Base extension of the relative tangent spaces
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
I'm studying the relative tangent spaces in Algebraic Geometry I by Gortz,Wedhorn. The definition as follows:
Let $X$ be a $S$-scheme, $K$ be a filed and $xi : mathrmSpecK rightarrow X$ be a $K$-valued point of $X$. We define the relative tangent space $T_xi(X/S)$ of $X$ in $xi$ over $S$ as the set of $S$-morphisms $t:mathrmSpecK[varepsilon] rightarrow X$ such that the composition of t with $mathrmSpecK rightarrow mathrmSpecK[varepsilon]$ is equal to $xi$ , where $K[varepsilon]$ is the ring of dual number over K.
Remark 6.12. (2) of this book says:
Let $iota : K hookrightarrow L$ be a field extnsion corresonding to the morphism $p:mathrmSpecL rightarrow mathrmSpecK$ and let $q:mathrmSpecL[varepsilon] rightarrow mathrmSpecK[varepsilon]$ be the canonical morphism induced by $p$. Then a morphism $phi : T_xi(X/S) otimes_KL rightarrow T_xi circ p(X/S)$ ,$totimes ell mapsto ell cdot(t circ q) $ is an isomorhism of $L$-vector spaces.
I can show that $phi$ is injective. But Is this surjective? Or Can I construct
the inverse map of $phi$ ?
Remark: $X$ is a "general" $S$-scheme. So the relative tangent space $T_xi(X/S)$ of X is not necessarily finite dimensional.
algebraic-geometry
add a comment |Â
up vote
0
down vote
favorite
I'm studying the relative tangent spaces in Algebraic Geometry I by Gortz,Wedhorn. The definition as follows:
Let $X$ be a $S$-scheme, $K$ be a filed and $xi : mathrmSpecK rightarrow X$ be a $K$-valued point of $X$. We define the relative tangent space $T_xi(X/S)$ of $X$ in $xi$ over $S$ as the set of $S$-morphisms $t:mathrmSpecK[varepsilon] rightarrow X$ such that the composition of t with $mathrmSpecK rightarrow mathrmSpecK[varepsilon]$ is equal to $xi$ , where $K[varepsilon]$ is the ring of dual number over K.
Remark 6.12. (2) of this book says:
Let $iota : K hookrightarrow L$ be a field extnsion corresonding to the morphism $p:mathrmSpecL rightarrow mathrmSpecK$ and let $q:mathrmSpecL[varepsilon] rightarrow mathrmSpecK[varepsilon]$ be the canonical morphism induced by $p$. Then a morphism $phi : T_xi(X/S) otimes_KL rightarrow T_xi circ p(X/S)$ ,$totimes ell mapsto ell cdot(t circ q) $ is an isomorhism of $L$-vector spaces.
I can show that $phi$ is injective. But Is this surjective? Or Can I construct
the inverse map of $phi$ ?
Remark: $X$ is a "general" $S$-scheme. So the relative tangent space $T_xi(X/S)$ of X is not necessarily finite dimensional.
algebraic-geometry
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I'm studying the relative tangent spaces in Algebraic Geometry I by Gortz,Wedhorn. The definition as follows:
Let $X$ be a $S$-scheme, $K$ be a filed and $xi : mathrmSpecK rightarrow X$ be a $K$-valued point of $X$. We define the relative tangent space $T_xi(X/S)$ of $X$ in $xi$ over $S$ as the set of $S$-morphisms $t:mathrmSpecK[varepsilon] rightarrow X$ such that the composition of t with $mathrmSpecK rightarrow mathrmSpecK[varepsilon]$ is equal to $xi$ , where $K[varepsilon]$ is the ring of dual number over K.
Remark 6.12. (2) of this book says:
Let $iota : K hookrightarrow L$ be a field extnsion corresonding to the morphism $p:mathrmSpecL rightarrow mathrmSpecK$ and let $q:mathrmSpecL[varepsilon] rightarrow mathrmSpecK[varepsilon]$ be the canonical morphism induced by $p$. Then a morphism $phi : T_xi(X/S) otimes_KL rightarrow T_xi circ p(X/S)$ ,$totimes ell mapsto ell cdot(t circ q) $ is an isomorhism of $L$-vector spaces.
I can show that $phi$ is injective. But Is this surjective? Or Can I construct
the inverse map of $phi$ ?
Remark: $X$ is a "general" $S$-scheme. So the relative tangent space $T_xi(X/S)$ of X is not necessarily finite dimensional.
algebraic-geometry
I'm studying the relative tangent spaces in Algebraic Geometry I by Gortz,Wedhorn. The definition as follows:
Let $X$ be a $S$-scheme, $K$ be a filed and $xi : mathrmSpecK rightarrow X$ be a $K$-valued point of $X$. We define the relative tangent space $T_xi(X/S)$ of $X$ in $xi$ over $S$ as the set of $S$-morphisms $t:mathrmSpecK[varepsilon] rightarrow X$ such that the composition of t with $mathrmSpecK rightarrow mathrmSpecK[varepsilon]$ is equal to $xi$ , where $K[varepsilon]$ is the ring of dual number over K.
Remark 6.12. (2) of this book says:
Let $iota : K hookrightarrow L$ be a field extnsion corresonding to the morphism $p:mathrmSpecL rightarrow mathrmSpecK$ and let $q:mathrmSpecL[varepsilon] rightarrow mathrmSpecK[varepsilon]$ be the canonical morphism induced by $p$. Then a morphism $phi : T_xi(X/S) otimes_KL rightarrow T_xi circ p(X/S)$ ,$totimes ell mapsto ell cdot(t circ q) $ is an isomorhism of $L$-vector spaces.
I can show that $phi$ is injective. But Is this surjective? Or Can I construct
the inverse map of $phi$ ?
Remark: $X$ is a "general" $S$-scheme. So the relative tangent space $T_xi(X/S)$ of X is not necessarily finite dimensional.
algebraic-geometry
algebraic-geometry
edited Aug 31 at 9:01
asked Aug 31 at 7:07
LOCOAS
134
134
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2900400%2fbase-extension-of-the-relative-tangent-spaces%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password