$lim_n to infty langlebar A_nx,yrangle = langle Ax,yrangle$
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
Let $A$ be an operator on a separable Hilbert Space $H$. So we can consider $A=(a_ij)_1leq i,jleq infty$.
Let $tilde A_n = $$
beginpmatrix
A_n & 0 \
0 & -I
endpmatrix
$ where $tilde A_n $ is an infinite matrix and $A_n=(a_ij)_1leq i,jleq n$, the upper corner $n times n$ submatrix of $A$ and $I$ is the infinite order identity matrix.
To prove $displaystylelim_n to infty langletilde A_nx,yrangle = langle Ax,yrangle$. i.e. $tilde A_nto A$, in Weak Operator Topology.
Facing difficulty to prove the fact.
matrices functional-analysis operator-theory hilbert-spaces inner-product-space
add a comment |Â
up vote
2
down vote
favorite
Let $A$ be an operator on a separable Hilbert Space $H$. So we can consider $A=(a_ij)_1leq i,jleq infty$.
Let $tilde A_n = $$
beginpmatrix
A_n & 0 \
0 & -I
endpmatrix
$ where $tilde A_n $ is an infinite matrix and $A_n=(a_ij)_1leq i,jleq n$, the upper corner $n times n$ submatrix of $A$ and $I$ is the infinite order identity matrix.
To prove $displaystylelim_n to infty langletilde A_nx,yrangle = langle Ax,yrangle$. i.e. $tilde A_nto A$, in Weak Operator Topology.
Facing difficulty to prove the fact.
matrices functional-analysis operator-theory hilbert-spaces inner-product-space
1
You are probably referring to a separable HS identified with $l^2$. Otherwise the notation $A_nx$ doesn't make sense.
â Kavi Rama Murthy
Aug 25 at 5:39
@KaviRamaMurthy I have edited the question. Please see now. Thank you.
â user8795
Aug 26 at 16:13
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Let $A$ be an operator on a separable Hilbert Space $H$. So we can consider $A=(a_ij)_1leq i,jleq infty$.
Let $tilde A_n = $$
beginpmatrix
A_n & 0 \
0 & -I
endpmatrix
$ where $tilde A_n $ is an infinite matrix and $A_n=(a_ij)_1leq i,jleq n$, the upper corner $n times n$ submatrix of $A$ and $I$ is the infinite order identity matrix.
To prove $displaystylelim_n to infty langletilde A_nx,yrangle = langle Ax,yrangle$. i.e. $tilde A_nto A$, in Weak Operator Topology.
Facing difficulty to prove the fact.
matrices functional-analysis operator-theory hilbert-spaces inner-product-space
Let $A$ be an operator on a separable Hilbert Space $H$. So we can consider $A=(a_ij)_1leq i,jleq infty$.
Let $tilde A_n = $$
beginpmatrix
A_n & 0 \
0 & -I
endpmatrix
$ where $tilde A_n $ is an infinite matrix and $A_n=(a_ij)_1leq i,jleq n$, the upper corner $n times n$ submatrix of $A$ and $I$ is the infinite order identity matrix.
To prove $displaystylelim_n to infty langletilde A_nx,yrangle = langle Ax,yrangle$. i.e. $tilde A_nto A$, in Weak Operator Topology.
Facing difficulty to prove the fact.
matrices functional-analysis operator-theory hilbert-spaces inner-product-space
edited Aug 26 at 16:12
asked Aug 25 at 5:30
user8795
5,30561842
5,30561842
1
You are probably referring to a separable HS identified with $l^2$. Otherwise the notation $A_nx$ doesn't make sense.
â Kavi Rama Murthy
Aug 25 at 5:39
@KaviRamaMurthy I have edited the question. Please see now. Thank you.
â user8795
Aug 26 at 16:13
add a comment |Â
1
You are probably referring to a separable HS identified with $l^2$. Otherwise the notation $A_nx$ doesn't make sense.
â Kavi Rama Murthy
Aug 25 at 5:39
@KaviRamaMurthy I have edited the question. Please see now. Thank you.
â user8795
Aug 26 at 16:13
1
1
You are probably referring to a separable HS identified with $l^2$. Otherwise the notation $A_nx$ doesn't make sense.
â Kavi Rama Murthy
Aug 25 at 5:39
You are probably referring to a separable HS identified with $l^2$. Otherwise the notation $A_nx$ doesn't make sense.
â Kavi Rama Murthy
Aug 25 at 5:39
@KaviRamaMurthy I have edited the question. Please see now. Thank you.
â user8795
Aug 26 at 16:13
@KaviRamaMurthy I have edited the question. Please see now. Thank you.
â user8795
Aug 26 at 16:13
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
1
down vote
accepted
Here is a solution assuming A is a contraction.
Let $A=beginpmatrix
A_n & X_n\
Y_n & Z_n\
endpmatrix$ and $x=(x_i)_1leq ileq infty,y=(y_i)_1leq ileqinftyin mathcalH.$ Then
$vertlangle (A-tildeA_n)x,yranglevert\
=vertlangle X_n(x_i)_nleq i leq infty, (y_i)_1leq i leq nrangle+langle Y_n(x_i)_1leq i leq n, (y_i)_nleq i leq inftyrangle+langle (Z_n+I)(x_i)_nleq i leq infty,(y_i)_nleq i leq inftyranglevert\leqvertlangle X_n(x_i)_nleq i leq infty, (y_i)_1leq i leq nranglevert+vertlangle Y_n(x_i)_1leq i leq n, (y_i)_nleq i leq inftyranglevert+vertlangle (Z_n+I)(x_i)_nleq i leq infty,(y_i)_nleq i leq inftyranglevert\
leqVert X_nVertVert (x_i)_nleq i leq inftyVertVert(y_i)_1leq i leq nVert+Vert Y_nVertVert(x_i)_1leq i leq nVertVert (y_i)_nleq i leq inftyVertVert+Vert(Z_n+I)Vert(x_i)_nleq i leq inftyVertVert (y_i)_nleq i leq inftyVert\
leq(sumlimits_i=n^infty vert x_ivert^2)^1/2(sumlimits_i=1^n vert y_ivert^2)^1/2+(sumlimits_i=1^n vert x_ivert^2)^1/2(sumlimits_i=n^infty vert y_ivert^2)^1/2+2(sumlimits_i=n^infty vert x_ivert^2)^1/2(sumlimits_i=n^infty vert y_ivert^2)^1/2\
longrightarrow 0$ whenever $nrightarrow infty $ as $x,yin mathcalH$
So $tildeA_nxrightarrowtextWOT A$
add a comment |Â
up vote
1
down vote
Assuming that $A$ is a bounded operator I've proved the strong convergence. For the unbounded case the same trick fails, a similar trick seems to work for the weak topology and symmetric operators though (assuming $yin D(A)$).
$textbf(Bounded case)$ Assume $||A||<infty$ and define the operators
beginalign*
P_n:H&rightarrow H\
(x_1,x_2,dots)&mapsto (x_1,dots,x_n,0,0dots),
endalign*
beginalign*
P_n^perp:&Hrightarrow H\
(x_1,x_2,dots)&mapsto(0,dots,0,x_n+1,x_n+2,dots),
endalign*
so $Id-P_n=P_n^perp$.
Now note that $tildeA_n=P_nAP_n-P_n^perp$ and $A=P_nA+P_n^perpA$, so for every $xin H$
beginalign*
||(A-tildeA_n)x||&= ||(P_nA+P_n^perp-P_nAP_n+P_n^perp)x||\
&leq ||P_nA(Id-P_n)x||+||P_n^perp(A+Id)x||\
&leq ||P_n||cdot||A||cdot||P_n^perpx||+||P_n^perp(A+Id)x||,
endalign*
and we can conclude proving that $||P_n||leq 1$ (which is actually easy!) and for every $yin H$ $P_n^perpyrightarrow 0$, so taking $y=x$ and $y=(A+Id)x$ would do the job.
$textbf(Unbounded Symmetric case)$ Let $x,yin D(A)$ and note that
beginalign*
|langle (A-tildeA_n) x,yrangle|&=|langle (P_nA+P_n^perp-P_nAP_n+P_n^perp)x,yrangle|\
&leq |langle P_nAP_n^perpx,yrangle|+|langle P_n^perp(A+Id)x,yrangle|\
&= |langle P_n^perpx,AP_nyrangle|+|langle P_n^perp(A+Id)x,yrangle|\
&leq ||P_n^perpx||cdot||AP_ny||+||P_n^perp(A+Id)x||cdot||y||,
endalign*
where we have used that $P_n$ is also symmetric and $P_n^perprightarrow 0$ strongly as I've mentioned before.
$textbfRemark:$ Rigorously and In order to make the last inequality to have sense, we need that $yin D(P_n_k)$ for a sequence $n_kinmathbbN$ such that $n_krightarrowinfty$, but I'm convinced that if $yin D(A)$ there is no problem with defining $AP_ny$.
You have computed $tildeA_n x=((Ax)_1,dots,(Ax)_n, -x_n+1, -x_n+2,dots),$, but it is not correct. Please check that and edit you answer accordingly!!
â user8795
Aug 28 at 6:48
I've done an entirely new proof! I'm sorry for the first one, this time I've actually thought a lot more the problem and added some cases where I could prove the result.
â Esteban Gutiérrez
Aug 29 at 21:21
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Here is a solution assuming A is a contraction.
Let $A=beginpmatrix
A_n & X_n\
Y_n & Z_n\
endpmatrix$ and $x=(x_i)_1leq ileq infty,y=(y_i)_1leq ileqinftyin mathcalH.$ Then
$vertlangle (A-tildeA_n)x,yranglevert\
=vertlangle X_n(x_i)_nleq i leq infty, (y_i)_1leq i leq nrangle+langle Y_n(x_i)_1leq i leq n, (y_i)_nleq i leq inftyrangle+langle (Z_n+I)(x_i)_nleq i leq infty,(y_i)_nleq i leq inftyranglevert\leqvertlangle X_n(x_i)_nleq i leq infty, (y_i)_1leq i leq nranglevert+vertlangle Y_n(x_i)_1leq i leq n, (y_i)_nleq i leq inftyranglevert+vertlangle (Z_n+I)(x_i)_nleq i leq infty,(y_i)_nleq i leq inftyranglevert\
leqVert X_nVertVert (x_i)_nleq i leq inftyVertVert(y_i)_1leq i leq nVert+Vert Y_nVertVert(x_i)_1leq i leq nVertVert (y_i)_nleq i leq inftyVertVert+Vert(Z_n+I)Vert(x_i)_nleq i leq inftyVertVert (y_i)_nleq i leq inftyVert\
leq(sumlimits_i=n^infty vert x_ivert^2)^1/2(sumlimits_i=1^n vert y_ivert^2)^1/2+(sumlimits_i=1^n vert x_ivert^2)^1/2(sumlimits_i=n^infty vert y_ivert^2)^1/2+2(sumlimits_i=n^infty vert x_ivert^2)^1/2(sumlimits_i=n^infty vert y_ivert^2)^1/2\
longrightarrow 0$ whenever $nrightarrow infty $ as $x,yin mathcalH$
So $tildeA_nxrightarrowtextWOT A$
add a comment |Â
up vote
1
down vote
accepted
Here is a solution assuming A is a contraction.
Let $A=beginpmatrix
A_n & X_n\
Y_n & Z_n\
endpmatrix$ and $x=(x_i)_1leq ileq infty,y=(y_i)_1leq ileqinftyin mathcalH.$ Then
$vertlangle (A-tildeA_n)x,yranglevert\
=vertlangle X_n(x_i)_nleq i leq infty, (y_i)_1leq i leq nrangle+langle Y_n(x_i)_1leq i leq n, (y_i)_nleq i leq inftyrangle+langle (Z_n+I)(x_i)_nleq i leq infty,(y_i)_nleq i leq inftyranglevert\leqvertlangle X_n(x_i)_nleq i leq infty, (y_i)_1leq i leq nranglevert+vertlangle Y_n(x_i)_1leq i leq n, (y_i)_nleq i leq inftyranglevert+vertlangle (Z_n+I)(x_i)_nleq i leq infty,(y_i)_nleq i leq inftyranglevert\
leqVert X_nVertVert (x_i)_nleq i leq inftyVertVert(y_i)_1leq i leq nVert+Vert Y_nVertVert(x_i)_1leq i leq nVertVert (y_i)_nleq i leq inftyVertVert+Vert(Z_n+I)Vert(x_i)_nleq i leq inftyVertVert (y_i)_nleq i leq inftyVert\
leq(sumlimits_i=n^infty vert x_ivert^2)^1/2(sumlimits_i=1^n vert y_ivert^2)^1/2+(sumlimits_i=1^n vert x_ivert^2)^1/2(sumlimits_i=n^infty vert y_ivert^2)^1/2+2(sumlimits_i=n^infty vert x_ivert^2)^1/2(sumlimits_i=n^infty vert y_ivert^2)^1/2\
longrightarrow 0$ whenever $nrightarrow infty $ as $x,yin mathcalH$
So $tildeA_nxrightarrowtextWOT A$
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Here is a solution assuming A is a contraction.
Let $A=beginpmatrix
A_n & X_n\
Y_n & Z_n\
endpmatrix$ and $x=(x_i)_1leq ileq infty,y=(y_i)_1leq ileqinftyin mathcalH.$ Then
$vertlangle (A-tildeA_n)x,yranglevert\
=vertlangle X_n(x_i)_nleq i leq infty, (y_i)_1leq i leq nrangle+langle Y_n(x_i)_1leq i leq n, (y_i)_nleq i leq inftyrangle+langle (Z_n+I)(x_i)_nleq i leq infty,(y_i)_nleq i leq inftyranglevert\leqvertlangle X_n(x_i)_nleq i leq infty, (y_i)_1leq i leq nranglevert+vertlangle Y_n(x_i)_1leq i leq n, (y_i)_nleq i leq inftyranglevert+vertlangle (Z_n+I)(x_i)_nleq i leq infty,(y_i)_nleq i leq inftyranglevert\
leqVert X_nVertVert (x_i)_nleq i leq inftyVertVert(y_i)_1leq i leq nVert+Vert Y_nVertVert(x_i)_1leq i leq nVertVert (y_i)_nleq i leq inftyVertVert+Vert(Z_n+I)Vert(x_i)_nleq i leq inftyVertVert (y_i)_nleq i leq inftyVert\
leq(sumlimits_i=n^infty vert x_ivert^2)^1/2(sumlimits_i=1^n vert y_ivert^2)^1/2+(sumlimits_i=1^n vert x_ivert^2)^1/2(sumlimits_i=n^infty vert y_ivert^2)^1/2+2(sumlimits_i=n^infty vert x_ivert^2)^1/2(sumlimits_i=n^infty vert y_ivert^2)^1/2\
longrightarrow 0$ whenever $nrightarrow infty $ as $x,yin mathcalH$
So $tildeA_nxrightarrowtextWOT A$
Here is a solution assuming A is a contraction.
Let $A=beginpmatrix
A_n & X_n\
Y_n & Z_n\
endpmatrix$ and $x=(x_i)_1leq ileq infty,y=(y_i)_1leq ileqinftyin mathcalH.$ Then
$vertlangle (A-tildeA_n)x,yranglevert\
=vertlangle X_n(x_i)_nleq i leq infty, (y_i)_1leq i leq nrangle+langle Y_n(x_i)_1leq i leq n, (y_i)_nleq i leq inftyrangle+langle (Z_n+I)(x_i)_nleq i leq infty,(y_i)_nleq i leq inftyranglevert\leqvertlangle X_n(x_i)_nleq i leq infty, (y_i)_1leq i leq nranglevert+vertlangle Y_n(x_i)_1leq i leq n, (y_i)_nleq i leq inftyranglevert+vertlangle (Z_n+I)(x_i)_nleq i leq infty,(y_i)_nleq i leq inftyranglevert\
leqVert X_nVertVert (x_i)_nleq i leq inftyVertVert(y_i)_1leq i leq nVert+Vert Y_nVertVert(x_i)_1leq i leq nVertVert (y_i)_nleq i leq inftyVertVert+Vert(Z_n+I)Vert(x_i)_nleq i leq inftyVertVert (y_i)_nleq i leq inftyVert\
leq(sumlimits_i=n^infty vert x_ivert^2)^1/2(sumlimits_i=1^n vert y_ivert^2)^1/2+(sumlimits_i=1^n vert x_ivert^2)^1/2(sumlimits_i=n^infty vert y_ivert^2)^1/2+2(sumlimits_i=n^infty vert x_ivert^2)^1/2(sumlimits_i=n^infty vert y_ivert^2)^1/2\
longrightarrow 0$ whenever $nrightarrow infty $ as $x,yin mathcalH$
So $tildeA_nxrightarrowtextWOT A$
answered Sep 1 at 14:39
Piku
535
535
add a comment |Â
add a comment |Â
up vote
1
down vote
Assuming that $A$ is a bounded operator I've proved the strong convergence. For the unbounded case the same trick fails, a similar trick seems to work for the weak topology and symmetric operators though (assuming $yin D(A)$).
$textbf(Bounded case)$ Assume $||A||<infty$ and define the operators
beginalign*
P_n:H&rightarrow H\
(x_1,x_2,dots)&mapsto (x_1,dots,x_n,0,0dots),
endalign*
beginalign*
P_n^perp:&Hrightarrow H\
(x_1,x_2,dots)&mapsto(0,dots,0,x_n+1,x_n+2,dots),
endalign*
so $Id-P_n=P_n^perp$.
Now note that $tildeA_n=P_nAP_n-P_n^perp$ and $A=P_nA+P_n^perpA$, so for every $xin H$
beginalign*
||(A-tildeA_n)x||&= ||(P_nA+P_n^perp-P_nAP_n+P_n^perp)x||\
&leq ||P_nA(Id-P_n)x||+||P_n^perp(A+Id)x||\
&leq ||P_n||cdot||A||cdot||P_n^perpx||+||P_n^perp(A+Id)x||,
endalign*
and we can conclude proving that $||P_n||leq 1$ (which is actually easy!) and for every $yin H$ $P_n^perpyrightarrow 0$, so taking $y=x$ and $y=(A+Id)x$ would do the job.
$textbf(Unbounded Symmetric case)$ Let $x,yin D(A)$ and note that
beginalign*
|langle (A-tildeA_n) x,yrangle|&=|langle (P_nA+P_n^perp-P_nAP_n+P_n^perp)x,yrangle|\
&leq |langle P_nAP_n^perpx,yrangle|+|langle P_n^perp(A+Id)x,yrangle|\
&= |langle P_n^perpx,AP_nyrangle|+|langle P_n^perp(A+Id)x,yrangle|\
&leq ||P_n^perpx||cdot||AP_ny||+||P_n^perp(A+Id)x||cdot||y||,
endalign*
where we have used that $P_n$ is also symmetric and $P_n^perprightarrow 0$ strongly as I've mentioned before.
$textbfRemark:$ Rigorously and In order to make the last inequality to have sense, we need that $yin D(P_n_k)$ for a sequence $n_kinmathbbN$ such that $n_krightarrowinfty$, but I'm convinced that if $yin D(A)$ there is no problem with defining $AP_ny$.
You have computed $tildeA_n x=((Ax)_1,dots,(Ax)_n, -x_n+1, -x_n+2,dots),$, but it is not correct. Please check that and edit you answer accordingly!!
â user8795
Aug 28 at 6:48
I've done an entirely new proof! I'm sorry for the first one, this time I've actually thought a lot more the problem and added some cases where I could prove the result.
â Esteban Gutiérrez
Aug 29 at 21:21
add a comment |Â
up vote
1
down vote
Assuming that $A$ is a bounded operator I've proved the strong convergence. For the unbounded case the same trick fails, a similar trick seems to work for the weak topology and symmetric operators though (assuming $yin D(A)$).
$textbf(Bounded case)$ Assume $||A||<infty$ and define the operators
beginalign*
P_n:H&rightarrow H\
(x_1,x_2,dots)&mapsto (x_1,dots,x_n,0,0dots),
endalign*
beginalign*
P_n^perp:&Hrightarrow H\
(x_1,x_2,dots)&mapsto(0,dots,0,x_n+1,x_n+2,dots),
endalign*
so $Id-P_n=P_n^perp$.
Now note that $tildeA_n=P_nAP_n-P_n^perp$ and $A=P_nA+P_n^perpA$, so for every $xin H$
beginalign*
||(A-tildeA_n)x||&= ||(P_nA+P_n^perp-P_nAP_n+P_n^perp)x||\
&leq ||P_nA(Id-P_n)x||+||P_n^perp(A+Id)x||\
&leq ||P_n||cdot||A||cdot||P_n^perpx||+||P_n^perp(A+Id)x||,
endalign*
and we can conclude proving that $||P_n||leq 1$ (which is actually easy!) and for every $yin H$ $P_n^perpyrightarrow 0$, so taking $y=x$ and $y=(A+Id)x$ would do the job.
$textbf(Unbounded Symmetric case)$ Let $x,yin D(A)$ and note that
beginalign*
|langle (A-tildeA_n) x,yrangle|&=|langle (P_nA+P_n^perp-P_nAP_n+P_n^perp)x,yrangle|\
&leq |langle P_nAP_n^perpx,yrangle|+|langle P_n^perp(A+Id)x,yrangle|\
&= |langle P_n^perpx,AP_nyrangle|+|langle P_n^perp(A+Id)x,yrangle|\
&leq ||P_n^perpx||cdot||AP_ny||+||P_n^perp(A+Id)x||cdot||y||,
endalign*
where we have used that $P_n$ is also symmetric and $P_n^perprightarrow 0$ strongly as I've mentioned before.
$textbfRemark:$ Rigorously and In order to make the last inequality to have sense, we need that $yin D(P_n_k)$ for a sequence $n_kinmathbbN$ such that $n_krightarrowinfty$, but I'm convinced that if $yin D(A)$ there is no problem with defining $AP_ny$.
You have computed $tildeA_n x=((Ax)_1,dots,(Ax)_n, -x_n+1, -x_n+2,dots),$, but it is not correct. Please check that and edit you answer accordingly!!
â user8795
Aug 28 at 6:48
I've done an entirely new proof! I'm sorry for the first one, this time I've actually thought a lot more the problem and added some cases where I could prove the result.
â Esteban Gutiérrez
Aug 29 at 21:21
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Assuming that $A$ is a bounded operator I've proved the strong convergence. For the unbounded case the same trick fails, a similar trick seems to work for the weak topology and symmetric operators though (assuming $yin D(A)$).
$textbf(Bounded case)$ Assume $||A||<infty$ and define the operators
beginalign*
P_n:H&rightarrow H\
(x_1,x_2,dots)&mapsto (x_1,dots,x_n,0,0dots),
endalign*
beginalign*
P_n^perp:&Hrightarrow H\
(x_1,x_2,dots)&mapsto(0,dots,0,x_n+1,x_n+2,dots),
endalign*
so $Id-P_n=P_n^perp$.
Now note that $tildeA_n=P_nAP_n-P_n^perp$ and $A=P_nA+P_n^perpA$, so for every $xin H$
beginalign*
||(A-tildeA_n)x||&= ||(P_nA+P_n^perp-P_nAP_n+P_n^perp)x||\
&leq ||P_nA(Id-P_n)x||+||P_n^perp(A+Id)x||\
&leq ||P_n||cdot||A||cdot||P_n^perpx||+||P_n^perp(A+Id)x||,
endalign*
and we can conclude proving that $||P_n||leq 1$ (which is actually easy!) and for every $yin H$ $P_n^perpyrightarrow 0$, so taking $y=x$ and $y=(A+Id)x$ would do the job.
$textbf(Unbounded Symmetric case)$ Let $x,yin D(A)$ and note that
beginalign*
|langle (A-tildeA_n) x,yrangle|&=|langle (P_nA+P_n^perp-P_nAP_n+P_n^perp)x,yrangle|\
&leq |langle P_nAP_n^perpx,yrangle|+|langle P_n^perp(A+Id)x,yrangle|\
&= |langle P_n^perpx,AP_nyrangle|+|langle P_n^perp(A+Id)x,yrangle|\
&leq ||P_n^perpx||cdot||AP_ny||+||P_n^perp(A+Id)x||cdot||y||,
endalign*
where we have used that $P_n$ is also symmetric and $P_n^perprightarrow 0$ strongly as I've mentioned before.
$textbfRemark:$ Rigorously and In order to make the last inequality to have sense, we need that $yin D(P_n_k)$ for a sequence $n_kinmathbbN$ such that $n_krightarrowinfty$, but I'm convinced that if $yin D(A)$ there is no problem with defining $AP_ny$.
Assuming that $A$ is a bounded operator I've proved the strong convergence. For the unbounded case the same trick fails, a similar trick seems to work for the weak topology and symmetric operators though (assuming $yin D(A)$).
$textbf(Bounded case)$ Assume $||A||<infty$ and define the operators
beginalign*
P_n:H&rightarrow H\
(x_1,x_2,dots)&mapsto (x_1,dots,x_n,0,0dots),
endalign*
beginalign*
P_n^perp:&Hrightarrow H\
(x_1,x_2,dots)&mapsto(0,dots,0,x_n+1,x_n+2,dots),
endalign*
so $Id-P_n=P_n^perp$.
Now note that $tildeA_n=P_nAP_n-P_n^perp$ and $A=P_nA+P_n^perpA$, so for every $xin H$
beginalign*
||(A-tildeA_n)x||&= ||(P_nA+P_n^perp-P_nAP_n+P_n^perp)x||\
&leq ||P_nA(Id-P_n)x||+||P_n^perp(A+Id)x||\
&leq ||P_n||cdot||A||cdot||P_n^perpx||+||P_n^perp(A+Id)x||,
endalign*
and we can conclude proving that $||P_n||leq 1$ (which is actually easy!) and for every $yin H$ $P_n^perpyrightarrow 0$, so taking $y=x$ and $y=(A+Id)x$ would do the job.
$textbf(Unbounded Symmetric case)$ Let $x,yin D(A)$ and note that
beginalign*
|langle (A-tildeA_n) x,yrangle|&=|langle (P_nA+P_n^perp-P_nAP_n+P_n^perp)x,yrangle|\
&leq |langle P_nAP_n^perpx,yrangle|+|langle P_n^perp(A+Id)x,yrangle|\
&= |langle P_n^perpx,AP_nyrangle|+|langle P_n^perp(A+Id)x,yrangle|\
&leq ||P_n^perpx||cdot||AP_ny||+||P_n^perp(A+Id)x||cdot||y||,
endalign*
where we have used that $P_n$ is also symmetric and $P_n^perprightarrow 0$ strongly as I've mentioned before.
$textbfRemark:$ Rigorously and In order to make the last inequality to have sense, we need that $yin D(P_n_k)$ for a sequence $n_kinmathbbN$ such that $n_krightarrowinfty$, but I'm convinced that if $yin D(A)$ there is no problem with defining $AP_ny$.
edited Aug 29 at 21:18
answered Aug 27 at 17:39
Esteban Gutiérrez
13810
13810
You have computed $tildeA_n x=((Ax)_1,dots,(Ax)_n, -x_n+1, -x_n+2,dots),$, but it is not correct. Please check that and edit you answer accordingly!!
â user8795
Aug 28 at 6:48
I've done an entirely new proof! I'm sorry for the first one, this time I've actually thought a lot more the problem and added some cases where I could prove the result.
â Esteban Gutiérrez
Aug 29 at 21:21
add a comment |Â
You have computed $tildeA_n x=((Ax)_1,dots,(Ax)_n, -x_n+1, -x_n+2,dots),$, but it is not correct. Please check that and edit you answer accordingly!!
â user8795
Aug 28 at 6:48
I've done an entirely new proof! I'm sorry for the first one, this time I've actually thought a lot more the problem and added some cases where I could prove the result.
â Esteban Gutiérrez
Aug 29 at 21:21
You have computed $tildeA_n x=((Ax)_1,dots,(Ax)_n, -x_n+1, -x_n+2,dots),$, but it is not correct. Please check that and edit you answer accordingly!!
â user8795
Aug 28 at 6:48
You have computed $tildeA_n x=((Ax)_1,dots,(Ax)_n, -x_n+1, -x_n+2,dots),$, but it is not correct. Please check that and edit you answer accordingly!!
â user8795
Aug 28 at 6:48
I've done an entirely new proof! I'm sorry for the first one, this time I've actually thought a lot more the problem and added some cases where I could prove the result.
â Esteban Gutiérrez
Aug 29 at 21:21
I've done an entirely new proof! I'm sorry for the first one, this time I've actually thought a lot more the problem and added some cases where I could prove the result.
â Esteban Gutiérrez
Aug 29 at 21:21
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2893817%2flim-n-to-infty-langle-bar-a-nx-y-rangle-langle-ax-y-rangle%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
You are probably referring to a separable HS identified with $l^2$. Otherwise the notation $A_nx$ doesn't make sense.
â Kavi Rama Murthy
Aug 25 at 5:39
@KaviRamaMurthy I have edited the question. Please see now. Thank you.
â user8795
Aug 26 at 16:13