Projection onto the span of linearly independent vectors in Hilbert spaces

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












Let $H$ be a Hilbert space and $Ssubseteq H$ a closed subspace. Moreover, let $s_n_n=1^inftysubseteq S$ a complete and linear independent sequence in $S$, i.e.



  • $S=overlinetextSpanbig(s_n_n=1^inftybig)$ and

  • for $Ngeq 1$ and $lambdainmathbbR^N$, $sum_n=1^Nlambda_n,s_n=0$ implies $lambda=0$.

Denote by $mathcalP$ the orthogonal projection from $H$ onto $S$ and by $mathcalP_N$ the orthogonal projection from $H$ onto $textSpanbig(s_n_n=1^Nbig)$.




Is it true that, for all $xin H$,
$$mathcalP_N(x) quadrightarrowquad mathcalP(x)$$ for
$Nrightarrowinfty$ ?




This is used in a paper without proof or comment and I am wondering how to show this rigorously.



Any help or comment is highly appreciated!
Thanks.










share|cite|improve this question

























    up vote
    1
    down vote

    favorite












    Let $H$ be a Hilbert space and $Ssubseteq H$ a closed subspace. Moreover, let $s_n_n=1^inftysubseteq S$ a complete and linear independent sequence in $S$, i.e.



    • $S=overlinetextSpanbig(s_n_n=1^inftybig)$ and

    • for $Ngeq 1$ and $lambdainmathbbR^N$, $sum_n=1^Nlambda_n,s_n=0$ implies $lambda=0$.

    Denote by $mathcalP$ the orthogonal projection from $H$ onto $S$ and by $mathcalP_N$ the orthogonal projection from $H$ onto $textSpanbig(s_n_n=1^Nbig)$.




    Is it true that, for all $xin H$,
    $$mathcalP_N(x) quadrightarrowquad mathcalP(x)$$ for
    $Nrightarrowinfty$ ?




    This is used in a paper without proof or comment and I am wondering how to show this rigorously.



    Any help or comment is highly appreciated!
    Thanks.










    share|cite|improve this question























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      Let $H$ be a Hilbert space and $Ssubseteq H$ a closed subspace. Moreover, let $s_n_n=1^inftysubseteq S$ a complete and linear independent sequence in $S$, i.e.



      • $S=overlinetextSpanbig(s_n_n=1^inftybig)$ and

      • for $Ngeq 1$ and $lambdainmathbbR^N$, $sum_n=1^Nlambda_n,s_n=0$ implies $lambda=0$.

      Denote by $mathcalP$ the orthogonal projection from $H$ onto $S$ and by $mathcalP_N$ the orthogonal projection from $H$ onto $textSpanbig(s_n_n=1^Nbig)$.




      Is it true that, for all $xin H$,
      $$mathcalP_N(x) quadrightarrowquad mathcalP(x)$$ for
      $Nrightarrowinfty$ ?




      This is used in a paper without proof or comment and I am wondering how to show this rigorously.



      Any help or comment is highly appreciated!
      Thanks.










      share|cite|improve this question













      Let $H$ be a Hilbert space and $Ssubseteq H$ a closed subspace. Moreover, let $s_n_n=1^inftysubseteq S$ a complete and linear independent sequence in $S$, i.e.



      • $S=overlinetextSpanbig(s_n_n=1^inftybig)$ and

      • for $Ngeq 1$ and $lambdainmathbbR^N$, $sum_n=1^Nlambda_n,s_n=0$ implies $lambda=0$.

      Denote by $mathcalP$ the orthogonal projection from $H$ onto $S$ and by $mathcalP_N$ the orthogonal projection from $H$ onto $textSpanbig(s_n_n=1^Nbig)$.




      Is it true that, for all $xin H$,
      $$mathcalP_N(x) quadrightarrowquad mathcalP(x)$$ for
      $Nrightarrowinfty$ ?




      This is used in a paper without proof or comment and I am wondering how to show this rigorously.



      Any help or comment is highly appreciated!
      Thanks.







      vector-spaces hilbert-spaces orthogonality






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Sep 4 at 9:31









      Mark

      13310




      13310




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          Apply Gram-Schmidt process on the sequence $s_n_n=1^infty$ to obtain an orthonormal sequence $e_n_n=1^infty$ in $S$ such that $operatornamespan e_1, ldots, e_n = operatornamespan s_1, ldots, s_n, forall n in mathbbN$ and $operatornamespan e_n_n=1^infty = operatornamespan s_n_n=1^infty$.



          Then clearly $e_n_n=1^infty$ is an orthonormal basis for $S$ so



          $$P_nx = sum_k=1^n langle x, e_krangle e_k xrightarrowntoinfty sum_k=1^infty langle x, e_krangle e_k = Px$$



          for all $x in H$.






          share|cite|improve this answer




















          • Clear and concise. Thanks!
            – Mark
            Sep 5 at 10:08










          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2904838%2fprojection-onto-the-span-of-linearly-independent-vectors-in-hilbert-spaces%23new-answer', 'question_page');

          );

          Post as a guest






























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote



          accepted










          Apply Gram-Schmidt process on the sequence $s_n_n=1^infty$ to obtain an orthonormal sequence $e_n_n=1^infty$ in $S$ such that $operatornamespan e_1, ldots, e_n = operatornamespan s_1, ldots, s_n, forall n in mathbbN$ and $operatornamespan e_n_n=1^infty = operatornamespan s_n_n=1^infty$.



          Then clearly $e_n_n=1^infty$ is an orthonormal basis for $S$ so



          $$P_nx = sum_k=1^n langle x, e_krangle e_k xrightarrowntoinfty sum_k=1^infty langle x, e_krangle e_k = Px$$



          for all $x in H$.






          share|cite|improve this answer




















          • Clear and concise. Thanks!
            – Mark
            Sep 5 at 10:08














          up vote
          1
          down vote



          accepted










          Apply Gram-Schmidt process on the sequence $s_n_n=1^infty$ to obtain an orthonormal sequence $e_n_n=1^infty$ in $S$ such that $operatornamespan e_1, ldots, e_n = operatornamespan s_1, ldots, s_n, forall n in mathbbN$ and $operatornamespan e_n_n=1^infty = operatornamespan s_n_n=1^infty$.



          Then clearly $e_n_n=1^infty$ is an orthonormal basis for $S$ so



          $$P_nx = sum_k=1^n langle x, e_krangle e_k xrightarrowntoinfty sum_k=1^infty langle x, e_krangle e_k = Px$$



          for all $x in H$.






          share|cite|improve this answer




















          • Clear and concise. Thanks!
            – Mark
            Sep 5 at 10:08












          up vote
          1
          down vote



          accepted







          up vote
          1
          down vote



          accepted






          Apply Gram-Schmidt process on the sequence $s_n_n=1^infty$ to obtain an orthonormal sequence $e_n_n=1^infty$ in $S$ such that $operatornamespan e_1, ldots, e_n = operatornamespan s_1, ldots, s_n, forall n in mathbbN$ and $operatornamespan e_n_n=1^infty = operatornamespan s_n_n=1^infty$.



          Then clearly $e_n_n=1^infty$ is an orthonormal basis for $S$ so



          $$P_nx = sum_k=1^n langle x, e_krangle e_k xrightarrowntoinfty sum_k=1^infty langle x, e_krangle e_k = Px$$



          for all $x in H$.






          share|cite|improve this answer












          Apply Gram-Schmidt process on the sequence $s_n_n=1^infty$ to obtain an orthonormal sequence $e_n_n=1^infty$ in $S$ such that $operatornamespan e_1, ldots, e_n = operatornamespan s_1, ldots, s_n, forall n in mathbbN$ and $operatornamespan e_n_n=1^infty = operatornamespan s_n_n=1^infty$.



          Then clearly $e_n_n=1^infty$ is an orthonormal basis for $S$ so



          $$P_nx = sum_k=1^n langle x, e_krangle e_k xrightarrowntoinfty sum_k=1^infty langle x, e_krangle e_k = Px$$



          for all $x in H$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Sep 5 at 10:04









          mechanodroid

          24.4k62245




          24.4k62245











          • Clear and concise. Thanks!
            – Mark
            Sep 5 at 10:08
















          • Clear and concise. Thanks!
            – Mark
            Sep 5 at 10:08















          Clear and concise. Thanks!
          – Mark
          Sep 5 at 10:08




          Clear and concise. Thanks!
          – Mark
          Sep 5 at 10:08

















           

          draft saved


          draft discarded















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2904838%2fprojection-onto-the-span-of-linearly-independent-vectors-in-hilbert-spaces%23new-answer', 'question_page');

          );

          Post as a guest













































































          這個網誌中的熱門文章

          How to combine Bézier curves to a surface?

          Mutual Information Always Non-negative

          Why am i infinitely getting the same tweet with the Twitter Search API?