Expectation over mixing distribution

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












I have a following expression for expectation of some random variable $X$:



$E(X(t)|lambda)=frac1p(1-e^-lambda pt) $



We assume that $p$ is fixed and $lambda$ has a following mixing gamma distribution:



$f(lambda|r,alpha)=fracalpha^r lambda^r-1 e^-lambda alphaGamma (r), lambda>0$



I need to develop final formula for $E(X(t)$ - to do this I believe I need to calculate the following:



$E(X(t))=E(X(t)|lambda) f(lambda)=frac1p-frac1p int_0^infty e^-lambda pt fracalpha^r lambda^r-1 e^-lambda alphaGamma (r) dlambda $



Can someone please confirm if above is correct? I'm not sure if my reasoning is fine, only final solution without derivation has been presented in the paper, namely:
$E(X(t))=frac1p-fracalpha ^rp(alpha+pt)^r$



Thank you







share|cite|improve this question
























    up vote
    0
    down vote

    favorite












    I have a following expression for expectation of some random variable $X$:



    $E(X(t)|lambda)=frac1p(1-e^-lambda pt) $



    We assume that $p$ is fixed and $lambda$ has a following mixing gamma distribution:



    $f(lambda|r,alpha)=fracalpha^r lambda^r-1 e^-lambda alphaGamma (r), lambda>0$



    I need to develop final formula for $E(X(t)$ - to do this I believe I need to calculate the following:



    $E(X(t))=E(X(t)|lambda) f(lambda)=frac1p-frac1p int_0^infty e^-lambda pt fracalpha^r lambda^r-1 e^-lambda alphaGamma (r) dlambda $



    Can someone please confirm if above is correct? I'm not sure if my reasoning is fine, only final solution without derivation has been presented in the paper, namely:
    $E(X(t))=frac1p-fracalpha ^rp(alpha+pt)^r$



    Thank you







    share|cite|improve this question






















      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      I have a following expression for expectation of some random variable $X$:



      $E(X(t)|lambda)=frac1p(1-e^-lambda pt) $



      We assume that $p$ is fixed and $lambda$ has a following mixing gamma distribution:



      $f(lambda|r,alpha)=fracalpha^r lambda^r-1 e^-lambda alphaGamma (r), lambda>0$



      I need to develop final formula for $E(X(t)$ - to do this I believe I need to calculate the following:



      $E(X(t))=E(X(t)|lambda) f(lambda)=frac1p-frac1p int_0^infty e^-lambda pt fracalpha^r lambda^r-1 e^-lambda alphaGamma (r) dlambda $



      Can someone please confirm if above is correct? I'm not sure if my reasoning is fine, only final solution without derivation has been presented in the paper, namely:
      $E(X(t))=frac1p-fracalpha ^rp(alpha+pt)^r$



      Thank you







      share|cite|improve this question












      I have a following expression for expectation of some random variable $X$:



      $E(X(t)|lambda)=frac1p(1-e^-lambda pt) $



      We assume that $p$ is fixed and $lambda$ has a following mixing gamma distribution:



      $f(lambda|r,alpha)=fracalpha^r lambda^r-1 e^-lambda alphaGamma (r), lambda>0$



      I need to develop final formula for $E(X(t)$ - to do this I believe I need to calculate the following:



      $E(X(t))=E(X(t)|lambda) f(lambda)=frac1p-frac1p int_0^infty e^-lambda pt fracalpha^r lambda^r-1 e^-lambda alphaGamma (r) dlambda $



      Can someone please confirm if above is correct? I'm not sure if my reasoning is fine, only final solution without derivation has been presented in the paper, namely:
      $E(X(t))=frac1p-fracalpha ^rp(alpha+pt)^r$



      Thank you









      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Aug 25 at 9:42









      Thomas

      214




      214




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          beginalignE(X(t))&=colorredint_0^inftyE(X(t)|lambda) f(lambda), colorreddlambda\&=frac1p int_0^infty (1-e^-lambda pt) fracalpha^r lambda^r-1 e^-lambda alphaGamma (r) dlambda \
          &=frac1p left( int_0^infty fracalpha^rlambda^r-1e^-lambda alphaGamma(r), dlambda - int_0^infty fracalpha^rlambda^r-1e^-lambda (alpha+pt)Gamma(r), dlambda right)\
          &=frac1p left( 1 - fracalpha^r(alpha+pt)^rint_0^infty frac(alpha+pt)^rlambda^r-1e^-lambda (alpha+pt)Gamma(r), dlambda right)\
          &=frac1p left( 1 - fracalpha^r(alpha+pt)^rright)endalign



          where I have used the property that $int_0^infty fracbeta^rlambda^r-1e^-lambda betaGamma(r), dlambda =1$ since the function that is being integrated is a density function.






          share|cite|improve this answer




















          • Got it now, thank you very much!
            – Thomas
            Aug 25 at 10:08










          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2893951%2fexpectation-over-mixing-distribution%23new-answer', 'question_page');

          );

          Post as a guest






























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote



          accepted










          beginalignE(X(t))&=colorredint_0^inftyE(X(t)|lambda) f(lambda), colorreddlambda\&=frac1p int_0^infty (1-e^-lambda pt) fracalpha^r lambda^r-1 e^-lambda alphaGamma (r) dlambda \
          &=frac1p left( int_0^infty fracalpha^rlambda^r-1e^-lambda alphaGamma(r), dlambda - int_0^infty fracalpha^rlambda^r-1e^-lambda (alpha+pt)Gamma(r), dlambda right)\
          &=frac1p left( 1 - fracalpha^r(alpha+pt)^rint_0^infty frac(alpha+pt)^rlambda^r-1e^-lambda (alpha+pt)Gamma(r), dlambda right)\
          &=frac1p left( 1 - fracalpha^r(alpha+pt)^rright)endalign



          where I have used the property that $int_0^infty fracbeta^rlambda^r-1e^-lambda betaGamma(r), dlambda =1$ since the function that is being integrated is a density function.






          share|cite|improve this answer




















          • Got it now, thank you very much!
            – Thomas
            Aug 25 at 10:08














          up vote
          1
          down vote



          accepted










          beginalignE(X(t))&=colorredint_0^inftyE(X(t)|lambda) f(lambda), colorreddlambda\&=frac1p int_0^infty (1-e^-lambda pt) fracalpha^r lambda^r-1 e^-lambda alphaGamma (r) dlambda \
          &=frac1p left( int_0^infty fracalpha^rlambda^r-1e^-lambda alphaGamma(r), dlambda - int_0^infty fracalpha^rlambda^r-1e^-lambda (alpha+pt)Gamma(r), dlambda right)\
          &=frac1p left( 1 - fracalpha^r(alpha+pt)^rint_0^infty frac(alpha+pt)^rlambda^r-1e^-lambda (alpha+pt)Gamma(r), dlambda right)\
          &=frac1p left( 1 - fracalpha^r(alpha+pt)^rright)endalign



          where I have used the property that $int_0^infty fracbeta^rlambda^r-1e^-lambda betaGamma(r), dlambda =1$ since the function that is being integrated is a density function.






          share|cite|improve this answer




















          • Got it now, thank you very much!
            – Thomas
            Aug 25 at 10:08












          up vote
          1
          down vote



          accepted







          up vote
          1
          down vote



          accepted






          beginalignE(X(t))&=colorredint_0^inftyE(X(t)|lambda) f(lambda), colorreddlambda\&=frac1p int_0^infty (1-e^-lambda pt) fracalpha^r lambda^r-1 e^-lambda alphaGamma (r) dlambda \
          &=frac1p left( int_0^infty fracalpha^rlambda^r-1e^-lambda alphaGamma(r), dlambda - int_0^infty fracalpha^rlambda^r-1e^-lambda (alpha+pt)Gamma(r), dlambda right)\
          &=frac1p left( 1 - fracalpha^r(alpha+pt)^rint_0^infty frac(alpha+pt)^rlambda^r-1e^-lambda (alpha+pt)Gamma(r), dlambda right)\
          &=frac1p left( 1 - fracalpha^r(alpha+pt)^rright)endalign



          where I have used the property that $int_0^infty fracbeta^rlambda^r-1e^-lambda betaGamma(r), dlambda =1$ since the function that is being integrated is a density function.






          share|cite|improve this answer












          beginalignE(X(t))&=colorredint_0^inftyE(X(t)|lambda) f(lambda), colorreddlambda\&=frac1p int_0^infty (1-e^-lambda pt) fracalpha^r lambda^r-1 e^-lambda alphaGamma (r) dlambda \
          &=frac1p left( int_0^infty fracalpha^rlambda^r-1e^-lambda alphaGamma(r), dlambda - int_0^infty fracalpha^rlambda^r-1e^-lambda (alpha+pt)Gamma(r), dlambda right)\
          &=frac1p left( 1 - fracalpha^r(alpha+pt)^rint_0^infty frac(alpha+pt)^rlambda^r-1e^-lambda (alpha+pt)Gamma(r), dlambda right)\
          &=frac1p left( 1 - fracalpha^r(alpha+pt)^rright)endalign



          where I have used the property that $int_0^infty fracbeta^rlambda^r-1e^-lambda betaGamma(r), dlambda =1$ since the function that is being integrated is a density function.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Aug 25 at 9:54









          Siong Thye Goh

          80.6k1453102




          80.6k1453102











          • Got it now, thank you very much!
            – Thomas
            Aug 25 at 10:08
















          • Got it now, thank you very much!
            – Thomas
            Aug 25 at 10:08















          Got it now, thank you very much!
          – Thomas
          Aug 25 at 10:08




          Got it now, thank you very much!
          – Thomas
          Aug 25 at 10:08

















           

          draft saved


          draft discarded















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2893951%2fexpectation-over-mixing-distribution%23new-answer', 'question_page');

          );

          Post as a guest













































































          這個網誌中的熱門文章

          How to combine Bézier curves to a surface?

          Mutual Information Always Non-negative

          Why am i infinitely getting the same tweet with the Twitter Search API?