If $x=cos a + i sin a$, $y=cos b + i sin b$, $z=cos c +i sin c$, and $x+y+z = xyz$, then show that $cos(a-b) + cos(b-c) + cos(c-a) + 1=0$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
8
down vote

favorite
4













If $x=cos a + i sin a$, $y=cos b + i sin b$, $z=cos c +i sin c$, and $x+y+z = xyz$, then show that $$cos(a-b) + cos(b-c) + cos(c-a) + 1=0$$




Here's how I tried it



$$x+y+z=xyz $$



So, by De Moivre's Theorem,
$$(cos a + cos b + cos c) + i(sin a + sin b + sin c) = cos(a+b+c) + i sin(a+b+c)
$$



Equating real and imaginary parts,
$$cos a + cos b + cos c= cos(a+b+c)$$
and similarly for sine. Now,



$$(a-b) + (b-c) + (c-a) =0$$



What to do now? Please help. And please use De Moivre Theorem!










share|cite|improve this question























  • You could expand $cos(a+b+c)$ and $sin(a+b+c)$.
    – amsmath
    Aug 31 at 2:08










  • Just point out where I am wrong. If for the complex numbers $x$, $y$, $z$; $x+y+z=xyz$, then it can be shown that $dfracxy+dfracyz+dfraczx=1$ (do it in reverse) which easily leads to $cos (x-y)+cos (y-z)+cos (z-x) =1$. What am I missing?
    – DarkKnight
    Aug 31 at 6:03















up vote
8
down vote

favorite
4













If $x=cos a + i sin a$, $y=cos b + i sin b$, $z=cos c +i sin c$, and $x+y+z = xyz$, then show that $$cos(a-b) + cos(b-c) + cos(c-a) + 1=0$$




Here's how I tried it



$$x+y+z=xyz $$



So, by De Moivre's Theorem,
$$(cos a + cos b + cos c) + i(sin a + sin b + sin c) = cos(a+b+c) + i sin(a+b+c)
$$



Equating real and imaginary parts,
$$cos a + cos b + cos c= cos(a+b+c)$$
and similarly for sine. Now,



$$(a-b) + (b-c) + (c-a) =0$$



What to do now? Please help. And please use De Moivre Theorem!










share|cite|improve this question























  • You could expand $cos(a+b+c)$ and $sin(a+b+c)$.
    – amsmath
    Aug 31 at 2:08










  • Just point out where I am wrong. If for the complex numbers $x$, $y$, $z$; $x+y+z=xyz$, then it can be shown that $dfracxy+dfracyz+dfraczx=1$ (do it in reverse) which easily leads to $cos (x-y)+cos (y-z)+cos (z-x) =1$. What am I missing?
    – DarkKnight
    Aug 31 at 6:03













up vote
8
down vote

favorite
4









up vote
8
down vote

favorite
4






4






If $x=cos a + i sin a$, $y=cos b + i sin b$, $z=cos c +i sin c$, and $x+y+z = xyz$, then show that $$cos(a-b) + cos(b-c) + cos(c-a) + 1=0$$




Here's how I tried it



$$x+y+z=xyz $$



So, by De Moivre's Theorem,
$$(cos a + cos b + cos c) + i(sin a + sin b + sin c) = cos(a+b+c) + i sin(a+b+c)
$$



Equating real and imaginary parts,
$$cos a + cos b + cos c= cos(a+b+c)$$
and similarly for sine. Now,



$$(a-b) + (b-c) + (c-a) =0$$



What to do now? Please help. And please use De Moivre Theorem!










share|cite|improve this question
















If $x=cos a + i sin a$, $y=cos b + i sin b$, $z=cos c +i sin c$, and $x+y+z = xyz$, then show that $$cos(a-b) + cos(b-c) + cos(c-a) + 1=0$$




Here's how I tried it



$$x+y+z=xyz $$



So, by De Moivre's Theorem,
$$(cos a + cos b + cos c) + i(sin a + sin b + sin c) = cos(a+b+c) + i sin(a+b+c)
$$



Equating real and imaginary parts,
$$cos a + cos b + cos c= cos(a+b+c)$$
and similarly for sine. Now,



$$(a-b) + (b-c) + (c-a) =0$$



What to do now? Please help. And please use De Moivre Theorem!







trigonometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 31 at 1:34









Blue

44.1k868141




44.1k868141










asked Aug 31 at 1:29









Pratim Das

602




602











  • You could expand $cos(a+b+c)$ and $sin(a+b+c)$.
    – amsmath
    Aug 31 at 2:08










  • Just point out where I am wrong. If for the complex numbers $x$, $y$, $z$; $x+y+z=xyz$, then it can be shown that $dfracxy+dfracyz+dfraczx=1$ (do it in reverse) which easily leads to $cos (x-y)+cos (y-z)+cos (z-x) =1$. What am I missing?
    – DarkKnight
    Aug 31 at 6:03

















  • You could expand $cos(a+b+c)$ and $sin(a+b+c)$.
    – amsmath
    Aug 31 at 2:08










  • Just point out where I am wrong. If for the complex numbers $x$, $y$, $z$; $x+y+z=xyz$, then it can be shown that $dfracxy+dfracyz+dfraczx=1$ (do it in reverse) which easily leads to $cos (x-y)+cos (y-z)+cos (z-x) =1$. What am I missing?
    – DarkKnight
    Aug 31 at 6:03
















You could expand $cos(a+b+c)$ and $sin(a+b+c)$.
– amsmath
Aug 31 at 2:08




You could expand $cos(a+b+c)$ and $sin(a+b+c)$.
– amsmath
Aug 31 at 2:08












Just point out where I am wrong. If for the complex numbers $x$, $y$, $z$; $x+y+z=xyz$, then it can be shown that $dfracxy+dfracyz+dfraczx=1$ (do it in reverse) which easily leads to $cos (x-y)+cos (y-z)+cos (z-x) =1$. What am I missing?
– DarkKnight
Aug 31 at 6:03





Just point out where I am wrong. If for the complex numbers $x$, $y$, $z$; $x+y+z=xyz$, then it can be shown that $dfracxy+dfracyz+dfraczx=1$ (do it in reverse) which easily leads to $cos (x-y)+cos (y-z)+cos (z-x) =1$. What am I missing?
– DarkKnight
Aug 31 at 6:03











3 Answers
3






active

oldest

votes

















up vote
6
down vote













Note that $$cos(a-b) = cos(a)cos(b)+sin(a)sin(b) = Re(xbary)$$
So $$labeleq1cos(a-b)+cos(b-c)+cos(c-a) = Re(xbary+ybarz+zbarx)$$
With that in mind, note that just like $x$, $y$ and $z$, the $xyz$ complex number is of modulus 1. So if we go back to the $x+y+z=xyz$ identity, we see that $$|x+y+z|=1$$
In other words, $$beginsplit
1 & = |x+y+z|^2 \
& = (x+y+z)(bar x+bar y +bar z) \
& = xbar x + x bar y + x bar z + ybar x + y bar y + y bar z + z bar x + z bar y + z bar z \
& = 1 + x bar y + x bar z + 1 + ybar x + y bar z + 1 + z bar x + z bar y \
& = 3 + (x bar y + y bar z + z bar x) + (ybar x + z bar y + x bar z) \
& = 3 + 2 Re(x bar y + y bar z + z bar x)
endsplit$$
We conclude that $$Re(xbary+ybarz+zbarx)+1=0$$ which yields the desired result.






share|cite|improve this answer




















  • What is that R notation? Can you please explain it. I couldn't understand that
    – Pratim Das
    Aug 31 at 3:03






  • 1




    @PratimDas Real part.
    – xbh
    Aug 31 at 3:11











  • @PratimDas It is the real part of the complex number.
    – Anurag A
    Aug 31 at 3:11










  • Oh ya ya now i know. Thank you so much :)
    – Pratim Das
    Aug 31 at 3:12






  • 2




    Nicely done, +1.
    – dxiv
    Aug 31 at 3:28

















up vote
0
down vote













(This is a followup on Stefan Lafon's answer, too long for a comment.)



Using that $,|x|=1 iff bar x = dfrac1x,$ and $,cos(a-b)= operatornameReleft(dfracxyright)=operatornameRe(x bar y) = operatornameRe(bar x y),$, it follows that:



$$
beginalign
cos(a-b) + cos(b-c) + cos(c-a) &= cos(a-b) + cos(a-c) + cos(b-c) \
&= operatornameReleft(xbar y+ x bar z + y bar zright) \
&= operatornameReleft(xleft(bar y + bar zright) + y bar zright) \
&= operatornameReleft(xleft(bar x bar y bar z - bar xright) + y bar zright) \
&= operatornameReleft(bar y bar z + ybar z -1 right) \
&= operatornameReleft(left(y + bar yright) bar z -1 right) \
&= -1 + 2 operatornameRe(y) operatornameRe(z)
endalign
$$



For the latter RHS to be $,-1,$, the second term must be zero, so one of $,y,z,$ must be a purely imaginary number of modulus $,1,$ i.e. $,pm i,$. With some more legwork, it follows that the solution set of the given constraints is $, = 1,$ or permutations thereof.






share|cite|improve this answer



























    up vote
    0
    down vote













    Squaring & adding we get



    $$cos^2(a+b+c)+sin^2(a+b+c)=(cos a+cos b+cos c)^2+(sin a+sin b+sin c)^2$$



    $$implies1=1+1+1+2sum_textcyc(a,b,c)cos(a-b)$$



    Observe that we actually don't need $x+y+z=xyz$



    The sufficient condition is $$ x+y+z=cos p+isin piff|x+y+z|=1$$






    share|cite|improve this answer




















      Your Answer




      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2900211%2fif-x-cos-a-i-sin-a-y-cos-b-i-sin-b-z-cos-c-i-sin-c-and-xy%23new-answer', 'question_page');

      );

      Post as a guest






























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      6
      down vote













      Note that $$cos(a-b) = cos(a)cos(b)+sin(a)sin(b) = Re(xbary)$$
      So $$labeleq1cos(a-b)+cos(b-c)+cos(c-a) = Re(xbary+ybarz+zbarx)$$
      With that in mind, note that just like $x$, $y$ and $z$, the $xyz$ complex number is of modulus 1. So if we go back to the $x+y+z=xyz$ identity, we see that $$|x+y+z|=1$$
      In other words, $$beginsplit
      1 & = |x+y+z|^2 \
      & = (x+y+z)(bar x+bar y +bar z) \
      & = xbar x + x bar y + x bar z + ybar x + y bar y + y bar z + z bar x + z bar y + z bar z \
      & = 1 + x bar y + x bar z + 1 + ybar x + y bar z + 1 + z bar x + z bar y \
      & = 3 + (x bar y + y bar z + z bar x) + (ybar x + z bar y + x bar z) \
      & = 3 + 2 Re(x bar y + y bar z + z bar x)
      endsplit$$
      We conclude that $$Re(xbary+ybarz+zbarx)+1=0$$ which yields the desired result.






      share|cite|improve this answer




















      • What is that R notation? Can you please explain it. I couldn't understand that
        – Pratim Das
        Aug 31 at 3:03






      • 1




        @PratimDas Real part.
        – xbh
        Aug 31 at 3:11











      • @PratimDas It is the real part of the complex number.
        – Anurag A
        Aug 31 at 3:11










      • Oh ya ya now i know. Thank you so much :)
        – Pratim Das
        Aug 31 at 3:12






      • 2




        Nicely done, +1.
        – dxiv
        Aug 31 at 3:28














      up vote
      6
      down vote













      Note that $$cos(a-b) = cos(a)cos(b)+sin(a)sin(b) = Re(xbary)$$
      So $$labeleq1cos(a-b)+cos(b-c)+cos(c-a) = Re(xbary+ybarz+zbarx)$$
      With that in mind, note that just like $x$, $y$ and $z$, the $xyz$ complex number is of modulus 1. So if we go back to the $x+y+z=xyz$ identity, we see that $$|x+y+z|=1$$
      In other words, $$beginsplit
      1 & = |x+y+z|^2 \
      & = (x+y+z)(bar x+bar y +bar z) \
      & = xbar x + x bar y + x bar z + ybar x + y bar y + y bar z + z bar x + z bar y + z bar z \
      & = 1 + x bar y + x bar z + 1 + ybar x + y bar z + 1 + z bar x + z bar y \
      & = 3 + (x bar y + y bar z + z bar x) + (ybar x + z bar y + x bar z) \
      & = 3 + 2 Re(x bar y + y bar z + z bar x)
      endsplit$$
      We conclude that $$Re(xbary+ybarz+zbarx)+1=0$$ which yields the desired result.






      share|cite|improve this answer




















      • What is that R notation? Can you please explain it. I couldn't understand that
        – Pratim Das
        Aug 31 at 3:03






      • 1




        @PratimDas Real part.
        – xbh
        Aug 31 at 3:11











      • @PratimDas It is the real part of the complex number.
        – Anurag A
        Aug 31 at 3:11










      • Oh ya ya now i know. Thank you so much :)
        – Pratim Das
        Aug 31 at 3:12






      • 2




        Nicely done, +1.
        – dxiv
        Aug 31 at 3:28












      up vote
      6
      down vote










      up vote
      6
      down vote









      Note that $$cos(a-b) = cos(a)cos(b)+sin(a)sin(b) = Re(xbary)$$
      So $$labeleq1cos(a-b)+cos(b-c)+cos(c-a) = Re(xbary+ybarz+zbarx)$$
      With that in mind, note that just like $x$, $y$ and $z$, the $xyz$ complex number is of modulus 1. So if we go back to the $x+y+z=xyz$ identity, we see that $$|x+y+z|=1$$
      In other words, $$beginsplit
      1 & = |x+y+z|^2 \
      & = (x+y+z)(bar x+bar y +bar z) \
      & = xbar x + x bar y + x bar z + ybar x + y bar y + y bar z + z bar x + z bar y + z bar z \
      & = 1 + x bar y + x bar z + 1 + ybar x + y bar z + 1 + z bar x + z bar y \
      & = 3 + (x bar y + y bar z + z bar x) + (ybar x + z bar y + x bar z) \
      & = 3 + 2 Re(x bar y + y bar z + z bar x)
      endsplit$$
      We conclude that $$Re(xbary+ybarz+zbarx)+1=0$$ which yields the desired result.






      share|cite|improve this answer












      Note that $$cos(a-b) = cos(a)cos(b)+sin(a)sin(b) = Re(xbary)$$
      So $$labeleq1cos(a-b)+cos(b-c)+cos(c-a) = Re(xbary+ybarz+zbarx)$$
      With that in mind, note that just like $x$, $y$ and $z$, the $xyz$ complex number is of modulus 1. So if we go back to the $x+y+z=xyz$ identity, we see that $$|x+y+z|=1$$
      In other words, $$beginsplit
      1 & = |x+y+z|^2 \
      & = (x+y+z)(bar x+bar y +bar z) \
      & = xbar x + x bar y + x bar z + ybar x + y bar y + y bar z + z bar x + z bar y + z bar z \
      & = 1 + x bar y + x bar z + 1 + ybar x + y bar z + 1 + z bar x + z bar y \
      & = 3 + (x bar y + y bar z + z bar x) + (ybar x + z bar y + x bar z) \
      & = 3 + 2 Re(x bar y + y bar z + z bar x)
      endsplit$$
      We conclude that $$Re(xbary+ybarz+zbarx)+1=0$$ which yields the desired result.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered Aug 31 at 2:58









      Stefan Lafon

      18614




      18614











      • What is that R notation? Can you please explain it. I couldn't understand that
        – Pratim Das
        Aug 31 at 3:03






      • 1




        @PratimDas Real part.
        – xbh
        Aug 31 at 3:11











      • @PratimDas It is the real part of the complex number.
        – Anurag A
        Aug 31 at 3:11










      • Oh ya ya now i know. Thank you so much :)
        – Pratim Das
        Aug 31 at 3:12






      • 2




        Nicely done, +1.
        – dxiv
        Aug 31 at 3:28
















      • What is that R notation? Can you please explain it. I couldn't understand that
        – Pratim Das
        Aug 31 at 3:03






      • 1




        @PratimDas Real part.
        – xbh
        Aug 31 at 3:11











      • @PratimDas It is the real part of the complex number.
        – Anurag A
        Aug 31 at 3:11










      • Oh ya ya now i know. Thank you so much :)
        – Pratim Das
        Aug 31 at 3:12






      • 2




        Nicely done, +1.
        – dxiv
        Aug 31 at 3:28















      What is that R notation? Can you please explain it. I couldn't understand that
      – Pratim Das
      Aug 31 at 3:03




      What is that R notation? Can you please explain it. I couldn't understand that
      – Pratim Das
      Aug 31 at 3:03




      1




      1




      @PratimDas Real part.
      – xbh
      Aug 31 at 3:11





      @PratimDas Real part.
      – xbh
      Aug 31 at 3:11













      @PratimDas It is the real part of the complex number.
      – Anurag A
      Aug 31 at 3:11




      @PratimDas It is the real part of the complex number.
      – Anurag A
      Aug 31 at 3:11












      Oh ya ya now i know. Thank you so much :)
      – Pratim Das
      Aug 31 at 3:12




      Oh ya ya now i know. Thank you so much :)
      – Pratim Das
      Aug 31 at 3:12




      2




      2




      Nicely done, +1.
      – dxiv
      Aug 31 at 3:28




      Nicely done, +1.
      – dxiv
      Aug 31 at 3:28










      up vote
      0
      down vote













      (This is a followup on Stefan Lafon's answer, too long for a comment.)



      Using that $,|x|=1 iff bar x = dfrac1x,$ and $,cos(a-b)= operatornameReleft(dfracxyright)=operatornameRe(x bar y) = operatornameRe(bar x y),$, it follows that:



      $$
      beginalign
      cos(a-b) + cos(b-c) + cos(c-a) &= cos(a-b) + cos(a-c) + cos(b-c) \
      &= operatornameReleft(xbar y+ x bar z + y bar zright) \
      &= operatornameReleft(xleft(bar y + bar zright) + y bar zright) \
      &= operatornameReleft(xleft(bar x bar y bar z - bar xright) + y bar zright) \
      &= operatornameReleft(bar y bar z + ybar z -1 right) \
      &= operatornameReleft(left(y + bar yright) bar z -1 right) \
      &= -1 + 2 operatornameRe(y) operatornameRe(z)
      endalign
      $$



      For the latter RHS to be $,-1,$, the second term must be zero, so one of $,y,z,$ must be a purely imaginary number of modulus $,1,$ i.e. $,pm i,$. With some more legwork, it follows that the solution set of the given constraints is $, = 1,$ or permutations thereof.






      share|cite|improve this answer
























        up vote
        0
        down vote













        (This is a followup on Stefan Lafon's answer, too long for a comment.)



        Using that $,|x|=1 iff bar x = dfrac1x,$ and $,cos(a-b)= operatornameReleft(dfracxyright)=operatornameRe(x bar y) = operatornameRe(bar x y),$, it follows that:



        $$
        beginalign
        cos(a-b) + cos(b-c) + cos(c-a) &= cos(a-b) + cos(a-c) + cos(b-c) \
        &= operatornameReleft(xbar y+ x bar z + y bar zright) \
        &= operatornameReleft(xleft(bar y + bar zright) + y bar zright) \
        &= operatornameReleft(xleft(bar x bar y bar z - bar xright) + y bar zright) \
        &= operatornameReleft(bar y bar z + ybar z -1 right) \
        &= operatornameReleft(left(y + bar yright) bar z -1 right) \
        &= -1 + 2 operatornameRe(y) operatornameRe(z)
        endalign
        $$



        For the latter RHS to be $,-1,$, the second term must be zero, so one of $,y,z,$ must be a purely imaginary number of modulus $,1,$ i.e. $,pm i,$. With some more legwork, it follows that the solution set of the given constraints is $, = 1,$ or permutations thereof.






        share|cite|improve this answer






















          up vote
          0
          down vote










          up vote
          0
          down vote









          (This is a followup on Stefan Lafon's answer, too long for a comment.)



          Using that $,|x|=1 iff bar x = dfrac1x,$ and $,cos(a-b)= operatornameReleft(dfracxyright)=operatornameRe(x bar y) = operatornameRe(bar x y),$, it follows that:



          $$
          beginalign
          cos(a-b) + cos(b-c) + cos(c-a) &= cos(a-b) + cos(a-c) + cos(b-c) \
          &= operatornameReleft(xbar y+ x bar z + y bar zright) \
          &= operatornameReleft(xleft(bar y + bar zright) + y bar zright) \
          &= operatornameReleft(xleft(bar x bar y bar z - bar xright) + y bar zright) \
          &= operatornameReleft(bar y bar z + ybar z -1 right) \
          &= operatornameReleft(left(y + bar yright) bar z -1 right) \
          &= -1 + 2 operatornameRe(y) operatornameRe(z)
          endalign
          $$



          For the latter RHS to be $,-1,$, the second term must be zero, so one of $,y,z,$ must be a purely imaginary number of modulus $,1,$ i.e. $,pm i,$. With some more legwork, it follows that the solution set of the given constraints is $, = 1,$ or permutations thereof.






          share|cite|improve this answer












          (This is a followup on Stefan Lafon's answer, too long for a comment.)



          Using that $,|x|=1 iff bar x = dfrac1x,$ and $,cos(a-b)= operatornameReleft(dfracxyright)=operatornameRe(x bar y) = operatornameRe(bar x y),$, it follows that:



          $$
          beginalign
          cos(a-b) + cos(b-c) + cos(c-a) &= cos(a-b) + cos(a-c) + cos(b-c) \
          &= operatornameReleft(xbar y+ x bar z + y bar zright) \
          &= operatornameReleft(xleft(bar y + bar zright) + y bar zright) \
          &= operatornameReleft(xleft(bar x bar y bar z - bar xright) + y bar zright) \
          &= operatornameReleft(bar y bar z + ybar z -1 right) \
          &= operatornameReleft(left(y + bar yright) bar z -1 right) \
          &= -1 + 2 operatornameRe(y) operatornameRe(z)
          endalign
          $$



          For the latter RHS to be $,-1,$, the second term must be zero, so one of $,y,z,$ must be a purely imaginary number of modulus $,1,$ i.e. $,pm i,$. With some more legwork, it follows that the solution set of the given constraints is $, = 1,$ or permutations thereof.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Aug 31 at 3:28









          dxiv

          55.9k64798




          55.9k64798




















              up vote
              0
              down vote













              Squaring & adding we get



              $$cos^2(a+b+c)+sin^2(a+b+c)=(cos a+cos b+cos c)^2+(sin a+sin b+sin c)^2$$



              $$implies1=1+1+1+2sum_textcyc(a,b,c)cos(a-b)$$



              Observe that we actually don't need $x+y+z=xyz$



              The sufficient condition is $$ x+y+z=cos p+isin piff|x+y+z|=1$$






              share|cite|improve this answer
























                up vote
                0
                down vote













                Squaring & adding we get



                $$cos^2(a+b+c)+sin^2(a+b+c)=(cos a+cos b+cos c)^2+(sin a+sin b+sin c)^2$$



                $$implies1=1+1+1+2sum_textcyc(a,b,c)cos(a-b)$$



                Observe that we actually don't need $x+y+z=xyz$



                The sufficient condition is $$ x+y+z=cos p+isin piff|x+y+z|=1$$






                share|cite|improve this answer






















                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  Squaring & adding we get



                  $$cos^2(a+b+c)+sin^2(a+b+c)=(cos a+cos b+cos c)^2+(sin a+sin b+sin c)^2$$



                  $$implies1=1+1+1+2sum_textcyc(a,b,c)cos(a-b)$$



                  Observe that we actually don't need $x+y+z=xyz$



                  The sufficient condition is $$ x+y+z=cos p+isin piff|x+y+z|=1$$






                  share|cite|improve this answer












                  Squaring & adding we get



                  $$cos^2(a+b+c)+sin^2(a+b+c)=(cos a+cos b+cos c)^2+(sin a+sin b+sin c)^2$$



                  $$implies1=1+1+1+2sum_textcyc(a,b,c)cos(a-b)$$



                  Observe that we actually don't need $x+y+z=xyz$



                  The sufficient condition is $$ x+y+z=cos p+isin piff|x+y+z|=1$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Sep 2 at 2:35









                  lab bhattacharjee

                  216k14153265




                  216k14153265



























                       

                      draft saved


                      draft discarded















































                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2900211%2fif-x-cos-a-i-sin-a-y-cos-b-i-sin-b-z-cos-c-i-sin-c-and-xy%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      這個網誌中的熱門文章

                      How to combine Bézier curves to a surface?

                      Mutual Information Always Non-negative

                      Why am i infinitely getting the same tweet with the Twitter Search API?