Inequality $lvert(1+lvert urvert^2) v-(1+lvert vrvert^2)urvert > lvert ubarv-baruvrvert$ for complex $u,v$
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
This is exercise 4.(b) from Theory of Complex Functions, GTM 122, page 17. I was able to solve exercise 4.(a), but I don't see how this could help solving 4.(b):
a) Show that from $(1+lvert vrvert^2) u=(1+lvert urvert^2)v,,u,vinmathbbC$, it follows that either $u=v$ or $baruv=1$.
b) Show that for $u,vinmathbbC$ with $lvert urvert<1, lvert vrvert<1$ and $baruvne ubarv$, we always have $$lvert(1+lvert urvert^2) v-(1+lvert vrvert^2)urvert > lvert ubarv-baruvrvert$$
For a), I took modulus of both sides and get either $lvert urvert=lvert vrvert$ or $lvert urvert lvert vrvert=1$, where the conclusion follows easily. For b), I tried substituting $u=x+iy$ and $v=p+iq$ but the resulting inequality is too complicated and it's difficult to see where the condition $lvert ubarv-baruvrvert=2lvert xq-yprvertne 0$ is used. Any advice?
complex-analysis complex-numbers
add a comment |Â
up vote
2
down vote
favorite
This is exercise 4.(b) from Theory of Complex Functions, GTM 122, page 17. I was able to solve exercise 4.(a), but I don't see how this could help solving 4.(b):
a) Show that from $(1+lvert vrvert^2) u=(1+lvert urvert^2)v,,u,vinmathbbC$, it follows that either $u=v$ or $baruv=1$.
b) Show that for $u,vinmathbbC$ with $lvert urvert<1, lvert vrvert<1$ and $baruvne ubarv$, we always have $$lvert(1+lvert urvert^2) v-(1+lvert vrvert^2)urvert > lvert ubarv-baruvrvert$$
For a), I took modulus of both sides and get either $lvert urvert=lvert vrvert$ or $lvert urvert lvert vrvert=1$, where the conclusion follows easily. For b), I tried substituting $u=x+iy$ and $v=p+iq$ but the resulting inequality is too complicated and it's difficult to see where the condition $lvert ubarv-baruvrvert=2lvert xq-yprvertne 0$ is used. Any advice?
complex-analysis complex-numbers
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
This is exercise 4.(b) from Theory of Complex Functions, GTM 122, page 17. I was able to solve exercise 4.(a), but I don't see how this could help solving 4.(b):
a) Show that from $(1+lvert vrvert^2) u=(1+lvert urvert^2)v,,u,vinmathbbC$, it follows that either $u=v$ or $baruv=1$.
b) Show that for $u,vinmathbbC$ with $lvert urvert<1, lvert vrvert<1$ and $baruvne ubarv$, we always have $$lvert(1+lvert urvert^2) v-(1+lvert vrvert^2)urvert > lvert ubarv-baruvrvert$$
For a), I took modulus of both sides and get either $lvert urvert=lvert vrvert$ or $lvert urvert lvert vrvert=1$, where the conclusion follows easily. For b), I tried substituting $u=x+iy$ and $v=p+iq$ but the resulting inequality is too complicated and it's difficult to see where the condition $lvert ubarv-baruvrvert=2lvert xq-yprvertne 0$ is used. Any advice?
complex-analysis complex-numbers
This is exercise 4.(b) from Theory of Complex Functions, GTM 122, page 17. I was able to solve exercise 4.(a), but I don't see how this could help solving 4.(b):
a) Show that from $(1+lvert vrvert^2) u=(1+lvert urvert^2)v,,u,vinmathbbC$, it follows that either $u=v$ or $baruv=1$.
b) Show that for $u,vinmathbbC$ with $lvert urvert<1, lvert vrvert<1$ and $baruvne ubarv$, we always have $$lvert(1+lvert urvert^2) v-(1+lvert vrvert^2)urvert > lvert ubarv-baruvrvert$$
For a), I took modulus of both sides and get either $lvert urvert=lvert vrvert$ or $lvert urvert lvert vrvert=1$, where the conclusion follows easily. For b), I tried substituting $u=x+iy$ and $v=p+iq$ but the resulting inequality is too complicated and it's difficult to see where the condition $lvert ubarv-baruvrvert=2lvert xq-yprvertne 0$ is used. Any advice?
complex-analysis complex-numbers
complex-analysis complex-numbers
asked Sep 4 at 12:06
Dilemian
382512
382512
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
1
down vote
accepted
For Part (a), we note that $big(1+|v|^2big),u=big(1+|u|^2big),v$ implies $big(1+|v|^2big),|u|=big(1+|u|^2big),|v|$. That is,
$$big(|u|-|v|big),big(1-|u|,|v|big)=0,.$$
If $|u|=|v|$, then we obtain $u=v$. If $uneq v$, then $|u|,|v|=1$, whence $uneq 0$ and $v=dfrac1^2,u$. Ergo,
$$baru,v=baru,left(frac1^2,uright)=frac^2^2=1,.$$
For Part (b), we shall prove that
$$Big|big(1+|v|^2big),u-big(1+|u|^2big),vBig|geq big|u,barv-baru,vbig|tag*$$
for all $u,vinmathbbC$, and the equality occurs if and only if $u=v$. If $u=0$ or $v=0$, then (*) trivially holds. From now on, we assume that $uneq 0$ and $vneq 0$.
Observe that
$$beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&=Big(big(1+|v|^2big),u-big(1+|u|^2big),vBig),Big(big(1+|v|^2big),baru-big(1+|u|^2big),barvBig)
\
&=big(1+|v|^2big)^2,|u|^2+big(1+|u|^2big)^2,|v|^2-2,big(1+|u|^2big),big(1+|v|^2big),textRebig(u,barvbig),.
endalign$$
Using the AM-GM Inequality on $big(1+|v|^2big)^2,|u|^2+big(1+|u|^2big)^2,|v|^2$, we obtain
beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geq2,big(1+|u|^2big),big(1+|v|^2big),|u|,|v|-2,big(1+|u|^2big),big(1+|v|^2big),textRebig(u,barvbig)\
&= 2,big(1+|u|^2big),big(1+|v|^2big),Big(|u|,|v|-textRebig(u,barvbig)Big),.
endalign
Because $big(textIm(z)big)^2=z^2-big(textRe(z)big)^2$ for every $zinmathbbC$, we get
beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geq2,left(frac^2big),big(1+,right),Big(textImbig(u,barvbig)Big)^2
\
&geq 2,left(frac^2big),big(1+right),Big(textImbig(u,barvbig)Big)^2,,
endalign
where we have applied the trivial inequality $textRe(z)leq |z|$ for each $zinmathbbC$. Finally, using the AM-GM Inequality $t+dfrac1tgeq 2$ for all $t>0$, we get
beginalign
Big|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geqleft(|u|+frac1uright),left(|v|+frac1right),Big(textImbig(u,barvbig)Big)^2
\
&geq 4,Big(textImbig(u,barvbig)Big)^2=big(u,barv-baru,vbig)^2,,endalign
and the claim is proven. (The equality case is easy to verify.)
add a comment |Â
up vote
2
down vote
Notice that both sides remain the same if we substitute $u to cu, v to cv$ for $|c| = 1$. Thus without loss of generality, we can assume $u$ is real. Then
$$beginalign*Left&= |(1+|u|^2)v - (1+|v|^2)u| \
&= |left((1+|u|^2) mathrmRe (v) - (1+|v|^2)uright) + left((1+|u|^2) mathrmIm(v)right) i|\
&textSince norm of a complex number is at least absolute value of its imaginary part, \
&ge |(1+|u|^2) mathrmIm (v)| \
&= (1+|u|^2) |mathrmIm(v)| \
&ge 2|u| |mathrmIm(v)| \
&= |u| |overlinev - v| \
&= |uoverlinev - overlineuv| text (since $u$ is real) \
&= Right
endalign*
$$
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
For Part (a), we note that $big(1+|v|^2big),u=big(1+|u|^2big),v$ implies $big(1+|v|^2big),|u|=big(1+|u|^2big),|v|$. That is,
$$big(|u|-|v|big),big(1-|u|,|v|big)=0,.$$
If $|u|=|v|$, then we obtain $u=v$. If $uneq v$, then $|u|,|v|=1$, whence $uneq 0$ and $v=dfrac1^2,u$. Ergo,
$$baru,v=baru,left(frac1^2,uright)=frac^2^2=1,.$$
For Part (b), we shall prove that
$$Big|big(1+|v|^2big),u-big(1+|u|^2big),vBig|geq big|u,barv-baru,vbig|tag*$$
for all $u,vinmathbbC$, and the equality occurs if and only if $u=v$. If $u=0$ or $v=0$, then (*) trivially holds. From now on, we assume that $uneq 0$ and $vneq 0$.
Observe that
$$beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&=Big(big(1+|v|^2big),u-big(1+|u|^2big),vBig),Big(big(1+|v|^2big),baru-big(1+|u|^2big),barvBig)
\
&=big(1+|v|^2big)^2,|u|^2+big(1+|u|^2big)^2,|v|^2-2,big(1+|u|^2big),big(1+|v|^2big),textRebig(u,barvbig),.
endalign$$
Using the AM-GM Inequality on $big(1+|v|^2big)^2,|u|^2+big(1+|u|^2big)^2,|v|^2$, we obtain
beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geq2,big(1+|u|^2big),big(1+|v|^2big),|u|,|v|-2,big(1+|u|^2big),big(1+|v|^2big),textRebig(u,barvbig)\
&= 2,big(1+|u|^2big),big(1+|v|^2big),Big(|u|,|v|-textRebig(u,barvbig)Big),.
endalign
Because $big(textIm(z)big)^2=z^2-big(textRe(z)big)^2$ for every $zinmathbbC$, we get
beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geq2,left(frac^2big),big(1+,right),Big(textImbig(u,barvbig)Big)^2
\
&geq 2,left(frac^2big),big(1+right),Big(textImbig(u,barvbig)Big)^2,,
endalign
where we have applied the trivial inequality $textRe(z)leq |z|$ for each $zinmathbbC$. Finally, using the AM-GM Inequality $t+dfrac1tgeq 2$ for all $t>0$, we get
beginalign
Big|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geqleft(|u|+frac1uright),left(|v|+frac1right),Big(textImbig(u,barvbig)Big)^2
\
&geq 4,Big(textImbig(u,barvbig)Big)^2=big(u,barv-baru,vbig)^2,,endalign
and the claim is proven. (The equality case is easy to verify.)
add a comment |Â
up vote
1
down vote
accepted
For Part (a), we note that $big(1+|v|^2big),u=big(1+|u|^2big),v$ implies $big(1+|v|^2big),|u|=big(1+|u|^2big),|v|$. That is,
$$big(|u|-|v|big),big(1-|u|,|v|big)=0,.$$
If $|u|=|v|$, then we obtain $u=v$. If $uneq v$, then $|u|,|v|=1$, whence $uneq 0$ and $v=dfrac1^2,u$. Ergo,
$$baru,v=baru,left(frac1^2,uright)=frac^2^2=1,.$$
For Part (b), we shall prove that
$$Big|big(1+|v|^2big),u-big(1+|u|^2big),vBig|geq big|u,barv-baru,vbig|tag*$$
for all $u,vinmathbbC$, and the equality occurs if and only if $u=v$. If $u=0$ or $v=0$, then (*) trivially holds. From now on, we assume that $uneq 0$ and $vneq 0$.
Observe that
$$beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&=Big(big(1+|v|^2big),u-big(1+|u|^2big),vBig),Big(big(1+|v|^2big),baru-big(1+|u|^2big),barvBig)
\
&=big(1+|v|^2big)^2,|u|^2+big(1+|u|^2big)^2,|v|^2-2,big(1+|u|^2big),big(1+|v|^2big),textRebig(u,barvbig),.
endalign$$
Using the AM-GM Inequality on $big(1+|v|^2big)^2,|u|^2+big(1+|u|^2big)^2,|v|^2$, we obtain
beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geq2,big(1+|u|^2big),big(1+|v|^2big),|u|,|v|-2,big(1+|u|^2big),big(1+|v|^2big),textRebig(u,barvbig)\
&= 2,big(1+|u|^2big),big(1+|v|^2big),Big(|u|,|v|-textRebig(u,barvbig)Big),.
endalign
Because $big(textIm(z)big)^2=z^2-big(textRe(z)big)^2$ for every $zinmathbbC$, we get
beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geq2,left(frac^2big),big(1+,right),Big(textImbig(u,barvbig)Big)^2
\
&geq 2,left(frac^2big),big(1+right),Big(textImbig(u,barvbig)Big)^2,,
endalign
where we have applied the trivial inequality $textRe(z)leq |z|$ for each $zinmathbbC$. Finally, using the AM-GM Inequality $t+dfrac1tgeq 2$ for all $t>0$, we get
beginalign
Big|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geqleft(|u|+frac1uright),left(|v|+frac1right),Big(textImbig(u,barvbig)Big)^2
\
&geq 4,Big(textImbig(u,barvbig)Big)^2=big(u,barv-baru,vbig)^2,,endalign
and the claim is proven. (The equality case is easy to verify.)
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
For Part (a), we note that $big(1+|v|^2big),u=big(1+|u|^2big),v$ implies $big(1+|v|^2big),|u|=big(1+|u|^2big),|v|$. That is,
$$big(|u|-|v|big),big(1-|u|,|v|big)=0,.$$
If $|u|=|v|$, then we obtain $u=v$. If $uneq v$, then $|u|,|v|=1$, whence $uneq 0$ and $v=dfrac1^2,u$. Ergo,
$$baru,v=baru,left(frac1^2,uright)=frac^2^2=1,.$$
For Part (b), we shall prove that
$$Big|big(1+|v|^2big),u-big(1+|u|^2big),vBig|geq big|u,barv-baru,vbig|tag*$$
for all $u,vinmathbbC$, and the equality occurs if and only if $u=v$. If $u=0$ or $v=0$, then (*) trivially holds. From now on, we assume that $uneq 0$ and $vneq 0$.
Observe that
$$beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&=Big(big(1+|v|^2big),u-big(1+|u|^2big),vBig),Big(big(1+|v|^2big),baru-big(1+|u|^2big),barvBig)
\
&=big(1+|v|^2big)^2,|u|^2+big(1+|u|^2big)^2,|v|^2-2,big(1+|u|^2big),big(1+|v|^2big),textRebig(u,barvbig),.
endalign$$
Using the AM-GM Inequality on $big(1+|v|^2big)^2,|u|^2+big(1+|u|^2big)^2,|v|^2$, we obtain
beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geq2,big(1+|u|^2big),big(1+|v|^2big),|u|,|v|-2,big(1+|u|^2big),big(1+|v|^2big),textRebig(u,barvbig)\
&= 2,big(1+|u|^2big),big(1+|v|^2big),Big(|u|,|v|-textRebig(u,barvbig)Big),.
endalign
Because $big(textIm(z)big)^2=z^2-big(textRe(z)big)^2$ for every $zinmathbbC$, we get
beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geq2,left(frac^2big),big(1+,right),Big(textImbig(u,barvbig)Big)^2
\
&geq 2,left(frac^2big),big(1+right),Big(textImbig(u,barvbig)Big)^2,,
endalign
where we have applied the trivial inequality $textRe(z)leq |z|$ for each $zinmathbbC$. Finally, using the AM-GM Inequality $t+dfrac1tgeq 2$ for all $t>0$, we get
beginalign
Big|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geqleft(|u|+frac1uright),left(|v|+frac1right),Big(textImbig(u,barvbig)Big)^2
\
&geq 4,Big(textImbig(u,barvbig)Big)^2=big(u,barv-baru,vbig)^2,,endalign
and the claim is proven. (The equality case is easy to verify.)
For Part (a), we note that $big(1+|v|^2big),u=big(1+|u|^2big),v$ implies $big(1+|v|^2big),|u|=big(1+|u|^2big),|v|$. That is,
$$big(|u|-|v|big),big(1-|u|,|v|big)=0,.$$
If $|u|=|v|$, then we obtain $u=v$. If $uneq v$, then $|u|,|v|=1$, whence $uneq 0$ and $v=dfrac1^2,u$. Ergo,
$$baru,v=baru,left(frac1^2,uright)=frac^2^2=1,.$$
For Part (b), we shall prove that
$$Big|big(1+|v|^2big),u-big(1+|u|^2big),vBig|geq big|u,barv-baru,vbig|tag*$$
for all $u,vinmathbbC$, and the equality occurs if and only if $u=v$. If $u=0$ or $v=0$, then (*) trivially holds. From now on, we assume that $uneq 0$ and $vneq 0$.
Observe that
$$beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&=Big(big(1+|v|^2big),u-big(1+|u|^2big),vBig),Big(big(1+|v|^2big),baru-big(1+|u|^2big),barvBig)
\
&=big(1+|v|^2big)^2,|u|^2+big(1+|u|^2big)^2,|v|^2-2,big(1+|u|^2big),big(1+|v|^2big),textRebig(u,barvbig),.
endalign$$
Using the AM-GM Inequality on $big(1+|v|^2big)^2,|u|^2+big(1+|u|^2big)^2,|v|^2$, we obtain
beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geq2,big(1+|u|^2big),big(1+|v|^2big),|u|,|v|-2,big(1+|u|^2big),big(1+|v|^2big),textRebig(u,barvbig)\
&= 2,big(1+|u|^2big),big(1+|v|^2big),Big(|u|,|v|-textRebig(u,barvbig)Big),.
endalign
Because $big(textIm(z)big)^2=z^2-big(textRe(z)big)^2$ for every $zinmathbbC$, we get
beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geq2,left(frac^2big),big(1+,right),Big(textImbig(u,barvbig)Big)^2
\
&geq 2,left(frac^2big),big(1+right),Big(textImbig(u,barvbig)Big)^2,,
endalign
where we have applied the trivial inequality $textRe(z)leq |z|$ for each $zinmathbbC$. Finally, using the AM-GM Inequality $t+dfrac1tgeq 2$ for all $t>0$, we get
beginalign
Big|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geqleft(|u|+frac1uright),left(|v|+frac1right),Big(textImbig(u,barvbig)Big)^2
\
&geq 4,Big(textImbig(u,barvbig)Big)^2=big(u,barv-baru,vbig)^2,,endalign
and the claim is proven. (The equality case is easy to verify.)
answered Sep 10 at 4:33
Batominovski
25.9k22881
25.9k22881
add a comment |Â
add a comment |Â
up vote
2
down vote
Notice that both sides remain the same if we substitute $u to cu, v to cv$ for $|c| = 1$. Thus without loss of generality, we can assume $u$ is real. Then
$$beginalign*Left&= |(1+|u|^2)v - (1+|v|^2)u| \
&= |left((1+|u|^2) mathrmRe (v) - (1+|v|^2)uright) + left((1+|u|^2) mathrmIm(v)right) i|\
&textSince norm of a complex number is at least absolute value of its imaginary part, \
&ge |(1+|u|^2) mathrmIm (v)| \
&= (1+|u|^2) |mathrmIm(v)| \
&ge 2|u| |mathrmIm(v)| \
&= |u| |overlinev - v| \
&= |uoverlinev - overlineuv| text (since $u$ is real) \
&= Right
endalign*
$$
add a comment |Â
up vote
2
down vote
Notice that both sides remain the same if we substitute $u to cu, v to cv$ for $|c| = 1$. Thus without loss of generality, we can assume $u$ is real. Then
$$beginalign*Left&= |(1+|u|^2)v - (1+|v|^2)u| \
&= |left((1+|u|^2) mathrmRe (v) - (1+|v|^2)uright) + left((1+|u|^2) mathrmIm(v)right) i|\
&textSince norm of a complex number is at least absolute value of its imaginary part, \
&ge |(1+|u|^2) mathrmIm (v)| \
&= (1+|u|^2) |mathrmIm(v)| \
&ge 2|u| |mathrmIm(v)| \
&= |u| |overlinev - v| \
&= |uoverlinev - overlineuv| text (since $u$ is real) \
&= Right
endalign*
$$
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Notice that both sides remain the same if we substitute $u to cu, v to cv$ for $|c| = 1$. Thus without loss of generality, we can assume $u$ is real. Then
$$beginalign*Left&= |(1+|u|^2)v - (1+|v|^2)u| \
&= |left((1+|u|^2) mathrmRe (v) - (1+|v|^2)uright) + left((1+|u|^2) mathrmIm(v)right) i|\
&textSince norm of a complex number is at least absolute value of its imaginary part, \
&ge |(1+|u|^2) mathrmIm (v)| \
&= (1+|u|^2) |mathrmIm(v)| \
&ge 2|u| |mathrmIm(v)| \
&= |u| |overlinev - v| \
&= |uoverlinev - overlineuv| text (since $u$ is real) \
&= Right
endalign*
$$
Notice that both sides remain the same if we substitute $u to cu, v to cv$ for $|c| = 1$. Thus without loss of generality, we can assume $u$ is real. Then
$$beginalign*Left&= |(1+|u|^2)v - (1+|v|^2)u| \
&= |left((1+|u|^2) mathrmRe (v) - (1+|v|^2)uright) + left((1+|u|^2) mathrmIm(v)right) i|\
&textSince norm of a complex number is at least absolute value of its imaginary part, \
&ge |(1+|u|^2) mathrmIm (v)| \
&= (1+|u|^2) |mathrmIm(v)| \
&ge 2|u| |mathrmIm(v)| \
&= |u| |overlinev - v| \
&= |uoverlinev - overlineuv| text (since $u$ is real) \
&= Right
endalign*
$$
answered Sep 10 at 4:33
Pig
207113
207113
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2904968%2finequality-lvert1-lvert-u-rvert2-v-1-lvert-v-rvert2u-rvert-lvert-u%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password