Projection onto the span of linearly independent vectors in Hilbert spaces

Multi tool use
Multi tool use

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












Let $H$ be a Hilbert space and $Ssubseteq H$ a closed subspace. Moreover, let $s_n_n=1^inftysubseteq S$ a complete and linear independent sequence in $S$, i.e.



  • $S=overlinetextSpanbig(s_n_n=1^inftybig)$ and

  • for $Ngeq 1$ and $lambdainmathbbR^N$, $sum_n=1^Nlambda_n,s_n=0$ implies $lambda=0$.

Denote by $mathcalP$ the orthogonal projection from $H$ onto $S$ and by $mathcalP_N$ the orthogonal projection from $H$ onto $textSpanbig(s_n_n=1^Nbig)$.




Is it true that, for all $xin H$,
$$mathcalP_N(x) quadrightarrowquad mathcalP(x)$$ for
$Nrightarrowinfty$ ?




This is used in a paper without proof or comment and I am wondering how to show this rigorously.



Any help or comment is highly appreciated!
Thanks.










share|cite|improve this question

























    up vote
    1
    down vote

    favorite












    Let $H$ be a Hilbert space and $Ssubseteq H$ a closed subspace. Moreover, let $s_n_n=1^inftysubseteq S$ a complete and linear independent sequence in $S$, i.e.



    • $S=overlinetextSpanbig(s_n_n=1^inftybig)$ and

    • for $Ngeq 1$ and $lambdainmathbbR^N$, $sum_n=1^Nlambda_n,s_n=0$ implies $lambda=0$.

    Denote by $mathcalP$ the orthogonal projection from $H$ onto $S$ and by $mathcalP_N$ the orthogonal projection from $H$ onto $textSpanbig(s_n_n=1^Nbig)$.




    Is it true that, for all $xin H$,
    $$mathcalP_N(x) quadrightarrowquad mathcalP(x)$$ for
    $Nrightarrowinfty$ ?




    This is used in a paper without proof or comment and I am wondering how to show this rigorously.



    Any help or comment is highly appreciated!
    Thanks.










    share|cite|improve this question























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      Let $H$ be a Hilbert space and $Ssubseteq H$ a closed subspace. Moreover, let $s_n_n=1^inftysubseteq S$ a complete and linear independent sequence in $S$, i.e.



      • $S=overlinetextSpanbig(s_n_n=1^inftybig)$ and

      • for $Ngeq 1$ and $lambdainmathbbR^N$, $sum_n=1^Nlambda_n,s_n=0$ implies $lambda=0$.

      Denote by $mathcalP$ the orthogonal projection from $H$ onto $S$ and by $mathcalP_N$ the orthogonal projection from $H$ onto $textSpanbig(s_n_n=1^Nbig)$.




      Is it true that, for all $xin H$,
      $$mathcalP_N(x) quadrightarrowquad mathcalP(x)$$ for
      $Nrightarrowinfty$ ?




      This is used in a paper without proof or comment and I am wondering how to show this rigorously.



      Any help or comment is highly appreciated!
      Thanks.










      share|cite|improve this question













      Let $H$ be a Hilbert space and $Ssubseteq H$ a closed subspace. Moreover, let $s_n_n=1^inftysubseteq S$ a complete and linear independent sequence in $S$, i.e.



      • $S=overlinetextSpanbig(s_n_n=1^inftybig)$ and

      • for $Ngeq 1$ and $lambdainmathbbR^N$, $sum_n=1^Nlambda_n,s_n=0$ implies $lambda=0$.

      Denote by $mathcalP$ the orthogonal projection from $H$ onto $S$ and by $mathcalP_N$ the orthogonal projection from $H$ onto $textSpanbig(s_n_n=1^Nbig)$.




      Is it true that, for all $xin H$,
      $$mathcalP_N(x) quadrightarrowquad mathcalP(x)$$ for
      $Nrightarrowinfty$ ?




      This is used in a paper without proof or comment and I am wondering how to show this rigorously.



      Any help or comment is highly appreciated!
      Thanks.







      vector-spaces hilbert-spaces orthogonality






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Sep 4 at 9:31









      Mark

      13310




      13310




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          Apply Gram-Schmidt process on the sequence $s_n_n=1^infty$ to obtain an orthonormal sequence $e_n_n=1^infty$ in $S$ such that $operatornamespan e_1, ldots, e_n = operatornamespan s_1, ldots, s_n, forall n in mathbbN$ and $operatornamespan e_n_n=1^infty = operatornamespan s_n_n=1^infty$.



          Then clearly $e_n_n=1^infty$ is an orthonormal basis for $S$ so



          $$P_nx = sum_k=1^n langle x, e_krangle e_k xrightarrowntoinfty sum_k=1^infty langle x, e_krangle e_k = Px$$



          for all $x in H$.






          share|cite|improve this answer




















          • Clear and concise. Thanks!
            – Mark
            Sep 5 at 10:08










          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2904838%2fprojection-onto-the-span-of-linearly-independent-vectors-in-hilbert-spaces%23new-answer', 'question_page');

          );

          Post as a guest






























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote



          accepted










          Apply Gram-Schmidt process on the sequence $s_n_n=1^infty$ to obtain an orthonormal sequence $e_n_n=1^infty$ in $S$ such that $operatornamespan e_1, ldots, e_n = operatornamespan s_1, ldots, s_n, forall n in mathbbN$ and $operatornamespan e_n_n=1^infty = operatornamespan s_n_n=1^infty$.



          Then clearly $e_n_n=1^infty$ is an orthonormal basis for $S$ so



          $$P_nx = sum_k=1^n langle x, e_krangle e_k xrightarrowntoinfty sum_k=1^infty langle x, e_krangle e_k = Px$$



          for all $x in H$.






          share|cite|improve this answer




















          • Clear and concise. Thanks!
            – Mark
            Sep 5 at 10:08














          up vote
          1
          down vote



          accepted










          Apply Gram-Schmidt process on the sequence $s_n_n=1^infty$ to obtain an orthonormal sequence $e_n_n=1^infty$ in $S$ such that $operatornamespan e_1, ldots, e_n = operatornamespan s_1, ldots, s_n, forall n in mathbbN$ and $operatornamespan e_n_n=1^infty = operatornamespan s_n_n=1^infty$.



          Then clearly $e_n_n=1^infty$ is an orthonormal basis for $S$ so



          $$P_nx = sum_k=1^n langle x, e_krangle e_k xrightarrowntoinfty sum_k=1^infty langle x, e_krangle e_k = Px$$



          for all $x in H$.






          share|cite|improve this answer




















          • Clear and concise. Thanks!
            – Mark
            Sep 5 at 10:08












          up vote
          1
          down vote



          accepted







          up vote
          1
          down vote



          accepted






          Apply Gram-Schmidt process on the sequence $s_n_n=1^infty$ to obtain an orthonormal sequence $e_n_n=1^infty$ in $S$ such that $operatornamespan e_1, ldots, e_n = operatornamespan s_1, ldots, s_n, forall n in mathbbN$ and $operatornamespan e_n_n=1^infty = operatornamespan s_n_n=1^infty$.



          Then clearly $e_n_n=1^infty$ is an orthonormal basis for $S$ so



          $$P_nx = sum_k=1^n langle x, e_krangle e_k xrightarrowntoinfty sum_k=1^infty langle x, e_krangle e_k = Px$$



          for all $x in H$.






          share|cite|improve this answer












          Apply Gram-Schmidt process on the sequence $s_n_n=1^infty$ to obtain an orthonormal sequence $e_n_n=1^infty$ in $S$ such that $operatornamespan e_1, ldots, e_n = operatornamespan s_1, ldots, s_n, forall n in mathbbN$ and $operatornamespan e_n_n=1^infty = operatornamespan s_n_n=1^infty$.



          Then clearly $e_n_n=1^infty$ is an orthonormal basis for $S$ so



          $$P_nx = sum_k=1^n langle x, e_krangle e_k xrightarrowntoinfty sum_k=1^infty langle x, e_krangle e_k = Px$$



          for all $x in H$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Sep 5 at 10:04









          mechanodroid

          24.4k62245




          24.4k62245











          • Clear and concise. Thanks!
            – Mark
            Sep 5 at 10:08
















          • Clear and concise. Thanks!
            – Mark
            Sep 5 at 10:08















          Clear and concise. Thanks!
          – Mark
          Sep 5 at 10:08




          Clear and concise. Thanks!
          – Mark
          Sep 5 at 10:08

















           

          draft saved


          draft discarded















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2904838%2fprojection-onto-the-span-of-linearly-independent-vectors-in-hilbert-spaces%23new-answer', 'question_page');

          );

          Post as a guest













































































          W3,woo9VG,AJJ
          jUq9P,z,VY8P4T Nercv8,9yj1xiQlVFb8SPEBQE57g9M7YSkwwj8hIxILT7hp8eLbVCnfUWCohsRj CPq7c,HOsXDB41aZK0

          這個網誌中的熱門文章

          How to combine Bézier curves to a surface?

          Propositional logic and tautologies

          Distribution of Stopped Wiener Process with Stochastic Volatility