)])/(2 Iyy);
Dimensions[R]
MatrixForm[R];
R = Drop[R, , 2, 4, 5];
MatrixForm[R]
Dimensions[R]
I have a matrix R
with dimension 3*6
, I want to delete columns (2, 4, 5)
. I tried Drop
, but it seems like it is not working. The matrix is reducing to dimension 3*5
. Drop
works for a matrix containing numbers, but not working well if the matrix consists of symbolic variables.
How do I overcome this?
Also, I tried DeleteCases
and Delete
, but I still did not get what I wanted.
Mathematica is not giving an error messsage, but the answer it is giving is wrong.
list-manipulation matrix
edited Aug 25 at 10:01
Alexey Popkov
37.5k4102254
37.5k4102254
asked Aug 24 at 18:55
vijay
1157
1157
closed as off-topic by m_goldberg, José Antonio DÃaz Navas, MarcoB, Yves Klett, rhermans Aug 31 at 8:05
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question arises due to a simple mistake such as a trivial syntax error, incorrect capitalization, spelling mistake, or other typographical error and is unlikely to help any future visitors, or else it is easily found in the documentation." â m_goldberg, José Antonio DÃÂaz Navas, MarcoB, Yves Klett, rhermans
closed as off-topic by m_goldberg, José Antonio DÃaz Navas, MarcoB, Yves Klett, rhermans Aug 31 at 8:05
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question arises due to a simple mistake such as a trivial syntax error, incorrect capitalization, spelling mistake, or other typographical error and is unlikely to help any future visitors, or else it is easily found in the documentation." â m_goldberg, José Antonio DÃÂaz Navas, MarcoB, Yves Klett, rhermans
Why don't you give simplyR = Array[r, 3,6]
as a minima example?
â Henrik Schumacher
Aug 24 at 18:57
2
The syntaxDrop[R, , 2, 4, 5]
tells Mathematica to drop colums 2 to 4 in steps of 5. Since 2+5>4, only column 2 is dropped.
â Henrik Schumacher
Aug 24 at 19:03
I know drop function is working for a matrix with the number. But for a matrix with symbols, it is not working. That is why I put everything in the question.
â vijay
Aug 24 at 19:05
No, there is no difference in the behavior for matrices with or without symbols.
â Henrik Schumacher
Aug 24 at 19:07
sorry my mistake, I did not understand the syntax properly.
â vijay
Aug 24 at 19:11
 |Â
show 1 more comment
Why don't you give simplyR = Array[r, 3,6]
as a minima example?
â Henrik Schumacher
Aug 24 at 18:57
2
The syntaxDrop[R, , 2, 4, 5]
tells Mathematica to drop colums 2 to 4 in steps of 5. Since 2+5>4, only column 2 is dropped.
â Henrik Schumacher
Aug 24 at 19:03
I know drop function is working for a matrix with the number. But for a matrix with symbols, it is not working. That is why I put everything in the question.
â vijay
Aug 24 at 19:05
No, there is no difference in the behavior for matrices with or without symbols.
â Henrik Schumacher
Aug 24 at 19:07
sorry my mistake, I did not understand the syntax properly.
â vijay
Aug 24 at 19:11
Why don't you give simply
R = Array[r, 3,6]
as a minima example?â Henrik Schumacher
Aug 24 at 18:57
Why don't you give simply
R = Array[r, 3,6]
as a minima example?â Henrik Schumacher
Aug 24 at 18:57
2
2
The syntax
Drop[R, , 2, 4, 5]
tells Mathematica to drop colums 2 to 4 in steps of 5. Since 2+5>4, only column 2 is dropped.â Henrik Schumacher
Aug 24 at 19:03
The syntax
Drop[R, , 2, 4, 5]
tells Mathematica to drop colums 2 to 4 in steps of 5. Since 2+5>4, only column 2 is dropped.â Henrik Schumacher
Aug 24 at 19:03
I know drop function is working for a matrix with the number. But for a matrix with symbols, it is not working. That is why I put everything in the question.
â vijay
Aug 24 at 19:05
I know drop function is working for a matrix with the number. But for a matrix with symbols, it is not working. That is why I put everything in the question.
â vijay
Aug 24 at 19:05
No, there is no difference in the behavior for matrices with or without symbols.
â Henrik Schumacher
Aug 24 at 19:07
No, there is no difference in the behavior for matrices with or without symbols.
â Henrik Schumacher
Aug 24 at 19:07
sorry my mistake, I did not understand the syntax properly.
â vijay
Aug 24 at 19:11
sorry my mistake, I did not understand the syntax properly.
â vijay
Aug 24 at 19:11
 |Â
show 1 more comment
2 Answers
2
active
oldest
votes
up vote
8
down vote
accepted
The syntax Drop[R, , 2, 4, 5]
tells Mathematica to drop colums 2 to 4 in steps of 5. Since 2+5>4, only column 2 is dropped.
What you want to do can be done, for example, with
R[[All, Complement[Range[Dimensions[R][[2]]], 2, 4, 5]]]
or
R[[All, 1,3,6]]
add a comment |Â
up vote
7
down vote
Here are some formulations that allow you to work in terms of the column indexes of the columns you want to delete, rather than their complement.
Let r
be defined by
r = Array[a, 3, 6]
a[1, 1], a[1, 2], a[1, 3], a[1, 4], a[1, 5], a[1, 6],
a[2, 1], a[2, 2], a[2, 3], a[2, 4], a[2, 5], a[2, 6],
a[3, 1], a[3, 2], a[3, 3], a[3, 4], a[3, 5], a[3, 6]
Then evaluating any of follow expressions
ReplacePart[r, 4 -> Nothing]
Delete[2, 4, 5] /@ r
MapAt[Nothing, 2, 4, 5] /@ r
will give
a[1, 1], a[1, 3], a[1, 6],
a[2, 1], a[2, 3], a[2, 6],
a[3, 1], a[3, 3], a[3, 6]
1
Nice! (+1) As a side remark: It might not be relevant to the OP for their matrix is rather small, but each of this method unpacks arrays.
â Henrik Schumacher
Aug 24 at 20:35
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
8
down vote
accepted
The syntax Drop[R, , 2, 4, 5]
tells Mathematica to drop colums 2 to 4 in steps of 5. Since 2+5>4, only column 2 is dropped.
What you want to do can be done, for example, with
R[[All, Complement[Range[Dimensions[R][[2]]], 2, 4, 5]]]
or
R[[All, 1,3,6]]
add a comment |Â
up vote
8
down vote
accepted
The syntax Drop[R, , 2, 4, 5]
tells Mathematica to drop colums 2 to 4 in steps of 5. Since 2+5>4, only column 2 is dropped.
What you want to do can be done, for example, with
R[[All, Complement[Range[Dimensions[R][[2]]], 2, 4, 5]]]
or
R[[All, 1,3,6]]
add a comment |Â
up vote
8
down vote
accepted
up vote
8
down vote
accepted
The syntax Drop[R, , 2, 4, 5]
tells Mathematica to drop colums 2 to 4 in steps of 5. Since 2+5>4, only column 2 is dropped.
What you want to do can be done, for example, with
R[[All, Complement[Range[Dimensions[R][[2]]], 2, 4, 5]]]
or
R[[All, 1,3,6]]
The syntax Drop[R, , 2, 4, 5]
tells Mathematica to drop colums 2 to 4 in steps of 5. Since 2+5>4, only column 2 is dropped.
What you want to do can be done, for example, with
R[[All, Complement[Range[Dimensions[R][[2]]], 2, 4, 5]]]
or
R[[All, 1,3,6]]
answered Aug 24 at 19:04
Henrik Schumacher
36k249102
36k249102
add a comment |Â
add a comment |Â
up vote
7
down vote
Here are some formulations that allow you to work in terms of the column indexes of the columns you want to delete, rather than their complement.
Let r
be defined by
r = Array[a, 3, 6]
a[1, 1], a[1, 2], a[1, 3], a[1, 4], a[1, 5], a[1, 6],
a[2, 1], a[2, 2], a[2, 3], a[2, 4], a[2, 5], a[2, 6],
a[3, 1], a[3, 2], a[3, 3], a[3, 4], a[3, 5], a[3, 6]
Then evaluating any of follow expressions
ReplacePart[r, 4 -> Nothing]
Delete[2, 4, 5] /@ r
MapAt[Nothing, 2, 4, 5] /@ r
will give
a[1, 1], a[1, 3], a[1, 6],
a[2, 1], a[2, 3], a[2, 6],
a[3, 1], a[3, 3], a[3, 6]
1
Nice! (+1) As a side remark: It might not be relevant to the OP for their matrix is rather small, but each of this method unpacks arrays.
â Henrik Schumacher
Aug 24 at 20:35
add a comment |Â
up vote
7
down vote
Here are some formulations that allow you to work in terms of the column indexes of the columns you want to delete, rather than their complement.
Let r
be defined by
r = Array[a, 3, 6]
a[1, 1], a[1, 2], a[1, 3], a[1, 4], a[1, 5], a[1, 6],
a[2, 1], a[2, 2], a[2, 3], a[2, 4], a[2, 5], a[2, 6],
a[3, 1], a[3, 2], a[3, 3], a[3, 4], a[3, 5], a[3, 6]
Then evaluating any of follow expressions
ReplacePart[r, 4 -> Nothing]
Delete[2, 4, 5] /@ r
MapAt[Nothing, 2, 4, 5] /@ r
will give
a[1, 1], a[1, 3], a[1, 6],
a[2, 1], a[2, 3], a[2, 6],
a[3, 1], a[3, 3], a[3, 6]
1
Nice! (+1) As a side remark: It might not be relevant to the OP for their matrix is rather small, but each of this method unpacks arrays.
â Henrik Schumacher
Aug 24 at 20:35
add a comment |Â
up vote
7
down vote
up vote
7
down vote
Here are some formulations that allow you to work in terms of the column indexes of the columns you want to delete, rather than their complement.
Let r
be defined by
r = Array[a, 3, 6]
a[1, 1], a[1, 2], a[1, 3], a[1, 4], a[1, 5], a[1, 6],
a[2, 1], a[2, 2], a[2, 3], a[2, 4], a[2, 5], a[2, 6],
a[3, 1], a[3, 2], a[3, 3], a[3, 4], a[3, 5], a[3, 6]
Then evaluating any of follow expressions
ReplacePart[r, 4 -> Nothing]
Delete[2, 4, 5] /@ r
MapAt[Nothing, 2, 4, 5] /@ r
will give
a[1, 1], a[1, 3], a[1, 6],
a[2, 1], a[2, 3], a[2, 6],
a[3, 1], a[3, 3], a[3, 6]
Here are some formulations that allow you to work in terms of the column indexes of the columns you want to delete, rather than their complement.
Let r
be defined by
r = Array[a, 3, 6]
a[1, 1], a[1, 2], a[1, 3], a[1, 4], a[1, 5], a[1, 6],
a[2, 1], a[2, 2], a[2, 3], a[2, 4], a[2, 5], a[2, 6],
a[3, 1], a[3, 2], a[3, 3], a[3, 4], a[3, 5], a[3, 6]
Then evaluating any of follow expressions
ReplacePart[r, 4 -> Nothing]
Delete[2, 4, 5] /@ r
MapAt[Nothing, 2, 4, 5] /@ r
will give
a[1, 1], a[1, 3], a[1, 6],
a[2, 1], a[2, 3], a[2, 6],
a[3, 1], a[3, 3], a[3, 6]
answered Aug 24 at 20:16
m_goldberg
81.6k869187
81.6k869187
1
Nice! (+1) As a side remark: It might not be relevant to the OP for their matrix is rather small, but each of this method unpacks arrays.
â Henrik Schumacher
Aug 24 at 20:35
add a comment |Â
1
Nice! (+1) As a side remark: It might not be relevant to the OP for their matrix is rather small, but each of this method unpacks arrays.
â Henrik Schumacher
Aug 24 at 20:35
1
1
Nice! (+1) As a side remark: It might not be relevant to the OP for their matrix is rather small, but each of this method unpacks arrays.
â Henrik Schumacher
Aug 24 at 20:35
Nice! (+1) As a side remark: It might not be relevant to the OP for their matrix is rather small, but each of this method unpacks arrays.
â Henrik Schumacher
Aug 24 at 20:35
add a comment |Â
Why don't you give simply
R = Array[r, 3,6]
as a minima example?â Henrik Schumacher
Aug 24 at 18:57
2
The syntax
Drop[R, , 2, 4, 5]
tells Mathematica to drop colums 2 to 4 in steps of 5. Since 2+5>4, only column 2 is dropped.â Henrik Schumacher
Aug 24 at 19:03
I know drop function is working for a matrix with the number. But for a matrix with symbols, it is not working. That is why I put everything in the question.
â vijay
Aug 24 at 19:05
No, there is no difference in the behavior for matrices with or without symbols.
â Henrik Schumacher
Aug 24 at 19:07
sorry my mistake, I did not understand the syntax properly.
â vijay
Aug 24 at 19:11