Base extension of the relative tangent spaces

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












I'm studying the relative tangent spaces in Algebraic Geometry I by Gortz,Wedhorn. The definition as follows:




Let $X$ be a $S$-scheme, $K$ be a filed and $xi : mathrmSpecK rightarrow X$ be a $K$-valued point of $X$. We define the relative tangent space $T_xi(X/S)$ of $X$ in $xi$ over $S$ as the set of $S$-morphisms $t:mathrmSpecK[varepsilon] rightarrow X$ such that the composition of t with $mathrmSpecK rightarrow mathrmSpecK[varepsilon]$ is equal to $xi$ , where $K[varepsilon]$ is the ring of dual number over K.




Remark 6.12. (2) of this book says:




Let $iota : K hookrightarrow L$ be a field extnsion corresonding to the morphism $p:mathrmSpecL rightarrow mathrmSpecK$ and let $q:mathrmSpecL[varepsilon] rightarrow mathrmSpecK[varepsilon]$ be the canonical morphism induced by $p$. Then a morphism $phi : T_xi(X/S) otimes_KL rightarrow T_xi circ p(X/S)$ ,$totimes ell mapsto ell cdot(t circ q) $ is an isomorhism of $L$-vector spaces.




I can show that $phi$ is injective. But Is this surjective? Or Can I construct
the inverse map of $phi$ ?



Remark: $X$ is a "general" $S$-scheme. So the relative tangent space $T_xi(X/S)$ of X is not necessarily finite dimensional.










share|cite|improve this question



























    up vote
    0
    down vote

    favorite












    I'm studying the relative tangent spaces in Algebraic Geometry I by Gortz,Wedhorn. The definition as follows:




    Let $X$ be a $S$-scheme, $K$ be a filed and $xi : mathrmSpecK rightarrow X$ be a $K$-valued point of $X$. We define the relative tangent space $T_xi(X/S)$ of $X$ in $xi$ over $S$ as the set of $S$-morphisms $t:mathrmSpecK[varepsilon] rightarrow X$ such that the composition of t with $mathrmSpecK rightarrow mathrmSpecK[varepsilon]$ is equal to $xi$ , where $K[varepsilon]$ is the ring of dual number over K.




    Remark 6.12. (2) of this book says:




    Let $iota : K hookrightarrow L$ be a field extnsion corresonding to the morphism $p:mathrmSpecL rightarrow mathrmSpecK$ and let $q:mathrmSpecL[varepsilon] rightarrow mathrmSpecK[varepsilon]$ be the canonical morphism induced by $p$. Then a morphism $phi : T_xi(X/S) otimes_KL rightarrow T_xi circ p(X/S)$ ,$totimes ell mapsto ell cdot(t circ q) $ is an isomorhism of $L$-vector spaces.




    I can show that $phi$ is injective. But Is this surjective? Or Can I construct
    the inverse map of $phi$ ?



    Remark: $X$ is a "general" $S$-scheme. So the relative tangent space $T_xi(X/S)$ of X is not necessarily finite dimensional.










    share|cite|improve this question

























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      I'm studying the relative tangent spaces in Algebraic Geometry I by Gortz,Wedhorn. The definition as follows:




      Let $X$ be a $S$-scheme, $K$ be a filed and $xi : mathrmSpecK rightarrow X$ be a $K$-valued point of $X$. We define the relative tangent space $T_xi(X/S)$ of $X$ in $xi$ over $S$ as the set of $S$-morphisms $t:mathrmSpecK[varepsilon] rightarrow X$ such that the composition of t with $mathrmSpecK rightarrow mathrmSpecK[varepsilon]$ is equal to $xi$ , where $K[varepsilon]$ is the ring of dual number over K.




      Remark 6.12. (2) of this book says:




      Let $iota : K hookrightarrow L$ be a field extnsion corresonding to the morphism $p:mathrmSpecL rightarrow mathrmSpecK$ and let $q:mathrmSpecL[varepsilon] rightarrow mathrmSpecK[varepsilon]$ be the canonical morphism induced by $p$. Then a morphism $phi : T_xi(X/S) otimes_KL rightarrow T_xi circ p(X/S)$ ,$totimes ell mapsto ell cdot(t circ q) $ is an isomorhism of $L$-vector spaces.




      I can show that $phi$ is injective. But Is this surjective? Or Can I construct
      the inverse map of $phi$ ?



      Remark: $X$ is a "general" $S$-scheme. So the relative tangent space $T_xi(X/S)$ of X is not necessarily finite dimensional.










      share|cite|improve this question















      I'm studying the relative tangent spaces in Algebraic Geometry I by Gortz,Wedhorn. The definition as follows:




      Let $X$ be a $S$-scheme, $K$ be a filed and $xi : mathrmSpecK rightarrow X$ be a $K$-valued point of $X$. We define the relative tangent space $T_xi(X/S)$ of $X$ in $xi$ over $S$ as the set of $S$-morphisms $t:mathrmSpecK[varepsilon] rightarrow X$ such that the composition of t with $mathrmSpecK rightarrow mathrmSpecK[varepsilon]$ is equal to $xi$ , where $K[varepsilon]$ is the ring of dual number over K.




      Remark 6.12. (2) of this book says:




      Let $iota : K hookrightarrow L$ be a field extnsion corresonding to the morphism $p:mathrmSpecL rightarrow mathrmSpecK$ and let $q:mathrmSpecL[varepsilon] rightarrow mathrmSpecK[varepsilon]$ be the canonical morphism induced by $p$. Then a morphism $phi : T_xi(X/S) otimes_KL rightarrow T_xi circ p(X/S)$ ,$totimes ell mapsto ell cdot(t circ q) $ is an isomorhism of $L$-vector spaces.




      I can show that $phi$ is injective. But Is this surjective? Or Can I construct
      the inverse map of $phi$ ?



      Remark: $X$ is a "general" $S$-scheme. So the relative tangent space $T_xi(X/S)$ of X is not necessarily finite dimensional.







      algebraic-geometry






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Aug 31 at 9:01

























      asked Aug 31 at 7:07









      LOCOAS

      134




      134

























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2900400%2fbase-extension-of-the-relative-tangent-spaces%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















           

          draft saved


          draft discarded















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2900400%2fbase-extension-of-the-relative-tangent-spaces%23new-answer', 'question_page');

          );

          Post as a guest













































































          這個網誌中的熱門文章

          How to combine Bézier curves to a surface?

          Mutual Information Always Non-negative

          Why am i infinitely getting the same tweet with the Twitter Search API?