Show that $(a-b)(c-d)(bara-bard)(barc-barb)+i(cbarc-dbard)textIm(cbarb-cbara-abarb)$ is real

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite
2












This is an exercise in Remmert's Theory of Complex Functions, GTM 122, page 17.




Show that for $a,b,c,dinmathbbC$ with $lvert arvert=lvert brvert=lvert crvert$ the complex number $$(a-b)(c-d)(bara-bard)(barc-barb)+i(cbarc-dbard)textIm(cbarb-cbara-abarb)$$ is real.




I let the above expression $w$ and tried showing the $w-barw=0$, but the expression is too complicated to handle and it seems like $w-barw$ depends on $d$, also. Is there any simpler way of showing $w$ is real? Please enlighten me.










share|cite|improve this question





















  • is not $lvert arvert=lvert brvert=lvert crvert=|d|$ ?
    – Nosrati
    Sep 4 at 12:18










  • No, only $lvert arvert=lvert brvert=lvert crvert$ :(
    – Dilemian
    Sep 4 at 12:21










  • So with $a=b=c=1$ and $dneq1$ the expression is not real.
    – Nosrati
    Sep 4 at 12:24







  • 1




    @Nosrati For $a=b=c=1$ the expression seems to be $0$.
    – Delta-u
    Sep 4 at 12:27










  • Hint: since it is supposed to be valid for all $d$, you can interpret it as a polynomial of second order in the absolute value of $d$. Hence collect terms of the same order in $|d|$ and check the three imaginary components independently and confirm the statement.
    – Ronald Blaak
    Sep 4 at 16:34














up vote
1
down vote

favorite
2












This is an exercise in Remmert's Theory of Complex Functions, GTM 122, page 17.




Show that for $a,b,c,dinmathbbC$ with $lvert arvert=lvert brvert=lvert crvert$ the complex number $$(a-b)(c-d)(bara-bard)(barc-barb)+i(cbarc-dbard)textIm(cbarb-cbara-abarb)$$ is real.




I let the above expression $w$ and tried showing the $w-barw=0$, but the expression is too complicated to handle and it seems like $w-barw$ depends on $d$, also. Is there any simpler way of showing $w$ is real? Please enlighten me.










share|cite|improve this question





















  • is not $lvert arvert=lvert brvert=lvert crvert=|d|$ ?
    – Nosrati
    Sep 4 at 12:18










  • No, only $lvert arvert=lvert brvert=lvert crvert$ :(
    – Dilemian
    Sep 4 at 12:21










  • So with $a=b=c=1$ and $dneq1$ the expression is not real.
    – Nosrati
    Sep 4 at 12:24







  • 1




    @Nosrati For $a=b=c=1$ the expression seems to be $0$.
    – Delta-u
    Sep 4 at 12:27










  • Hint: since it is supposed to be valid for all $d$, you can interpret it as a polynomial of second order in the absolute value of $d$. Hence collect terms of the same order in $|d|$ and check the three imaginary components independently and confirm the statement.
    – Ronald Blaak
    Sep 4 at 16:34












up vote
1
down vote

favorite
2









up vote
1
down vote

favorite
2






2





This is an exercise in Remmert's Theory of Complex Functions, GTM 122, page 17.




Show that for $a,b,c,dinmathbbC$ with $lvert arvert=lvert brvert=lvert crvert$ the complex number $$(a-b)(c-d)(bara-bard)(barc-barb)+i(cbarc-dbard)textIm(cbarb-cbara-abarb)$$ is real.




I let the above expression $w$ and tried showing the $w-barw=0$, but the expression is too complicated to handle and it seems like $w-barw$ depends on $d$, also. Is there any simpler way of showing $w$ is real? Please enlighten me.










share|cite|improve this question













This is an exercise in Remmert's Theory of Complex Functions, GTM 122, page 17.




Show that for $a,b,c,dinmathbbC$ with $lvert arvert=lvert brvert=lvert crvert$ the complex number $$(a-b)(c-d)(bara-bard)(barc-barb)+i(cbarc-dbard)textIm(cbarb-cbara-abarb)$$ is real.




I let the above expression $w$ and tried showing the $w-barw=0$, but the expression is too complicated to handle and it seems like $w-barw$ depends on $d$, also. Is there any simpler way of showing $w$ is real? Please enlighten me.







complex-analysis complex-numbers






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Sep 4 at 12:15









Dilemian

382512




382512











  • is not $lvert arvert=lvert brvert=lvert crvert=|d|$ ?
    – Nosrati
    Sep 4 at 12:18










  • No, only $lvert arvert=lvert brvert=lvert crvert$ :(
    – Dilemian
    Sep 4 at 12:21










  • So with $a=b=c=1$ and $dneq1$ the expression is not real.
    – Nosrati
    Sep 4 at 12:24







  • 1




    @Nosrati For $a=b=c=1$ the expression seems to be $0$.
    – Delta-u
    Sep 4 at 12:27










  • Hint: since it is supposed to be valid for all $d$, you can interpret it as a polynomial of second order in the absolute value of $d$. Hence collect terms of the same order in $|d|$ and check the three imaginary components independently and confirm the statement.
    – Ronald Blaak
    Sep 4 at 16:34
















  • is not $lvert arvert=lvert brvert=lvert crvert=|d|$ ?
    – Nosrati
    Sep 4 at 12:18










  • No, only $lvert arvert=lvert brvert=lvert crvert$ :(
    – Dilemian
    Sep 4 at 12:21










  • So with $a=b=c=1$ and $dneq1$ the expression is not real.
    – Nosrati
    Sep 4 at 12:24







  • 1




    @Nosrati For $a=b=c=1$ the expression seems to be $0$.
    – Delta-u
    Sep 4 at 12:27










  • Hint: since it is supposed to be valid for all $d$, you can interpret it as a polynomial of second order in the absolute value of $d$. Hence collect terms of the same order in $|d|$ and check the three imaginary components independently and confirm the statement.
    – Ronald Blaak
    Sep 4 at 16:34















is not $lvert arvert=lvert brvert=lvert crvert=|d|$ ?
– Nosrati
Sep 4 at 12:18




is not $lvert arvert=lvert brvert=lvert crvert=|d|$ ?
– Nosrati
Sep 4 at 12:18












No, only $lvert arvert=lvert brvert=lvert crvert$ :(
– Dilemian
Sep 4 at 12:21




No, only $lvert arvert=lvert brvert=lvert crvert$ :(
– Dilemian
Sep 4 at 12:21












So with $a=b=c=1$ and $dneq1$ the expression is not real.
– Nosrati
Sep 4 at 12:24





So with $a=b=c=1$ and $dneq1$ the expression is not real.
– Nosrati
Sep 4 at 12:24





1




1




@Nosrati For $a=b=c=1$ the expression seems to be $0$.
– Delta-u
Sep 4 at 12:27




@Nosrati For $a=b=c=1$ the expression seems to be $0$.
– Delta-u
Sep 4 at 12:27












Hint: since it is supposed to be valid for all $d$, you can interpret it as a polynomial of second order in the absolute value of $d$. Hence collect terms of the same order in $|d|$ and check the three imaginary components independently and confirm the statement.
– Ronald Blaak
Sep 4 at 16:34




Hint: since it is supposed to be valid for all $d$, you can interpret it as a polynomial of second order in the absolute value of $d$. Hence collect terms of the same order in $|d|$ and check the three imaginary components independently and confirm the statement.
– Ronald Blaak
Sep 4 at 16:34










1 Answer
1






active

oldest

votes

















up vote
2
down vote



accepted
+100










If $b=0$ or $c=0$, then the complex number equals $0$ which is real.



In the following, $bnot =0$ and $cnot=0$.



In order to prove that the claim is true, it is sufficient to prove the following two lemmas :



Lemma 1 : $$textIm(cbarb-cbara-abarb)=-fracbar a(a-b)(b-c)(c-a)2bc$$



Lemma 2 : $$textIm((a-b)(c-d)(bara-bard)(barc-barb))=(cbar c-dbar d)times fracbar a(a-b)(b-c)(c-a)2bc$$



From the two lemmas, we see that the complex number equals $textRe((a-b)(c-d)(bara-bard)(barc-barb))$ which is real, so the claim is true.




Proof for lemma 1 :



Using $abar a=bbar b=cbar c$, we have
$$beginaligntextIm(cbarb-cbara-abarb)
&=frac 12left((cbarb-cbara-abarb)-overline(cbarb-cbara-abarb)right)
\\&=frac 12left((cbarb-cbara-abarb)-(bar c b-bar ca-bar a b)right)
\\&=frac 12left(cfracabar ab-cbara-afracabar ab-fracabar ac b+fracabar aca+bar a bright)
\\&=fracbar a2bcleft(c^2a-bc^2-ca^2-ab^2+a^2b+b^2cright)
\\&=fracbar a2bcleft(c^2(a-b)-c(a-b)(a+b)+ab(a-b)right)
\\&=fracbar a(a-b)2bcleft(c^2-c(a+b)+abright)
\\&=fracbar a(a-b)2bc(c-a)(c-b)
\\&=-fracbar a(a-b)(b-c)(c-a)2bcqquadsquareendalign$$



Proof for lemma 2 :



Using $abar a=bbar b=cbar c$, we have
$$beginalign&textIm((a-b)(c-d)(bara-bard)(barc-barb))
\\&=frac 12(a-b)(c-d)(bara-bard)(barc-bar b)-frac 12overline(a-b)(c-d)(bara-bard)(barc-barb)
\\&=frac 12(a-b)(c-d)(bara-bard)(barc-barb)-frac 12(bar a-bar b)(bar c-bar d)(a-d)(c-b)
\\&=frac 12(a-b)(c-d)(bara-bard)left(fracabar ac-fracabar abright)-frac 12left(bar a-fracabar abright)left(fracabar ac-bar dright)(a-d)(c-b)
\\&=fracabar a2bc(a-b)(c-d)(bara-bard)left(b-cright)-fracbar a2bcleft(b-aright)left(abar a-cbar dright)(a-d)(c-b)
\\&=fracbar a(a-b)(b-c)2bcleft(a(c-d)(bara-bard)-c(bar c-bar d)(a-d)right)
\\&=fracbar a(a-b)(b-c)2bcleft((c-a)cbar c-(c-a)dbar dright)
\\&=fracbar a(a-b)(b-c)(c-a)(cbar c-dbar d)2bc
\\&=(cbar c-dbar d)times fracbar a(a-b)(b-c)(c-a)2bcqquadsquareendalign$$






share|cite|improve this answer




















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2904979%2fshow-that-a-bc-d-bara-bard-barc-barbic-barc-d-bard-tex%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    2
    down vote



    accepted
    +100










    If $b=0$ or $c=0$, then the complex number equals $0$ which is real.



    In the following, $bnot =0$ and $cnot=0$.



    In order to prove that the claim is true, it is sufficient to prove the following two lemmas :



    Lemma 1 : $$textIm(cbarb-cbara-abarb)=-fracbar a(a-b)(b-c)(c-a)2bc$$



    Lemma 2 : $$textIm((a-b)(c-d)(bara-bard)(barc-barb))=(cbar c-dbar d)times fracbar a(a-b)(b-c)(c-a)2bc$$



    From the two lemmas, we see that the complex number equals $textRe((a-b)(c-d)(bara-bard)(barc-barb))$ which is real, so the claim is true.




    Proof for lemma 1 :



    Using $abar a=bbar b=cbar c$, we have
    $$beginaligntextIm(cbarb-cbara-abarb)
    &=frac 12left((cbarb-cbara-abarb)-overline(cbarb-cbara-abarb)right)
    \\&=frac 12left((cbarb-cbara-abarb)-(bar c b-bar ca-bar a b)right)
    \\&=frac 12left(cfracabar ab-cbara-afracabar ab-fracabar ac b+fracabar aca+bar a bright)
    \\&=fracbar a2bcleft(c^2a-bc^2-ca^2-ab^2+a^2b+b^2cright)
    \\&=fracbar a2bcleft(c^2(a-b)-c(a-b)(a+b)+ab(a-b)right)
    \\&=fracbar a(a-b)2bcleft(c^2-c(a+b)+abright)
    \\&=fracbar a(a-b)2bc(c-a)(c-b)
    \\&=-fracbar a(a-b)(b-c)(c-a)2bcqquadsquareendalign$$



    Proof for lemma 2 :



    Using $abar a=bbar b=cbar c$, we have
    $$beginalign&textIm((a-b)(c-d)(bara-bard)(barc-barb))
    \\&=frac 12(a-b)(c-d)(bara-bard)(barc-bar b)-frac 12overline(a-b)(c-d)(bara-bard)(barc-barb)
    \\&=frac 12(a-b)(c-d)(bara-bard)(barc-barb)-frac 12(bar a-bar b)(bar c-bar d)(a-d)(c-b)
    \\&=frac 12(a-b)(c-d)(bara-bard)left(fracabar ac-fracabar abright)-frac 12left(bar a-fracabar abright)left(fracabar ac-bar dright)(a-d)(c-b)
    \\&=fracabar a2bc(a-b)(c-d)(bara-bard)left(b-cright)-fracbar a2bcleft(b-aright)left(abar a-cbar dright)(a-d)(c-b)
    \\&=fracbar a(a-b)(b-c)2bcleft(a(c-d)(bara-bard)-c(bar c-bar d)(a-d)right)
    \\&=fracbar a(a-b)(b-c)2bcleft((c-a)cbar c-(c-a)dbar dright)
    \\&=fracbar a(a-b)(b-c)(c-a)(cbar c-dbar d)2bc
    \\&=(cbar c-dbar d)times fracbar a(a-b)(b-c)(c-a)2bcqquadsquareendalign$$






    share|cite|improve this answer
























      up vote
      2
      down vote



      accepted
      +100










      If $b=0$ or $c=0$, then the complex number equals $0$ which is real.



      In the following, $bnot =0$ and $cnot=0$.



      In order to prove that the claim is true, it is sufficient to prove the following two lemmas :



      Lemma 1 : $$textIm(cbarb-cbara-abarb)=-fracbar a(a-b)(b-c)(c-a)2bc$$



      Lemma 2 : $$textIm((a-b)(c-d)(bara-bard)(barc-barb))=(cbar c-dbar d)times fracbar a(a-b)(b-c)(c-a)2bc$$



      From the two lemmas, we see that the complex number equals $textRe((a-b)(c-d)(bara-bard)(barc-barb))$ which is real, so the claim is true.




      Proof for lemma 1 :



      Using $abar a=bbar b=cbar c$, we have
      $$beginaligntextIm(cbarb-cbara-abarb)
      &=frac 12left((cbarb-cbara-abarb)-overline(cbarb-cbara-abarb)right)
      \\&=frac 12left((cbarb-cbara-abarb)-(bar c b-bar ca-bar a b)right)
      \\&=frac 12left(cfracabar ab-cbara-afracabar ab-fracabar ac b+fracabar aca+bar a bright)
      \\&=fracbar a2bcleft(c^2a-bc^2-ca^2-ab^2+a^2b+b^2cright)
      \\&=fracbar a2bcleft(c^2(a-b)-c(a-b)(a+b)+ab(a-b)right)
      \\&=fracbar a(a-b)2bcleft(c^2-c(a+b)+abright)
      \\&=fracbar a(a-b)2bc(c-a)(c-b)
      \\&=-fracbar a(a-b)(b-c)(c-a)2bcqquadsquareendalign$$



      Proof for lemma 2 :



      Using $abar a=bbar b=cbar c$, we have
      $$beginalign&textIm((a-b)(c-d)(bara-bard)(barc-barb))
      \\&=frac 12(a-b)(c-d)(bara-bard)(barc-bar b)-frac 12overline(a-b)(c-d)(bara-bard)(barc-barb)
      \\&=frac 12(a-b)(c-d)(bara-bard)(barc-barb)-frac 12(bar a-bar b)(bar c-bar d)(a-d)(c-b)
      \\&=frac 12(a-b)(c-d)(bara-bard)left(fracabar ac-fracabar abright)-frac 12left(bar a-fracabar abright)left(fracabar ac-bar dright)(a-d)(c-b)
      \\&=fracabar a2bc(a-b)(c-d)(bara-bard)left(b-cright)-fracbar a2bcleft(b-aright)left(abar a-cbar dright)(a-d)(c-b)
      \\&=fracbar a(a-b)(b-c)2bcleft(a(c-d)(bara-bard)-c(bar c-bar d)(a-d)right)
      \\&=fracbar a(a-b)(b-c)2bcleft((c-a)cbar c-(c-a)dbar dright)
      \\&=fracbar a(a-b)(b-c)(c-a)(cbar c-dbar d)2bc
      \\&=(cbar c-dbar d)times fracbar a(a-b)(b-c)(c-a)2bcqquadsquareendalign$$






      share|cite|improve this answer






















        up vote
        2
        down vote



        accepted
        +100







        up vote
        2
        down vote



        accepted
        +100




        +100




        If $b=0$ or $c=0$, then the complex number equals $0$ which is real.



        In the following, $bnot =0$ and $cnot=0$.



        In order to prove that the claim is true, it is sufficient to prove the following two lemmas :



        Lemma 1 : $$textIm(cbarb-cbara-abarb)=-fracbar a(a-b)(b-c)(c-a)2bc$$



        Lemma 2 : $$textIm((a-b)(c-d)(bara-bard)(barc-barb))=(cbar c-dbar d)times fracbar a(a-b)(b-c)(c-a)2bc$$



        From the two lemmas, we see that the complex number equals $textRe((a-b)(c-d)(bara-bard)(barc-barb))$ which is real, so the claim is true.




        Proof for lemma 1 :



        Using $abar a=bbar b=cbar c$, we have
        $$beginaligntextIm(cbarb-cbara-abarb)
        &=frac 12left((cbarb-cbara-abarb)-overline(cbarb-cbara-abarb)right)
        \\&=frac 12left((cbarb-cbara-abarb)-(bar c b-bar ca-bar a b)right)
        \\&=frac 12left(cfracabar ab-cbara-afracabar ab-fracabar ac b+fracabar aca+bar a bright)
        \\&=fracbar a2bcleft(c^2a-bc^2-ca^2-ab^2+a^2b+b^2cright)
        \\&=fracbar a2bcleft(c^2(a-b)-c(a-b)(a+b)+ab(a-b)right)
        \\&=fracbar a(a-b)2bcleft(c^2-c(a+b)+abright)
        \\&=fracbar a(a-b)2bc(c-a)(c-b)
        \\&=-fracbar a(a-b)(b-c)(c-a)2bcqquadsquareendalign$$



        Proof for lemma 2 :



        Using $abar a=bbar b=cbar c$, we have
        $$beginalign&textIm((a-b)(c-d)(bara-bard)(barc-barb))
        \\&=frac 12(a-b)(c-d)(bara-bard)(barc-bar b)-frac 12overline(a-b)(c-d)(bara-bard)(barc-barb)
        \\&=frac 12(a-b)(c-d)(bara-bard)(barc-barb)-frac 12(bar a-bar b)(bar c-bar d)(a-d)(c-b)
        \\&=frac 12(a-b)(c-d)(bara-bard)left(fracabar ac-fracabar abright)-frac 12left(bar a-fracabar abright)left(fracabar ac-bar dright)(a-d)(c-b)
        \\&=fracabar a2bc(a-b)(c-d)(bara-bard)left(b-cright)-fracbar a2bcleft(b-aright)left(abar a-cbar dright)(a-d)(c-b)
        \\&=fracbar a(a-b)(b-c)2bcleft(a(c-d)(bara-bard)-c(bar c-bar d)(a-d)right)
        \\&=fracbar a(a-b)(b-c)2bcleft((c-a)cbar c-(c-a)dbar dright)
        \\&=fracbar a(a-b)(b-c)(c-a)(cbar c-dbar d)2bc
        \\&=(cbar c-dbar d)times fracbar a(a-b)(b-c)(c-a)2bcqquadsquareendalign$$






        share|cite|improve this answer












        If $b=0$ or $c=0$, then the complex number equals $0$ which is real.



        In the following, $bnot =0$ and $cnot=0$.



        In order to prove that the claim is true, it is sufficient to prove the following two lemmas :



        Lemma 1 : $$textIm(cbarb-cbara-abarb)=-fracbar a(a-b)(b-c)(c-a)2bc$$



        Lemma 2 : $$textIm((a-b)(c-d)(bara-bard)(barc-barb))=(cbar c-dbar d)times fracbar a(a-b)(b-c)(c-a)2bc$$



        From the two lemmas, we see that the complex number equals $textRe((a-b)(c-d)(bara-bard)(barc-barb))$ which is real, so the claim is true.




        Proof for lemma 1 :



        Using $abar a=bbar b=cbar c$, we have
        $$beginaligntextIm(cbarb-cbara-abarb)
        &=frac 12left((cbarb-cbara-abarb)-overline(cbarb-cbara-abarb)right)
        \\&=frac 12left((cbarb-cbara-abarb)-(bar c b-bar ca-bar a b)right)
        \\&=frac 12left(cfracabar ab-cbara-afracabar ab-fracabar ac b+fracabar aca+bar a bright)
        \\&=fracbar a2bcleft(c^2a-bc^2-ca^2-ab^2+a^2b+b^2cright)
        \\&=fracbar a2bcleft(c^2(a-b)-c(a-b)(a+b)+ab(a-b)right)
        \\&=fracbar a(a-b)2bcleft(c^2-c(a+b)+abright)
        \\&=fracbar a(a-b)2bc(c-a)(c-b)
        \\&=-fracbar a(a-b)(b-c)(c-a)2bcqquadsquareendalign$$



        Proof for lemma 2 :



        Using $abar a=bbar b=cbar c$, we have
        $$beginalign&textIm((a-b)(c-d)(bara-bard)(barc-barb))
        \\&=frac 12(a-b)(c-d)(bara-bard)(barc-bar b)-frac 12overline(a-b)(c-d)(bara-bard)(barc-barb)
        \\&=frac 12(a-b)(c-d)(bara-bard)(barc-barb)-frac 12(bar a-bar b)(bar c-bar d)(a-d)(c-b)
        \\&=frac 12(a-b)(c-d)(bara-bard)left(fracabar ac-fracabar abright)-frac 12left(bar a-fracabar abright)left(fracabar ac-bar dright)(a-d)(c-b)
        \\&=fracabar a2bc(a-b)(c-d)(bara-bard)left(b-cright)-fracbar a2bcleft(b-aright)left(abar a-cbar dright)(a-d)(c-b)
        \\&=fracbar a(a-b)(b-c)2bcleft(a(c-d)(bara-bard)-c(bar c-bar d)(a-d)right)
        \\&=fracbar a(a-b)(b-c)2bcleft((c-a)cbar c-(c-a)dbar dright)
        \\&=fracbar a(a-b)(b-c)(c-a)(cbar c-dbar d)2bc
        \\&=(cbar c-dbar d)times fracbar a(a-b)(b-c)(c-a)2bcqquadsquareendalign$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Sep 10 at 5:55









        mathlove

        87.7k877209




        87.7k877209



























             

            draft saved


            draft discarded















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2904979%2fshow-that-a-bc-d-bara-bard-barc-barbic-barc-d-bard-tex%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            How to combine Bézier curves to a surface?

            Mutual Information Always Non-negative

            Why am i infinitely getting the same tweet with the Twitter Search API?