If $x=cos a + i sin a$, $y=cos b + i sin b$, $z=cos c +i sin c$, and $x+y+z = xyz$, then show that $cos(a-b) + cos(b-c) + cos(c-a) + 1=0$
Clash Royale CLAN TAG#URR8PPP
up vote
8
down vote
favorite
If $x=cos a + i sin a$, $y=cos b + i sin b$, $z=cos c +i sin c$, and $x+y+z = xyz$, then show that $$cos(a-b) + cos(b-c) + cos(c-a) + 1=0$$
Here's how I tried it
$$x+y+z=xyz $$
So, by De Moivre's Theorem,
$$(cos a + cos b + cos c) + i(sin a + sin b + sin c) = cos(a+b+c) + i sin(a+b+c)
$$
Equating real and imaginary parts,
$$cos a + cos b + cos c= cos(a+b+c)$$
and similarly for sine. Now,
$$(a-b) + (b-c) + (c-a) =0$$
What to do now? Please help. And please use De Moivre Theorem!
trigonometry
add a comment |Â
up vote
8
down vote
favorite
If $x=cos a + i sin a$, $y=cos b + i sin b$, $z=cos c +i sin c$, and $x+y+z = xyz$, then show that $$cos(a-b) + cos(b-c) + cos(c-a) + 1=0$$
Here's how I tried it
$$x+y+z=xyz $$
So, by De Moivre's Theorem,
$$(cos a + cos b + cos c) + i(sin a + sin b + sin c) = cos(a+b+c) + i sin(a+b+c)
$$
Equating real and imaginary parts,
$$cos a + cos b + cos c= cos(a+b+c)$$
and similarly for sine. Now,
$$(a-b) + (b-c) + (c-a) =0$$
What to do now? Please help. And please use De Moivre Theorem!
trigonometry
You could expand $cos(a+b+c)$ and $sin(a+b+c)$.
â amsmath
Aug 31 at 2:08
Just point out where I am wrong. If for the complex numbers $x$, $y$, $z$; $x+y+z=xyz$, then it can be shown that $dfracxy+dfracyz+dfraczx=1$ (do it in reverse) which easily leads to $cos (x-y)+cos (y-z)+cos (z-x) =1$. What am I missing?
â DarkKnight
Aug 31 at 6:03
add a comment |Â
up vote
8
down vote
favorite
up vote
8
down vote
favorite
If $x=cos a + i sin a$, $y=cos b + i sin b$, $z=cos c +i sin c$, and $x+y+z = xyz$, then show that $$cos(a-b) + cos(b-c) + cos(c-a) + 1=0$$
Here's how I tried it
$$x+y+z=xyz $$
So, by De Moivre's Theorem,
$$(cos a + cos b + cos c) + i(sin a + sin b + sin c) = cos(a+b+c) + i sin(a+b+c)
$$
Equating real and imaginary parts,
$$cos a + cos b + cos c= cos(a+b+c)$$
and similarly for sine. Now,
$$(a-b) + (b-c) + (c-a) =0$$
What to do now? Please help. And please use De Moivre Theorem!
trigonometry
If $x=cos a + i sin a$, $y=cos b + i sin b$, $z=cos c +i sin c$, and $x+y+z = xyz$, then show that $$cos(a-b) + cos(b-c) + cos(c-a) + 1=0$$
Here's how I tried it
$$x+y+z=xyz $$
So, by De Moivre's Theorem,
$$(cos a + cos b + cos c) + i(sin a + sin b + sin c) = cos(a+b+c) + i sin(a+b+c)
$$
Equating real and imaginary parts,
$$cos a + cos b + cos c= cos(a+b+c)$$
and similarly for sine. Now,
$$(a-b) + (b-c) + (c-a) =0$$
What to do now? Please help. And please use De Moivre Theorem!
trigonometry
trigonometry
edited Aug 31 at 1:34
Blue
44.1k868141
44.1k868141
asked Aug 31 at 1:29
Pratim Das
602
602
You could expand $cos(a+b+c)$ and $sin(a+b+c)$.
â amsmath
Aug 31 at 2:08
Just point out where I am wrong. If for the complex numbers $x$, $y$, $z$; $x+y+z=xyz$, then it can be shown that $dfracxy+dfracyz+dfraczx=1$ (do it in reverse) which easily leads to $cos (x-y)+cos (y-z)+cos (z-x) =1$. What am I missing?
â DarkKnight
Aug 31 at 6:03
add a comment |Â
You could expand $cos(a+b+c)$ and $sin(a+b+c)$.
â amsmath
Aug 31 at 2:08
Just point out where I am wrong. If for the complex numbers $x$, $y$, $z$; $x+y+z=xyz$, then it can be shown that $dfracxy+dfracyz+dfraczx=1$ (do it in reverse) which easily leads to $cos (x-y)+cos (y-z)+cos (z-x) =1$. What am I missing?
â DarkKnight
Aug 31 at 6:03
You could expand $cos(a+b+c)$ and $sin(a+b+c)$.
â amsmath
Aug 31 at 2:08
You could expand $cos(a+b+c)$ and $sin(a+b+c)$.
â amsmath
Aug 31 at 2:08
Just point out where I am wrong. If for the complex numbers $x$, $y$, $z$; $x+y+z=xyz$, then it can be shown that $dfracxy+dfracyz+dfraczx=1$ (do it in reverse) which easily leads to $cos (x-y)+cos (y-z)+cos (z-x) =1$. What am I missing?
â DarkKnight
Aug 31 at 6:03
Just point out where I am wrong. If for the complex numbers $x$, $y$, $z$; $x+y+z=xyz$, then it can be shown that $dfracxy+dfracyz+dfraczx=1$ (do it in reverse) which easily leads to $cos (x-y)+cos (y-z)+cos (z-x) =1$. What am I missing?
â DarkKnight
Aug 31 at 6:03
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
6
down vote
Note that $$cos(a-b) = cos(a)cos(b)+sin(a)sin(b) = Re(xbary)$$
So $$labeleq1cos(a-b)+cos(b-c)+cos(c-a) = Re(xbary+ybarz+zbarx)$$
With that in mind, note that just like $x$, $y$ and $z$, the $xyz$ complex number is of modulus 1. So if we go back to the $x+y+z=xyz$ identity, we see that $$|x+y+z|=1$$
In other words, $$beginsplit
1 & = |x+y+z|^2 \
& = (x+y+z)(bar x+bar y +bar z) \
& = xbar x + x bar y + x bar z + ybar x + y bar y + y bar z + z bar x + z bar y + z bar z \
& = 1 + x bar y + x bar z + 1 + ybar x + y bar z + 1 + z bar x + z bar y \
& = 3 + (x bar y + y bar z + z bar x) + (ybar x + z bar y + x bar z) \
& = 3 + 2 Re(x bar y + y bar z + z bar x)
endsplit$$
We conclude that $$Re(xbary+ybarz+zbarx)+1=0$$ which yields the desired result.
What is that R notation? Can you please explain it. I couldn't understand that
â Pratim Das
Aug 31 at 3:03
1
@PratimDas Real part.
â xbh
Aug 31 at 3:11
@PratimDas It is the real part of the complex number.
â Anurag A
Aug 31 at 3:11
Oh ya ya now i know. Thank you so much :)
â Pratim Das
Aug 31 at 3:12
2
Nicely done, +1.
â dxiv
Aug 31 at 3:28
add a comment |Â
up vote
0
down vote
(This is a followup on Stefan Lafon's answer, too long for a comment.)
Using that $,|x|=1 iff bar x = dfrac1x,$ and $,cos(a-b)= operatornameReleft(dfracxyright)=operatornameRe(x bar y) = operatornameRe(bar x y),$, it follows that:
$$
beginalign
cos(a-b) + cos(b-c) + cos(c-a) &= cos(a-b) + cos(a-c) + cos(b-c) \
&= operatornameReleft(xbar y+ x bar z + y bar zright) \
&= operatornameReleft(xleft(bar y + bar zright) + y bar zright) \
&= operatornameReleft(xleft(bar x bar y bar z - bar xright) + y bar zright) \
&= operatornameReleft(bar y bar z + ybar z -1 right) \
&= operatornameReleft(left(y + bar yright) bar z -1 right) \
&= -1 + 2 operatornameRe(y) operatornameRe(z)
endalign
$$
For the latter RHS to be $,-1,$, the second term must be zero, so one of $,y,z,$ must be a purely imaginary number of modulus $,1,$ i.e. $,pm i,$. With some more legwork, it follows that the solution set of the given constraints is $, = 1,$ or permutations thereof.
add a comment |Â
up vote
0
down vote
Squaring & adding we get
$$cos^2(a+b+c)+sin^2(a+b+c)=(cos a+cos b+cos c)^2+(sin a+sin b+sin c)^2$$
$$implies1=1+1+1+2sum_textcyc(a,b,c)cos(a-b)$$
Observe that we actually don't need $x+y+z=xyz$
The sufficient condition is $$ x+y+z=cos p+isin piff|x+y+z|=1$$
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
6
down vote
Note that $$cos(a-b) = cos(a)cos(b)+sin(a)sin(b) = Re(xbary)$$
So $$labeleq1cos(a-b)+cos(b-c)+cos(c-a) = Re(xbary+ybarz+zbarx)$$
With that in mind, note that just like $x$, $y$ and $z$, the $xyz$ complex number is of modulus 1. So if we go back to the $x+y+z=xyz$ identity, we see that $$|x+y+z|=1$$
In other words, $$beginsplit
1 & = |x+y+z|^2 \
& = (x+y+z)(bar x+bar y +bar z) \
& = xbar x + x bar y + x bar z + ybar x + y bar y + y bar z + z bar x + z bar y + z bar z \
& = 1 + x bar y + x bar z + 1 + ybar x + y bar z + 1 + z bar x + z bar y \
& = 3 + (x bar y + y bar z + z bar x) + (ybar x + z bar y + x bar z) \
& = 3 + 2 Re(x bar y + y bar z + z bar x)
endsplit$$
We conclude that $$Re(xbary+ybarz+zbarx)+1=0$$ which yields the desired result.
What is that R notation? Can you please explain it. I couldn't understand that
â Pratim Das
Aug 31 at 3:03
1
@PratimDas Real part.
â xbh
Aug 31 at 3:11
@PratimDas It is the real part of the complex number.
â Anurag A
Aug 31 at 3:11
Oh ya ya now i know. Thank you so much :)
â Pratim Das
Aug 31 at 3:12
2
Nicely done, +1.
â dxiv
Aug 31 at 3:28
add a comment |Â
up vote
6
down vote
Note that $$cos(a-b) = cos(a)cos(b)+sin(a)sin(b) = Re(xbary)$$
So $$labeleq1cos(a-b)+cos(b-c)+cos(c-a) = Re(xbary+ybarz+zbarx)$$
With that in mind, note that just like $x$, $y$ and $z$, the $xyz$ complex number is of modulus 1. So if we go back to the $x+y+z=xyz$ identity, we see that $$|x+y+z|=1$$
In other words, $$beginsplit
1 & = |x+y+z|^2 \
& = (x+y+z)(bar x+bar y +bar z) \
& = xbar x + x bar y + x bar z + ybar x + y bar y + y bar z + z bar x + z bar y + z bar z \
& = 1 + x bar y + x bar z + 1 + ybar x + y bar z + 1 + z bar x + z bar y \
& = 3 + (x bar y + y bar z + z bar x) + (ybar x + z bar y + x bar z) \
& = 3 + 2 Re(x bar y + y bar z + z bar x)
endsplit$$
We conclude that $$Re(xbary+ybarz+zbarx)+1=0$$ which yields the desired result.
What is that R notation? Can you please explain it. I couldn't understand that
â Pratim Das
Aug 31 at 3:03
1
@PratimDas Real part.
â xbh
Aug 31 at 3:11
@PratimDas It is the real part of the complex number.
â Anurag A
Aug 31 at 3:11
Oh ya ya now i know. Thank you so much :)
â Pratim Das
Aug 31 at 3:12
2
Nicely done, +1.
â dxiv
Aug 31 at 3:28
add a comment |Â
up vote
6
down vote
up vote
6
down vote
Note that $$cos(a-b) = cos(a)cos(b)+sin(a)sin(b) = Re(xbary)$$
So $$labeleq1cos(a-b)+cos(b-c)+cos(c-a) = Re(xbary+ybarz+zbarx)$$
With that in mind, note that just like $x$, $y$ and $z$, the $xyz$ complex number is of modulus 1. So if we go back to the $x+y+z=xyz$ identity, we see that $$|x+y+z|=1$$
In other words, $$beginsplit
1 & = |x+y+z|^2 \
& = (x+y+z)(bar x+bar y +bar z) \
& = xbar x + x bar y + x bar z + ybar x + y bar y + y bar z + z bar x + z bar y + z bar z \
& = 1 + x bar y + x bar z + 1 + ybar x + y bar z + 1 + z bar x + z bar y \
& = 3 + (x bar y + y bar z + z bar x) + (ybar x + z bar y + x bar z) \
& = 3 + 2 Re(x bar y + y bar z + z bar x)
endsplit$$
We conclude that $$Re(xbary+ybarz+zbarx)+1=0$$ which yields the desired result.
Note that $$cos(a-b) = cos(a)cos(b)+sin(a)sin(b) = Re(xbary)$$
So $$labeleq1cos(a-b)+cos(b-c)+cos(c-a) = Re(xbary+ybarz+zbarx)$$
With that in mind, note that just like $x$, $y$ and $z$, the $xyz$ complex number is of modulus 1. So if we go back to the $x+y+z=xyz$ identity, we see that $$|x+y+z|=1$$
In other words, $$beginsplit
1 & = |x+y+z|^2 \
& = (x+y+z)(bar x+bar y +bar z) \
& = xbar x + x bar y + x bar z + ybar x + y bar y + y bar z + z bar x + z bar y + z bar z \
& = 1 + x bar y + x bar z + 1 + ybar x + y bar z + 1 + z bar x + z bar y \
& = 3 + (x bar y + y bar z + z bar x) + (ybar x + z bar y + x bar z) \
& = 3 + 2 Re(x bar y + y bar z + z bar x)
endsplit$$
We conclude that $$Re(xbary+ybarz+zbarx)+1=0$$ which yields the desired result.
answered Aug 31 at 2:58
Stefan Lafon
18614
18614
What is that R notation? Can you please explain it. I couldn't understand that
â Pratim Das
Aug 31 at 3:03
1
@PratimDas Real part.
â xbh
Aug 31 at 3:11
@PratimDas It is the real part of the complex number.
â Anurag A
Aug 31 at 3:11
Oh ya ya now i know. Thank you so much :)
â Pratim Das
Aug 31 at 3:12
2
Nicely done, +1.
â dxiv
Aug 31 at 3:28
add a comment |Â
What is that R notation? Can you please explain it. I couldn't understand that
â Pratim Das
Aug 31 at 3:03
1
@PratimDas Real part.
â xbh
Aug 31 at 3:11
@PratimDas It is the real part of the complex number.
â Anurag A
Aug 31 at 3:11
Oh ya ya now i know. Thank you so much :)
â Pratim Das
Aug 31 at 3:12
2
Nicely done, +1.
â dxiv
Aug 31 at 3:28
What is that R notation? Can you please explain it. I couldn't understand that
â Pratim Das
Aug 31 at 3:03
What is that R notation? Can you please explain it. I couldn't understand that
â Pratim Das
Aug 31 at 3:03
1
1
@PratimDas Real part.
â xbh
Aug 31 at 3:11
@PratimDas Real part.
â xbh
Aug 31 at 3:11
@PratimDas It is the real part of the complex number.
â Anurag A
Aug 31 at 3:11
@PratimDas It is the real part of the complex number.
â Anurag A
Aug 31 at 3:11
Oh ya ya now i know. Thank you so much :)
â Pratim Das
Aug 31 at 3:12
Oh ya ya now i know. Thank you so much :)
â Pratim Das
Aug 31 at 3:12
2
2
Nicely done, +1.
â dxiv
Aug 31 at 3:28
Nicely done, +1.
â dxiv
Aug 31 at 3:28
add a comment |Â
up vote
0
down vote
(This is a followup on Stefan Lafon's answer, too long for a comment.)
Using that $,|x|=1 iff bar x = dfrac1x,$ and $,cos(a-b)= operatornameReleft(dfracxyright)=operatornameRe(x bar y) = operatornameRe(bar x y),$, it follows that:
$$
beginalign
cos(a-b) + cos(b-c) + cos(c-a) &= cos(a-b) + cos(a-c) + cos(b-c) \
&= operatornameReleft(xbar y+ x bar z + y bar zright) \
&= operatornameReleft(xleft(bar y + bar zright) + y bar zright) \
&= operatornameReleft(xleft(bar x bar y bar z - bar xright) + y bar zright) \
&= operatornameReleft(bar y bar z + ybar z -1 right) \
&= operatornameReleft(left(y + bar yright) bar z -1 right) \
&= -1 + 2 operatornameRe(y) operatornameRe(z)
endalign
$$
For the latter RHS to be $,-1,$, the second term must be zero, so one of $,y,z,$ must be a purely imaginary number of modulus $,1,$ i.e. $,pm i,$. With some more legwork, it follows that the solution set of the given constraints is $, = 1,$ or permutations thereof.
add a comment |Â
up vote
0
down vote
(This is a followup on Stefan Lafon's answer, too long for a comment.)
Using that $,|x|=1 iff bar x = dfrac1x,$ and $,cos(a-b)= operatornameReleft(dfracxyright)=operatornameRe(x bar y) = operatornameRe(bar x y),$, it follows that:
$$
beginalign
cos(a-b) + cos(b-c) + cos(c-a) &= cos(a-b) + cos(a-c) + cos(b-c) \
&= operatornameReleft(xbar y+ x bar z + y bar zright) \
&= operatornameReleft(xleft(bar y + bar zright) + y bar zright) \
&= operatornameReleft(xleft(bar x bar y bar z - bar xright) + y bar zright) \
&= operatornameReleft(bar y bar z + ybar z -1 right) \
&= operatornameReleft(left(y + bar yright) bar z -1 right) \
&= -1 + 2 operatornameRe(y) operatornameRe(z)
endalign
$$
For the latter RHS to be $,-1,$, the second term must be zero, so one of $,y,z,$ must be a purely imaginary number of modulus $,1,$ i.e. $,pm i,$. With some more legwork, it follows that the solution set of the given constraints is $, = 1,$ or permutations thereof.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
(This is a followup on Stefan Lafon's answer, too long for a comment.)
Using that $,|x|=1 iff bar x = dfrac1x,$ and $,cos(a-b)= operatornameReleft(dfracxyright)=operatornameRe(x bar y) = operatornameRe(bar x y),$, it follows that:
$$
beginalign
cos(a-b) + cos(b-c) + cos(c-a) &= cos(a-b) + cos(a-c) + cos(b-c) \
&= operatornameReleft(xbar y+ x bar z + y bar zright) \
&= operatornameReleft(xleft(bar y + bar zright) + y bar zright) \
&= operatornameReleft(xleft(bar x bar y bar z - bar xright) + y bar zright) \
&= operatornameReleft(bar y bar z + ybar z -1 right) \
&= operatornameReleft(left(y + bar yright) bar z -1 right) \
&= -1 + 2 operatornameRe(y) operatornameRe(z)
endalign
$$
For the latter RHS to be $,-1,$, the second term must be zero, so one of $,y,z,$ must be a purely imaginary number of modulus $,1,$ i.e. $,pm i,$. With some more legwork, it follows that the solution set of the given constraints is $, = 1,$ or permutations thereof.
(This is a followup on Stefan Lafon's answer, too long for a comment.)
Using that $,|x|=1 iff bar x = dfrac1x,$ and $,cos(a-b)= operatornameReleft(dfracxyright)=operatornameRe(x bar y) = operatornameRe(bar x y),$, it follows that:
$$
beginalign
cos(a-b) + cos(b-c) + cos(c-a) &= cos(a-b) + cos(a-c) + cos(b-c) \
&= operatornameReleft(xbar y+ x bar z + y bar zright) \
&= operatornameReleft(xleft(bar y + bar zright) + y bar zright) \
&= operatornameReleft(xleft(bar x bar y bar z - bar xright) + y bar zright) \
&= operatornameReleft(bar y bar z + ybar z -1 right) \
&= operatornameReleft(left(y + bar yright) bar z -1 right) \
&= -1 + 2 operatornameRe(y) operatornameRe(z)
endalign
$$
For the latter RHS to be $,-1,$, the second term must be zero, so one of $,y,z,$ must be a purely imaginary number of modulus $,1,$ i.e. $,pm i,$. With some more legwork, it follows that the solution set of the given constraints is $, = 1,$ or permutations thereof.
answered Aug 31 at 3:28
dxiv
55.9k64798
55.9k64798
add a comment |Â
add a comment |Â
up vote
0
down vote
Squaring & adding we get
$$cos^2(a+b+c)+sin^2(a+b+c)=(cos a+cos b+cos c)^2+(sin a+sin b+sin c)^2$$
$$implies1=1+1+1+2sum_textcyc(a,b,c)cos(a-b)$$
Observe that we actually don't need $x+y+z=xyz$
The sufficient condition is $$ x+y+z=cos p+isin piff|x+y+z|=1$$
add a comment |Â
up vote
0
down vote
Squaring & adding we get
$$cos^2(a+b+c)+sin^2(a+b+c)=(cos a+cos b+cos c)^2+(sin a+sin b+sin c)^2$$
$$implies1=1+1+1+2sum_textcyc(a,b,c)cos(a-b)$$
Observe that we actually don't need $x+y+z=xyz$
The sufficient condition is $$ x+y+z=cos p+isin piff|x+y+z|=1$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Squaring & adding we get
$$cos^2(a+b+c)+sin^2(a+b+c)=(cos a+cos b+cos c)^2+(sin a+sin b+sin c)^2$$
$$implies1=1+1+1+2sum_textcyc(a,b,c)cos(a-b)$$
Observe that we actually don't need $x+y+z=xyz$
The sufficient condition is $$ x+y+z=cos p+isin piff|x+y+z|=1$$
Squaring & adding we get
$$cos^2(a+b+c)+sin^2(a+b+c)=(cos a+cos b+cos c)^2+(sin a+sin b+sin c)^2$$
$$implies1=1+1+1+2sum_textcyc(a,b,c)cos(a-b)$$
Observe that we actually don't need $x+y+z=xyz$
The sufficient condition is $$ x+y+z=cos p+isin piff|x+y+z|=1$$
answered Sep 2 at 2:35
lab bhattacharjee
216k14153265
216k14153265
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2900211%2fif-x-cos-a-i-sin-a-y-cos-b-i-sin-b-z-cos-c-i-sin-c-and-xy%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
You could expand $cos(a+b+c)$ and $sin(a+b+c)$.
â amsmath
Aug 31 at 2:08
Just point out where I am wrong. If for the complex numbers $x$, $y$, $z$; $x+y+z=xyz$, then it can be shown that $dfracxy+dfracyz+dfraczx=1$ (do it in reverse) which easily leads to $cos (x-y)+cos (y-z)+cos (z-x) =1$. What am I missing?
â DarkKnight
Aug 31 at 6:03