Definition of $lim_nrightarrow+inftyleft(fracnn+1right)^n = e$
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
I have the following limit
$$lim_nrightarrow+inftyleft(fracnn+1right)^n$$
It leads to an indeterminate $[1^infty]$, this means I should look into the limit of $e$. I rework the function a little bit:
$$left(fracnn+1right)^n=left(fracn+1-1n+1right)^n=left(1-frac1n+1right)^n$$
This is similar but not identical to
$$left(1+frac1nright)^nrightarrow e$$
The major difference I notice is the $n+1$ in the denominator. Is the limit considered to approach $e^-1$ because for $nrightarrowinfty$ we have $n+1sim n$?
limits
add a comment |Â
up vote
0
down vote
favorite
I have the following limit
$$lim_nrightarrow+inftyleft(fracnn+1right)^n$$
It leads to an indeterminate $[1^infty]$, this means I should look into the limit of $e$. I rework the function a little bit:
$$left(fracnn+1right)^n=left(fracn+1-1n+1right)^n=left(1-frac1n+1right)^n$$
This is similar but not identical to
$$left(1+frac1nright)^nrightarrow e$$
The major difference I notice is the $n+1$ in the denominator. Is the limit considered to approach $e^-1$ because for $nrightarrowinfty$ we have $n+1sim n$?
limits
Well, you could multiply (and divide) the equation with $(1-1/(n+1))$. Then you can use the known limit for the first part and for the second part you just use that the limit is given by $1$.
â Stan Tendijck
Sep 4 at 7:58
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I have the following limit
$$lim_nrightarrow+inftyleft(fracnn+1right)^n$$
It leads to an indeterminate $[1^infty]$, this means I should look into the limit of $e$. I rework the function a little bit:
$$left(fracnn+1right)^n=left(fracn+1-1n+1right)^n=left(1-frac1n+1right)^n$$
This is similar but not identical to
$$left(1+frac1nright)^nrightarrow e$$
The major difference I notice is the $n+1$ in the denominator. Is the limit considered to approach $e^-1$ because for $nrightarrowinfty$ we have $n+1sim n$?
limits
I have the following limit
$$lim_nrightarrow+inftyleft(fracnn+1right)^n$$
It leads to an indeterminate $[1^infty]$, this means I should look into the limit of $e$. I rework the function a little bit:
$$left(fracnn+1right)^n=left(fracn+1-1n+1right)^n=left(1-frac1n+1right)^n$$
This is similar but not identical to
$$left(1+frac1nright)^nrightarrow e$$
The major difference I notice is the $n+1$ in the denominator. Is the limit considered to approach $e^-1$ because for $nrightarrowinfty$ we have $n+1sim n$?
limits
limits
edited Sep 4 at 8:06
paf
3,9621823
3,9621823
asked Sep 4 at 7:49
Cesare
734410
734410
Well, you could multiply (and divide) the equation with $(1-1/(n+1))$. Then you can use the known limit for the first part and for the second part you just use that the limit is given by $1$.
â Stan Tendijck
Sep 4 at 7:58
add a comment |Â
Well, you could multiply (and divide) the equation with $(1-1/(n+1))$. Then you can use the known limit for the first part and for the second part you just use that the limit is given by $1$.
â Stan Tendijck
Sep 4 at 7:58
Well, you could multiply (and divide) the equation with $(1-1/(n+1))$. Then you can use the known limit for the first part and for the second part you just use that the limit is given by $1$.
â Stan Tendijck
Sep 4 at 7:58
Well, you could multiply (and divide) the equation with $(1-1/(n+1))$. Then you can use the known limit for the first part and for the second part you just use that the limit is given by $1$.
â Stan Tendijck
Sep 4 at 7:58
add a comment |Â
5 Answers
5
active
oldest
votes
up vote
4
down vote
accepted
Remark that
$$left(frac nn+1right)^n=left(1+frac1nright)^-n$$ and by continuity of the reciprocal function, the limit of the reciprocal is the reciprocal of the limit.
This shows that in general $n+1sim n$, unless there is some cancellation. (More specifically, $n+1-nnsim n-n$.)
add a comment |Â
up vote
2
down vote
You can write $$left(fracnn+1right)^n=left(left(1-frac1n+1right)^n+1right)^fracnn+1=a_n^fracnn+1$$where $lim_ntoinftya_n=e^-1$ and $lim_ntoinftyfracnn+1=1$.
Then: $$lim_ntoinftya_n^fracnn+1=left(e^-1right)^1=e^-1$$
I love this method. (+)
â Math
Sep 4 at 8:40
add a comment |Â
up vote
2
down vote
Note that:
$$lim_ntoinftyleft(1+frac1nright)^n=lim_nto-inftyleft(1+frac1nright)^n=lim_nto+inftyleft(1+frac1nright)^n=e.$$
So, one way:
$$lim_nrightarrow+inftyleft(fracnn+1right)^n=lim_nrightarrow+inftyleft(frac1fracn+1nright)^n=\
lim_nrightarrow+inftyfrac1left(1+frac1nright)^n=frac1lim_limitsnrightarrow+inftyleft(1+frac1nright)^n=frac1e.$$
or the other way:
$$lim_nto+inftyleft(1-frac1n+1right)^n=lim_nto+inftyleft(left[1+frac1-(n+1)right]^-(n+1)right)^fracn-(n+1)=\
e^lim_limitsnto+infty fracn-(n+1)=e^-1=frac1e.$$
add a comment |Â
up vote
1
down vote
$$L=lim_nrightarrow+inftyleft(fracnn+1right)^n$$
$$log L=lim_nrightarrow+inftylog left(fracnn+1right)^n$$
$$log L=lim_nrightarrow+inftynlog left(fracnn+1right)$$
$$log L=lim_nrightarrow+inftyfraclog left(fracnn+1right)frac1n$$
Apply LHopital's rule to the RHS
$$log L=lim_nrightarrow+inftyfracfrac1n^2+nfrac-1n^2$$
$$log L=-1lim_nrightarrow+inftyfracn^2n^2+n=-1$$
$$L=e^-1$$
add a comment |Â
up vote
1
down vote
Recall that $forall ain mathbbR$
$$left(1+frac1nright)^nrightarrow eimplies left(1+fracanright)^nrightarrow e^a$$
therefore from your step
$$left(fracnn+1right)^n=left(fracn+1-1n+1right)^n=left(1-frac1n+1right)^n=left(1+frac-1n+1right)^n=fracleft(1+frac-1n+1right)^n+1left(1+frac-1n+1right)to frace^-11=e^-1$$
add a comment |Â
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
Remark that
$$left(frac nn+1right)^n=left(1+frac1nright)^-n$$ and by continuity of the reciprocal function, the limit of the reciprocal is the reciprocal of the limit.
This shows that in general $n+1sim n$, unless there is some cancellation. (More specifically, $n+1-nnsim n-n$.)
add a comment |Â
up vote
4
down vote
accepted
Remark that
$$left(frac nn+1right)^n=left(1+frac1nright)^-n$$ and by continuity of the reciprocal function, the limit of the reciprocal is the reciprocal of the limit.
This shows that in general $n+1sim n$, unless there is some cancellation. (More specifically, $n+1-nnsim n-n$.)
add a comment |Â
up vote
4
down vote
accepted
up vote
4
down vote
accepted
Remark that
$$left(frac nn+1right)^n=left(1+frac1nright)^-n$$ and by continuity of the reciprocal function, the limit of the reciprocal is the reciprocal of the limit.
This shows that in general $n+1sim n$, unless there is some cancellation. (More specifically, $n+1-nnsim n-n$.)
Remark that
$$left(frac nn+1right)^n=left(1+frac1nright)^-n$$ and by continuity of the reciprocal function, the limit of the reciprocal is the reciprocal of the limit.
This shows that in general $n+1sim n$, unless there is some cancellation. (More specifically, $n+1-nnsim n-n$.)
edited Sep 4 at 8:04
answered Sep 4 at 7:53
Yves Daoust
114k666209
114k666209
add a comment |Â
add a comment |Â
up vote
2
down vote
You can write $$left(fracnn+1right)^n=left(left(1-frac1n+1right)^n+1right)^fracnn+1=a_n^fracnn+1$$where $lim_ntoinftya_n=e^-1$ and $lim_ntoinftyfracnn+1=1$.
Then: $$lim_ntoinftya_n^fracnn+1=left(e^-1right)^1=e^-1$$
I love this method. (+)
â Math
Sep 4 at 8:40
add a comment |Â
up vote
2
down vote
You can write $$left(fracnn+1right)^n=left(left(1-frac1n+1right)^n+1right)^fracnn+1=a_n^fracnn+1$$where $lim_ntoinftya_n=e^-1$ and $lim_ntoinftyfracnn+1=1$.
Then: $$lim_ntoinftya_n^fracnn+1=left(e^-1right)^1=e^-1$$
I love this method. (+)
â Math
Sep 4 at 8:40
add a comment |Â
up vote
2
down vote
up vote
2
down vote
You can write $$left(fracnn+1right)^n=left(left(1-frac1n+1right)^n+1right)^fracnn+1=a_n^fracnn+1$$where $lim_ntoinftya_n=e^-1$ and $lim_ntoinftyfracnn+1=1$.
Then: $$lim_ntoinftya_n^fracnn+1=left(e^-1right)^1=e^-1$$
You can write $$left(fracnn+1right)^n=left(left(1-frac1n+1right)^n+1right)^fracnn+1=a_n^fracnn+1$$where $lim_ntoinftya_n=e^-1$ and $lim_ntoinftyfracnn+1=1$.
Then: $$lim_ntoinftya_n^fracnn+1=left(e^-1right)^1=e^-1$$
answered Sep 4 at 8:00
drhab
89.1k541122
89.1k541122
I love this method. (+)
â Math
Sep 4 at 8:40
add a comment |Â
I love this method. (+)
â Math
Sep 4 at 8:40
I love this method. (+)
â Math
Sep 4 at 8:40
I love this method. (+)
â Math
Sep 4 at 8:40
add a comment |Â
up vote
2
down vote
Note that:
$$lim_ntoinftyleft(1+frac1nright)^n=lim_nto-inftyleft(1+frac1nright)^n=lim_nto+inftyleft(1+frac1nright)^n=e.$$
So, one way:
$$lim_nrightarrow+inftyleft(fracnn+1right)^n=lim_nrightarrow+inftyleft(frac1fracn+1nright)^n=\
lim_nrightarrow+inftyfrac1left(1+frac1nright)^n=frac1lim_limitsnrightarrow+inftyleft(1+frac1nright)^n=frac1e.$$
or the other way:
$$lim_nto+inftyleft(1-frac1n+1right)^n=lim_nto+inftyleft(left[1+frac1-(n+1)right]^-(n+1)right)^fracn-(n+1)=\
e^lim_limitsnto+infty fracn-(n+1)=e^-1=frac1e.$$
add a comment |Â
up vote
2
down vote
Note that:
$$lim_ntoinftyleft(1+frac1nright)^n=lim_nto-inftyleft(1+frac1nright)^n=lim_nto+inftyleft(1+frac1nright)^n=e.$$
So, one way:
$$lim_nrightarrow+inftyleft(fracnn+1right)^n=lim_nrightarrow+inftyleft(frac1fracn+1nright)^n=\
lim_nrightarrow+inftyfrac1left(1+frac1nright)^n=frac1lim_limitsnrightarrow+inftyleft(1+frac1nright)^n=frac1e.$$
or the other way:
$$lim_nto+inftyleft(1-frac1n+1right)^n=lim_nto+inftyleft(left[1+frac1-(n+1)right]^-(n+1)right)^fracn-(n+1)=\
e^lim_limitsnto+infty fracn-(n+1)=e^-1=frac1e.$$
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Note that:
$$lim_ntoinftyleft(1+frac1nright)^n=lim_nto-inftyleft(1+frac1nright)^n=lim_nto+inftyleft(1+frac1nright)^n=e.$$
So, one way:
$$lim_nrightarrow+inftyleft(fracnn+1right)^n=lim_nrightarrow+inftyleft(frac1fracn+1nright)^n=\
lim_nrightarrow+inftyfrac1left(1+frac1nright)^n=frac1lim_limitsnrightarrow+inftyleft(1+frac1nright)^n=frac1e.$$
or the other way:
$$lim_nto+inftyleft(1-frac1n+1right)^n=lim_nto+inftyleft(left[1+frac1-(n+1)right]^-(n+1)right)^fracn-(n+1)=\
e^lim_limitsnto+infty fracn-(n+1)=e^-1=frac1e.$$
Note that:
$$lim_ntoinftyleft(1+frac1nright)^n=lim_nto-inftyleft(1+frac1nright)^n=lim_nto+inftyleft(1+frac1nright)^n=e.$$
So, one way:
$$lim_nrightarrow+inftyleft(fracnn+1right)^n=lim_nrightarrow+inftyleft(frac1fracn+1nright)^n=\
lim_nrightarrow+inftyfrac1left(1+frac1nright)^n=frac1lim_limitsnrightarrow+inftyleft(1+frac1nright)^n=frac1e.$$
or the other way:
$$lim_nto+inftyleft(1-frac1n+1right)^n=lim_nto+inftyleft(left[1+frac1-(n+1)right]^-(n+1)right)^fracn-(n+1)=\
e^lim_limitsnto+infty fracn-(n+1)=e^-1=frac1e.$$
answered Sep 4 at 10:03
farruhota
15.3k2734
15.3k2734
add a comment |Â
add a comment |Â
up vote
1
down vote
$$L=lim_nrightarrow+inftyleft(fracnn+1right)^n$$
$$log L=lim_nrightarrow+inftylog left(fracnn+1right)^n$$
$$log L=lim_nrightarrow+inftynlog left(fracnn+1right)$$
$$log L=lim_nrightarrow+inftyfraclog left(fracnn+1right)frac1n$$
Apply LHopital's rule to the RHS
$$log L=lim_nrightarrow+inftyfracfrac1n^2+nfrac-1n^2$$
$$log L=-1lim_nrightarrow+inftyfracn^2n^2+n=-1$$
$$L=e^-1$$
add a comment |Â
up vote
1
down vote
$$L=lim_nrightarrow+inftyleft(fracnn+1right)^n$$
$$log L=lim_nrightarrow+inftylog left(fracnn+1right)^n$$
$$log L=lim_nrightarrow+inftynlog left(fracnn+1right)$$
$$log L=lim_nrightarrow+inftyfraclog left(fracnn+1right)frac1n$$
Apply LHopital's rule to the RHS
$$log L=lim_nrightarrow+inftyfracfrac1n^2+nfrac-1n^2$$
$$log L=-1lim_nrightarrow+inftyfracn^2n^2+n=-1$$
$$L=e^-1$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
$$L=lim_nrightarrow+inftyleft(fracnn+1right)^n$$
$$log L=lim_nrightarrow+inftylog left(fracnn+1right)^n$$
$$log L=lim_nrightarrow+inftynlog left(fracnn+1right)$$
$$log L=lim_nrightarrow+inftyfraclog left(fracnn+1right)frac1n$$
Apply LHopital's rule to the RHS
$$log L=lim_nrightarrow+inftyfracfrac1n^2+nfrac-1n^2$$
$$log L=-1lim_nrightarrow+inftyfracn^2n^2+n=-1$$
$$L=e^-1$$
$$L=lim_nrightarrow+inftyleft(fracnn+1right)^n$$
$$log L=lim_nrightarrow+inftylog left(fracnn+1right)^n$$
$$log L=lim_nrightarrow+inftynlog left(fracnn+1right)$$
$$log L=lim_nrightarrow+inftyfraclog left(fracnn+1right)frac1n$$
Apply LHopital's rule to the RHS
$$log L=lim_nrightarrow+inftyfracfrac1n^2+nfrac-1n^2$$
$$log L=-1lim_nrightarrow+inftyfracn^2n^2+n=-1$$
$$L=e^-1$$
answered Sep 4 at 7:59
Deepesh Meena
3,7892825
3,7892825
add a comment |Â
add a comment |Â
up vote
1
down vote
Recall that $forall ain mathbbR$
$$left(1+frac1nright)^nrightarrow eimplies left(1+fracanright)^nrightarrow e^a$$
therefore from your step
$$left(fracnn+1right)^n=left(fracn+1-1n+1right)^n=left(1-frac1n+1right)^n=left(1+frac-1n+1right)^n=fracleft(1+frac-1n+1right)^n+1left(1+frac-1n+1right)to frace^-11=e^-1$$
add a comment |Â
up vote
1
down vote
Recall that $forall ain mathbbR$
$$left(1+frac1nright)^nrightarrow eimplies left(1+fracanright)^nrightarrow e^a$$
therefore from your step
$$left(fracnn+1right)^n=left(fracn+1-1n+1right)^n=left(1-frac1n+1right)^n=left(1+frac-1n+1right)^n=fracleft(1+frac-1n+1right)^n+1left(1+frac-1n+1right)to frace^-11=e^-1$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Recall that $forall ain mathbbR$
$$left(1+frac1nright)^nrightarrow eimplies left(1+fracanright)^nrightarrow e^a$$
therefore from your step
$$left(fracnn+1right)^n=left(fracn+1-1n+1right)^n=left(1-frac1n+1right)^n=left(1+frac-1n+1right)^n=fracleft(1+frac-1n+1right)^n+1left(1+frac-1n+1right)to frace^-11=e^-1$$
Recall that $forall ain mathbbR$
$$left(1+frac1nright)^nrightarrow eimplies left(1+fracanright)^nrightarrow e^a$$
therefore from your step
$$left(fracnn+1right)^n=left(fracn+1-1n+1right)^n=left(1-frac1n+1right)^n=left(1+frac-1n+1right)^n=fracleft(1+frac-1n+1right)^n+1left(1+frac-1n+1right)to frace^-11=e^-1$$
answered Sep 4 at 8:33
gimusi
72.8k73889
72.8k73889
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2904758%2fdefinition-of-lim-n-rightarrow-infty-left-fracnn1-rightn-e%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Well, you could multiply (and divide) the equation with $(1-1/(n+1))$. Then you can use the known limit for the first part and for the second part you just use that the limit is given by $1$.
â Stan Tendijck
Sep 4 at 7:58