Proving sum of recurrence sequence converges to $2^-55$
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
$$24a(n)=26a(n-1)-9a(n-2)+a(n-3)$$
$$a(0)=46, a(1)=8, a(2)=1$$
$$sumlimits_k=3^inftya(k)=2^-55$$
How can I prove it?
summation proof-writing recurrence-relations
add a comment |Â
up vote
0
down vote
favorite
$$24a(n)=26a(n-1)-9a(n-2)+a(n-3)$$
$$a(0)=46, a(1)=8, a(2)=1$$
$$sumlimits_k=3^inftya(k)=2^-55$$
How can I prove it?
summation proof-writing recurrence-relations
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
$$24a(n)=26a(n-1)-9a(n-2)+a(n-3)$$
$$a(0)=46, a(1)=8, a(2)=1$$
$$sumlimits_k=3^inftya(k)=2^-55$$
How can I prove it?
summation proof-writing recurrence-relations
$$24a(n)=26a(n-1)-9a(n-2)+a(n-3)$$
$$a(0)=46, a(1)=8, a(2)=1$$
$$sumlimits_k=3^inftya(k)=2^-55$$
How can I prove it?
summation proof-writing recurrence-relations
summation proof-writing recurrence-relations
asked Sep 4 at 11:11
user565184
285
285
add a comment |Â
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
2
down vote
accepted
$$24r^3=26r^2-9r+1$$
solutions
$$r=frac12,frac13,frac14$$
$$a_n=xleft(frac12right)^n+yleft(frac13right)^n+zleft(frac14right)^n$$
Determine $x,y,z$ using base conditions
$$a_0=46=x+y+z$$
$$a_1=8=x/2+y/3+z/4$$
$$a_2=1=x/4+y/9+z/16$$
$$fbox
x=4, y=-54,z=96
$$
$$a_n=4left(frac12right)^n-54left(frac13right)^n+96left(frac14right)^n$$
$$sumlimits_k=3^inftya(k)=sumlimits_k=3^inftyleft(4left(frac12right)^k-54left(frac13right)^k+96left(frac14right)^kright)$$
$$sum_k=3^infty4left(frac12right)^k=4sum_k=3^inftyleft(frac12right)^k=4cdotfracleft(frac12right)^31-frac12=1$$
$$54sum_k=3^inftyleft(frac13right)^k=54fracleft(frac13right)^31-frac13=3$$
$$96sum_k=3^inftyleft(frac14right)^k=96cdotfracleft(frac14right)^31-frac14=2$$
$$sumlimits_k=3^inftya_k=1-3+2=0$$
Do you really get $2^-55$ in the end? WA disagrees.
â lhf
Sep 4 at 11:48
@lhf, you are right, it looks like solution is $2^-47$.
â user565184
Sep 4 at 12:05
@user565184, are you summing this with a computer program? This can be misleading.
â lhf
Sep 4 at 12:06
@lhf, by hand, of course. Thank you for answer! Sorry for my bad sense of humor.
â user565184
Sep 4 at 12:08
Answer is not $2^-55$ for sure
â Deepesh Meena
Sep 4 at 12:10
add a comment |Â
up vote
2
down vote
Let $S=sumlimits_k=3^inftya(k)$. Then
$$
24S = 26(S+a(2))-9(S+a(1)+a(2))+(S+a(0)+a(1)+a(2))
$$
This gives $S=0$.
add a comment |Â
up vote
1
down vote
Consider the generating function $$f(x)=a_0x^0+a_1x^1+a_2x^2+cdots+a_nx^n+cdots.tag1$$
We have $$f(x)cdot x^3=a_0x^3+a_1x^4+a_2x^5+cdots+a_nx^n+3+cdots;tag2$$
$$f(x)cdot x^2=a_0x^2+a_1x^3+a_2x^4+cdots+a_nx^n+2+cdots;tag3$$
$$f(x)cdot x=a_0x^1+a_1x^2+a_2x^3+cdots+a_nx^n+1+cdots.tag4$$
Thus, by $(2)-9times(3)+26times(4)-(1)$, we obtain
beginalign*
f(x)(x^3-9x^2+26x-1)&=-9a_0x^2+26a_0x^1+26a_1x^2-a_0x^0-a_1x^1-a_2x^2\
&=-207x^2+1188x-46
endalign*
Hence $$boxedf(x)=frac-207x^2+1188x-46x^3-9x^2+26x-1.$$
Thus $$sum_k=0^infty a_k=f(1)=55.$$
As a result, $$sum_k=3^infty a_k=sum_k=0^infty a_k-sum_k=0^2 a_k=55-55=0.$$
Very nice point of view, thank you for answer!
â user565184
Sep 4 at 15:41
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
$$24r^3=26r^2-9r+1$$
solutions
$$r=frac12,frac13,frac14$$
$$a_n=xleft(frac12right)^n+yleft(frac13right)^n+zleft(frac14right)^n$$
Determine $x,y,z$ using base conditions
$$a_0=46=x+y+z$$
$$a_1=8=x/2+y/3+z/4$$
$$a_2=1=x/4+y/9+z/16$$
$$fbox
x=4, y=-54,z=96
$$
$$a_n=4left(frac12right)^n-54left(frac13right)^n+96left(frac14right)^n$$
$$sumlimits_k=3^inftya(k)=sumlimits_k=3^inftyleft(4left(frac12right)^k-54left(frac13right)^k+96left(frac14right)^kright)$$
$$sum_k=3^infty4left(frac12right)^k=4sum_k=3^inftyleft(frac12right)^k=4cdotfracleft(frac12right)^31-frac12=1$$
$$54sum_k=3^inftyleft(frac13right)^k=54fracleft(frac13right)^31-frac13=3$$
$$96sum_k=3^inftyleft(frac14right)^k=96cdotfracleft(frac14right)^31-frac14=2$$
$$sumlimits_k=3^inftya_k=1-3+2=0$$
Do you really get $2^-55$ in the end? WA disagrees.
â lhf
Sep 4 at 11:48
@lhf, you are right, it looks like solution is $2^-47$.
â user565184
Sep 4 at 12:05
@user565184, are you summing this with a computer program? This can be misleading.
â lhf
Sep 4 at 12:06
@lhf, by hand, of course. Thank you for answer! Sorry for my bad sense of humor.
â user565184
Sep 4 at 12:08
Answer is not $2^-55$ for sure
â Deepesh Meena
Sep 4 at 12:10
add a comment |Â
up vote
2
down vote
accepted
$$24r^3=26r^2-9r+1$$
solutions
$$r=frac12,frac13,frac14$$
$$a_n=xleft(frac12right)^n+yleft(frac13right)^n+zleft(frac14right)^n$$
Determine $x,y,z$ using base conditions
$$a_0=46=x+y+z$$
$$a_1=8=x/2+y/3+z/4$$
$$a_2=1=x/4+y/9+z/16$$
$$fbox
x=4, y=-54,z=96
$$
$$a_n=4left(frac12right)^n-54left(frac13right)^n+96left(frac14right)^n$$
$$sumlimits_k=3^inftya(k)=sumlimits_k=3^inftyleft(4left(frac12right)^k-54left(frac13right)^k+96left(frac14right)^kright)$$
$$sum_k=3^infty4left(frac12right)^k=4sum_k=3^inftyleft(frac12right)^k=4cdotfracleft(frac12right)^31-frac12=1$$
$$54sum_k=3^inftyleft(frac13right)^k=54fracleft(frac13right)^31-frac13=3$$
$$96sum_k=3^inftyleft(frac14right)^k=96cdotfracleft(frac14right)^31-frac14=2$$
$$sumlimits_k=3^inftya_k=1-3+2=0$$
Do you really get $2^-55$ in the end? WA disagrees.
â lhf
Sep 4 at 11:48
@lhf, you are right, it looks like solution is $2^-47$.
â user565184
Sep 4 at 12:05
@user565184, are you summing this with a computer program? This can be misleading.
â lhf
Sep 4 at 12:06
@lhf, by hand, of course. Thank you for answer! Sorry for my bad sense of humor.
â user565184
Sep 4 at 12:08
Answer is not $2^-55$ for sure
â Deepesh Meena
Sep 4 at 12:10
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
$$24r^3=26r^2-9r+1$$
solutions
$$r=frac12,frac13,frac14$$
$$a_n=xleft(frac12right)^n+yleft(frac13right)^n+zleft(frac14right)^n$$
Determine $x,y,z$ using base conditions
$$a_0=46=x+y+z$$
$$a_1=8=x/2+y/3+z/4$$
$$a_2=1=x/4+y/9+z/16$$
$$fbox
x=4, y=-54,z=96
$$
$$a_n=4left(frac12right)^n-54left(frac13right)^n+96left(frac14right)^n$$
$$sumlimits_k=3^inftya(k)=sumlimits_k=3^inftyleft(4left(frac12right)^k-54left(frac13right)^k+96left(frac14right)^kright)$$
$$sum_k=3^infty4left(frac12right)^k=4sum_k=3^inftyleft(frac12right)^k=4cdotfracleft(frac12right)^31-frac12=1$$
$$54sum_k=3^inftyleft(frac13right)^k=54fracleft(frac13right)^31-frac13=3$$
$$96sum_k=3^inftyleft(frac14right)^k=96cdotfracleft(frac14right)^31-frac14=2$$
$$sumlimits_k=3^inftya_k=1-3+2=0$$
$$24r^3=26r^2-9r+1$$
solutions
$$r=frac12,frac13,frac14$$
$$a_n=xleft(frac12right)^n+yleft(frac13right)^n+zleft(frac14right)^n$$
Determine $x,y,z$ using base conditions
$$a_0=46=x+y+z$$
$$a_1=8=x/2+y/3+z/4$$
$$a_2=1=x/4+y/9+z/16$$
$$fbox
x=4, y=-54,z=96
$$
$$a_n=4left(frac12right)^n-54left(frac13right)^n+96left(frac14right)^n$$
$$sumlimits_k=3^inftya(k)=sumlimits_k=3^inftyleft(4left(frac12right)^k-54left(frac13right)^k+96left(frac14right)^kright)$$
$$sum_k=3^infty4left(frac12right)^k=4sum_k=3^inftyleft(frac12right)^k=4cdotfracleft(frac12right)^31-frac12=1$$
$$54sum_k=3^inftyleft(frac13right)^k=54fracleft(frac13right)^31-frac13=3$$
$$96sum_k=3^inftyleft(frac14right)^k=96cdotfracleft(frac14right)^31-frac14=2$$
$$sumlimits_k=3^inftya_k=1-3+2=0$$
edited Sep 4 at 12:17
answered Sep 4 at 11:19
Deepesh Meena
3,8012825
3,8012825
Do you really get $2^-55$ in the end? WA disagrees.
â lhf
Sep 4 at 11:48
@lhf, you are right, it looks like solution is $2^-47$.
â user565184
Sep 4 at 12:05
@user565184, are you summing this with a computer program? This can be misleading.
â lhf
Sep 4 at 12:06
@lhf, by hand, of course. Thank you for answer! Sorry for my bad sense of humor.
â user565184
Sep 4 at 12:08
Answer is not $2^-55$ for sure
â Deepesh Meena
Sep 4 at 12:10
add a comment |Â
Do you really get $2^-55$ in the end? WA disagrees.
â lhf
Sep 4 at 11:48
@lhf, you are right, it looks like solution is $2^-47$.
â user565184
Sep 4 at 12:05
@user565184, are you summing this with a computer program? This can be misleading.
â lhf
Sep 4 at 12:06
@lhf, by hand, of course. Thank you for answer! Sorry for my bad sense of humor.
â user565184
Sep 4 at 12:08
Answer is not $2^-55$ for sure
â Deepesh Meena
Sep 4 at 12:10
Do you really get $2^-55$ in the end? WA disagrees.
â lhf
Sep 4 at 11:48
Do you really get $2^-55$ in the end? WA disagrees.
â lhf
Sep 4 at 11:48
@lhf, you are right, it looks like solution is $2^-47$.
â user565184
Sep 4 at 12:05
@lhf, you are right, it looks like solution is $2^-47$.
â user565184
Sep 4 at 12:05
@user565184, are you summing this with a computer program? This can be misleading.
â lhf
Sep 4 at 12:06
@user565184, are you summing this with a computer program? This can be misleading.
â lhf
Sep 4 at 12:06
@lhf, by hand, of course. Thank you for answer! Sorry for my bad sense of humor.
â user565184
Sep 4 at 12:08
@lhf, by hand, of course. Thank you for answer! Sorry for my bad sense of humor.
â user565184
Sep 4 at 12:08
Answer is not $2^-55$ for sure
â Deepesh Meena
Sep 4 at 12:10
Answer is not $2^-55$ for sure
â Deepesh Meena
Sep 4 at 12:10
add a comment |Â
up vote
2
down vote
Let $S=sumlimits_k=3^inftya(k)$. Then
$$
24S = 26(S+a(2))-9(S+a(1)+a(2))+(S+a(0)+a(1)+a(2))
$$
This gives $S=0$.
add a comment |Â
up vote
2
down vote
Let $S=sumlimits_k=3^inftya(k)$. Then
$$
24S = 26(S+a(2))-9(S+a(1)+a(2))+(S+a(0)+a(1)+a(2))
$$
This gives $S=0$.
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Let $S=sumlimits_k=3^inftya(k)$. Then
$$
24S = 26(S+a(2))-9(S+a(1)+a(2))+(S+a(0)+a(1)+a(2))
$$
This gives $S=0$.
Let $S=sumlimits_k=3^inftya(k)$. Then
$$
24S = 26(S+a(2))-9(S+a(1)+a(2))+(S+a(0)+a(1)+a(2))
$$
This gives $S=0$.
answered Sep 4 at 11:50
lhf
157k9161372
157k9161372
add a comment |Â
add a comment |Â
up vote
1
down vote
Consider the generating function $$f(x)=a_0x^0+a_1x^1+a_2x^2+cdots+a_nx^n+cdots.tag1$$
We have $$f(x)cdot x^3=a_0x^3+a_1x^4+a_2x^5+cdots+a_nx^n+3+cdots;tag2$$
$$f(x)cdot x^2=a_0x^2+a_1x^3+a_2x^4+cdots+a_nx^n+2+cdots;tag3$$
$$f(x)cdot x=a_0x^1+a_1x^2+a_2x^3+cdots+a_nx^n+1+cdots.tag4$$
Thus, by $(2)-9times(3)+26times(4)-(1)$, we obtain
beginalign*
f(x)(x^3-9x^2+26x-1)&=-9a_0x^2+26a_0x^1+26a_1x^2-a_0x^0-a_1x^1-a_2x^2\
&=-207x^2+1188x-46
endalign*
Hence $$boxedf(x)=frac-207x^2+1188x-46x^3-9x^2+26x-1.$$
Thus $$sum_k=0^infty a_k=f(1)=55.$$
As a result, $$sum_k=3^infty a_k=sum_k=0^infty a_k-sum_k=0^2 a_k=55-55=0.$$
Very nice point of view, thank you for answer!
â user565184
Sep 4 at 15:41
add a comment |Â
up vote
1
down vote
Consider the generating function $$f(x)=a_0x^0+a_1x^1+a_2x^2+cdots+a_nx^n+cdots.tag1$$
We have $$f(x)cdot x^3=a_0x^3+a_1x^4+a_2x^5+cdots+a_nx^n+3+cdots;tag2$$
$$f(x)cdot x^2=a_0x^2+a_1x^3+a_2x^4+cdots+a_nx^n+2+cdots;tag3$$
$$f(x)cdot x=a_0x^1+a_1x^2+a_2x^3+cdots+a_nx^n+1+cdots.tag4$$
Thus, by $(2)-9times(3)+26times(4)-(1)$, we obtain
beginalign*
f(x)(x^3-9x^2+26x-1)&=-9a_0x^2+26a_0x^1+26a_1x^2-a_0x^0-a_1x^1-a_2x^2\
&=-207x^2+1188x-46
endalign*
Hence $$boxedf(x)=frac-207x^2+1188x-46x^3-9x^2+26x-1.$$
Thus $$sum_k=0^infty a_k=f(1)=55.$$
As a result, $$sum_k=3^infty a_k=sum_k=0^infty a_k-sum_k=0^2 a_k=55-55=0.$$
Very nice point of view, thank you for answer!
â user565184
Sep 4 at 15:41
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Consider the generating function $$f(x)=a_0x^0+a_1x^1+a_2x^2+cdots+a_nx^n+cdots.tag1$$
We have $$f(x)cdot x^3=a_0x^3+a_1x^4+a_2x^5+cdots+a_nx^n+3+cdots;tag2$$
$$f(x)cdot x^2=a_0x^2+a_1x^3+a_2x^4+cdots+a_nx^n+2+cdots;tag3$$
$$f(x)cdot x=a_0x^1+a_1x^2+a_2x^3+cdots+a_nx^n+1+cdots.tag4$$
Thus, by $(2)-9times(3)+26times(4)-(1)$, we obtain
beginalign*
f(x)(x^3-9x^2+26x-1)&=-9a_0x^2+26a_0x^1+26a_1x^2-a_0x^0-a_1x^1-a_2x^2\
&=-207x^2+1188x-46
endalign*
Hence $$boxedf(x)=frac-207x^2+1188x-46x^3-9x^2+26x-1.$$
Thus $$sum_k=0^infty a_k=f(1)=55.$$
As a result, $$sum_k=3^infty a_k=sum_k=0^infty a_k-sum_k=0^2 a_k=55-55=0.$$
Consider the generating function $$f(x)=a_0x^0+a_1x^1+a_2x^2+cdots+a_nx^n+cdots.tag1$$
We have $$f(x)cdot x^3=a_0x^3+a_1x^4+a_2x^5+cdots+a_nx^n+3+cdots;tag2$$
$$f(x)cdot x^2=a_0x^2+a_1x^3+a_2x^4+cdots+a_nx^n+2+cdots;tag3$$
$$f(x)cdot x=a_0x^1+a_1x^2+a_2x^3+cdots+a_nx^n+1+cdots.tag4$$
Thus, by $(2)-9times(3)+26times(4)-(1)$, we obtain
beginalign*
f(x)(x^3-9x^2+26x-1)&=-9a_0x^2+26a_0x^1+26a_1x^2-a_0x^0-a_1x^1-a_2x^2\
&=-207x^2+1188x-46
endalign*
Hence $$boxedf(x)=frac-207x^2+1188x-46x^3-9x^2+26x-1.$$
Thus $$sum_k=0^infty a_k=f(1)=55.$$
As a result, $$sum_k=3^infty a_k=sum_k=0^infty a_k-sum_k=0^2 a_k=55-55=0.$$
edited Sep 4 at 13:58
answered Sep 4 at 13:52
mengdie1982
3,824216
3,824216
Very nice point of view, thank you for answer!
â user565184
Sep 4 at 15:41
add a comment |Â
Very nice point of view, thank you for answer!
â user565184
Sep 4 at 15:41
Very nice point of view, thank you for answer!
â user565184
Sep 4 at 15:41
Very nice point of view, thank you for answer!
â user565184
Sep 4 at 15:41
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2904912%2fproving-sum-of-recurrence-sequence-converges-to-2-55%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password