Expectation over mixing distribution
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
I have a following expression for expectation of some random variable $X$:
$E(X(t)|lambda)=frac1p(1-e^-lambda pt) $
We assume that $p$ is fixed and $lambda$ has a following mixing gamma distribution:
$f(lambda|r,alpha)=fracalpha^r lambda^r-1 e^-lambda alphaGamma (r), lambda>0$
I need to develop final formula for $E(X(t)$ - to do this I believe I need to calculate the following:
$E(X(t))=E(X(t)|lambda) f(lambda)=frac1p-frac1p int_0^infty e^-lambda pt fracalpha^r lambda^r-1 e^-lambda alphaGamma (r) dlambda $
Can someone please confirm if above is correct? I'm not sure if my reasoning is fine, only final solution without derivation has been presented in the paper, namely:
$E(X(t))=frac1p-fracalpha ^rp(alpha+pt)^r$
Thank you
definite-integrals stochastic-calculus conditional-expectation
add a comment |Â
up vote
0
down vote
favorite
I have a following expression for expectation of some random variable $X$:
$E(X(t)|lambda)=frac1p(1-e^-lambda pt) $
We assume that $p$ is fixed and $lambda$ has a following mixing gamma distribution:
$f(lambda|r,alpha)=fracalpha^r lambda^r-1 e^-lambda alphaGamma (r), lambda>0$
I need to develop final formula for $E(X(t)$ - to do this I believe I need to calculate the following:
$E(X(t))=E(X(t)|lambda) f(lambda)=frac1p-frac1p int_0^infty e^-lambda pt fracalpha^r lambda^r-1 e^-lambda alphaGamma (r) dlambda $
Can someone please confirm if above is correct? I'm not sure if my reasoning is fine, only final solution without derivation has been presented in the paper, namely:
$E(X(t))=frac1p-fracalpha ^rp(alpha+pt)^r$
Thank you
definite-integrals stochastic-calculus conditional-expectation
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I have a following expression for expectation of some random variable $X$:
$E(X(t)|lambda)=frac1p(1-e^-lambda pt) $
We assume that $p$ is fixed and $lambda$ has a following mixing gamma distribution:
$f(lambda|r,alpha)=fracalpha^r lambda^r-1 e^-lambda alphaGamma (r), lambda>0$
I need to develop final formula for $E(X(t)$ - to do this I believe I need to calculate the following:
$E(X(t))=E(X(t)|lambda) f(lambda)=frac1p-frac1p int_0^infty e^-lambda pt fracalpha^r lambda^r-1 e^-lambda alphaGamma (r) dlambda $
Can someone please confirm if above is correct? I'm not sure if my reasoning is fine, only final solution without derivation has been presented in the paper, namely:
$E(X(t))=frac1p-fracalpha ^rp(alpha+pt)^r$
Thank you
definite-integrals stochastic-calculus conditional-expectation
I have a following expression for expectation of some random variable $X$:
$E(X(t)|lambda)=frac1p(1-e^-lambda pt) $
We assume that $p$ is fixed and $lambda$ has a following mixing gamma distribution:
$f(lambda|r,alpha)=fracalpha^r lambda^r-1 e^-lambda alphaGamma (r), lambda>0$
I need to develop final formula for $E(X(t)$ - to do this I believe I need to calculate the following:
$E(X(t))=E(X(t)|lambda) f(lambda)=frac1p-frac1p int_0^infty e^-lambda pt fracalpha^r lambda^r-1 e^-lambda alphaGamma (r) dlambda $
Can someone please confirm if above is correct? I'm not sure if my reasoning is fine, only final solution without derivation has been presented in the paper, namely:
$E(X(t))=frac1p-fracalpha ^rp(alpha+pt)^r$
Thank you
definite-integrals stochastic-calculus conditional-expectation
asked Aug 25 at 9:42
Thomas
214
214
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
beginalignE(X(t))&=colorredint_0^inftyE(X(t)|lambda) f(lambda), colorreddlambda\&=frac1p int_0^infty (1-e^-lambda pt) fracalpha^r lambda^r-1 e^-lambda alphaGamma (r) dlambda \
&=frac1p left( int_0^infty fracalpha^rlambda^r-1e^-lambda alphaGamma(r), dlambda - int_0^infty fracalpha^rlambda^r-1e^-lambda (alpha+pt)Gamma(r), dlambda right)\
&=frac1p left( 1 - fracalpha^r(alpha+pt)^rint_0^infty frac(alpha+pt)^rlambda^r-1e^-lambda (alpha+pt)Gamma(r), dlambda right)\
&=frac1p left( 1 - fracalpha^r(alpha+pt)^rright)endalign
where I have used the property that $int_0^infty fracbeta^rlambda^r-1e^-lambda betaGamma(r), dlambda =1$ since the function that is being integrated is a density function.
Got it now, thank you very much!
â Thomas
Aug 25 at 10:08
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
beginalignE(X(t))&=colorredint_0^inftyE(X(t)|lambda) f(lambda), colorreddlambda\&=frac1p int_0^infty (1-e^-lambda pt) fracalpha^r lambda^r-1 e^-lambda alphaGamma (r) dlambda \
&=frac1p left( int_0^infty fracalpha^rlambda^r-1e^-lambda alphaGamma(r), dlambda - int_0^infty fracalpha^rlambda^r-1e^-lambda (alpha+pt)Gamma(r), dlambda right)\
&=frac1p left( 1 - fracalpha^r(alpha+pt)^rint_0^infty frac(alpha+pt)^rlambda^r-1e^-lambda (alpha+pt)Gamma(r), dlambda right)\
&=frac1p left( 1 - fracalpha^r(alpha+pt)^rright)endalign
where I have used the property that $int_0^infty fracbeta^rlambda^r-1e^-lambda betaGamma(r), dlambda =1$ since the function that is being integrated is a density function.
Got it now, thank you very much!
â Thomas
Aug 25 at 10:08
add a comment |Â
up vote
1
down vote
accepted
beginalignE(X(t))&=colorredint_0^inftyE(X(t)|lambda) f(lambda), colorreddlambda\&=frac1p int_0^infty (1-e^-lambda pt) fracalpha^r lambda^r-1 e^-lambda alphaGamma (r) dlambda \
&=frac1p left( int_0^infty fracalpha^rlambda^r-1e^-lambda alphaGamma(r), dlambda - int_0^infty fracalpha^rlambda^r-1e^-lambda (alpha+pt)Gamma(r), dlambda right)\
&=frac1p left( 1 - fracalpha^r(alpha+pt)^rint_0^infty frac(alpha+pt)^rlambda^r-1e^-lambda (alpha+pt)Gamma(r), dlambda right)\
&=frac1p left( 1 - fracalpha^r(alpha+pt)^rright)endalign
where I have used the property that $int_0^infty fracbeta^rlambda^r-1e^-lambda betaGamma(r), dlambda =1$ since the function that is being integrated is a density function.
Got it now, thank you very much!
â Thomas
Aug 25 at 10:08
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
beginalignE(X(t))&=colorredint_0^inftyE(X(t)|lambda) f(lambda), colorreddlambda\&=frac1p int_0^infty (1-e^-lambda pt) fracalpha^r lambda^r-1 e^-lambda alphaGamma (r) dlambda \
&=frac1p left( int_0^infty fracalpha^rlambda^r-1e^-lambda alphaGamma(r), dlambda - int_0^infty fracalpha^rlambda^r-1e^-lambda (alpha+pt)Gamma(r), dlambda right)\
&=frac1p left( 1 - fracalpha^r(alpha+pt)^rint_0^infty frac(alpha+pt)^rlambda^r-1e^-lambda (alpha+pt)Gamma(r), dlambda right)\
&=frac1p left( 1 - fracalpha^r(alpha+pt)^rright)endalign
where I have used the property that $int_0^infty fracbeta^rlambda^r-1e^-lambda betaGamma(r), dlambda =1$ since the function that is being integrated is a density function.
beginalignE(X(t))&=colorredint_0^inftyE(X(t)|lambda) f(lambda), colorreddlambda\&=frac1p int_0^infty (1-e^-lambda pt) fracalpha^r lambda^r-1 e^-lambda alphaGamma (r) dlambda \
&=frac1p left( int_0^infty fracalpha^rlambda^r-1e^-lambda alphaGamma(r), dlambda - int_0^infty fracalpha^rlambda^r-1e^-lambda (alpha+pt)Gamma(r), dlambda right)\
&=frac1p left( 1 - fracalpha^r(alpha+pt)^rint_0^infty frac(alpha+pt)^rlambda^r-1e^-lambda (alpha+pt)Gamma(r), dlambda right)\
&=frac1p left( 1 - fracalpha^r(alpha+pt)^rright)endalign
where I have used the property that $int_0^infty fracbeta^rlambda^r-1e^-lambda betaGamma(r), dlambda =1$ since the function that is being integrated is a density function.
answered Aug 25 at 9:54
Siong Thye Goh
80.6k1453102
80.6k1453102
Got it now, thank you very much!
â Thomas
Aug 25 at 10:08
add a comment |Â
Got it now, thank you very much!
â Thomas
Aug 25 at 10:08
Got it now, thank you very much!
â Thomas
Aug 25 at 10:08
Got it now, thank you very much!
â Thomas
Aug 25 at 10:08
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2893951%2fexpectation-over-mixing-distribution%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password