Definition of $lim_nrightarrow+inftyleft(fracnn+1right)^n = e$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












I have the following limit



$$lim_nrightarrow+inftyleft(fracnn+1right)^n$$



It leads to an indeterminate $[1^infty]$, this means I should look into the limit of $e$. I rework the function a little bit:



$$left(fracnn+1right)^n=left(fracn+1-1n+1right)^n=left(1-frac1n+1right)^n$$



This is similar but not identical to



$$left(1+frac1nright)^nrightarrow e$$



The major difference I notice is the $n+1$ in the denominator. Is the limit considered to approach $e^-1$ because for $nrightarrowinfty$ we have $n+1sim n$?










share|cite|improve this question























  • Well, you could multiply (and divide) the equation with $(1-1/(n+1))$. Then you can use the known limit for the first part and for the second part you just use that the limit is given by $1$.
    – Stan Tendijck
    Sep 4 at 7:58














up vote
0
down vote

favorite












I have the following limit



$$lim_nrightarrow+inftyleft(fracnn+1right)^n$$



It leads to an indeterminate $[1^infty]$, this means I should look into the limit of $e$. I rework the function a little bit:



$$left(fracnn+1right)^n=left(fracn+1-1n+1right)^n=left(1-frac1n+1right)^n$$



This is similar but not identical to



$$left(1+frac1nright)^nrightarrow e$$



The major difference I notice is the $n+1$ in the denominator. Is the limit considered to approach $e^-1$ because for $nrightarrowinfty$ we have $n+1sim n$?










share|cite|improve this question























  • Well, you could multiply (and divide) the equation with $(1-1/(n+1))$. Then you can use the known limit for the first part and for the second part you just use that the limit is given by $1$.
    – Stan Tendijck
    Sep 4 at 7:58












up vote
0
down vote

favorite









up vote
0
down vote

favorite











I have the following limit



$$lim_nrightarrow+inftyleft(fracnn+1right)^n$$



It leads to an indeterminate $[1^infty]$, this means I should look into the limit of $e$. I rework the function a little bit:



$$left(fracnn+1right)^n=left(fracn+1-1n+1right)^n=left(1-frac1n+1right)^n$$



This is similar but not identical to



$$left(1+frac1nright)^nrightarrow e$$



The major difference I notice is the $n+1$ in the denominator. Is the limit considered to approach $e^-1$ because for $nrightarrowinfty$ we have $n+1sim n$?










share|cite|improve this question















I have the following limit



$$lim_nrightarrow+inftyleft(fracnn+1right)^n$$



It leads to an indeterminate $[1^infty]$, this means I should look into the limit of $e$. I rework the function a little bit:



$$left(fracnn+1right)^n=left(fracn+1-1n+1right)^n=left(1-frac1n+1right)^n$$



This is similar but not identical to



$$left(1+frac1nright)^nrightarrow e$$



The major difference I notice is the $n+1$ in the denominator. Is the limit considered to approach $e^-1$ because for $nrightarrowinfty$ we have $n+1sim n$?







limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Sep 4 at 8:06









paf

3,9621823




3,9621823










asked Sep 4 at 7:49









Cesare

734410




734410











  • Well, you could multiply (and divide) the equation with $(1-1/(n+1))$. Then you can use the known limit for the first part and for the second part you just use that the limit is given by $1$.
    – Stan Tendijck
    Sep 4 at 7:58
















  • Well, you could multiply (and divide) the equation with $(1-1/(n+1))$. Then you can use the known limit for the first part and for the second part you just use that the limit is given by $1$.
    – Stan Tendijck
    Sep 4 at 7:58















Well, you could multiply (and divide) the equation with $(1-1/(n+1))$. Then you can use the known limit for the first part and for the second part you just use that the limit is given by $1$.
– Stan Tendijck
Sep 4 at 7:58




Well, you could multiply (and divide) the equation with $(1-1/(n+1))$. Then you can use the known limit for the first part and for the second part you just use that the limit is given by $1$.
– Stan Tendijck
Sep 4 at 7:58










5 Answers
5






active

oldest

votes

















up vote
4
down vote



accepted










Remark that



$$left(frac nn+1right)^n=left(1+frac1nright)^-n$$ and by continuity of the reciprocal function, the limit of the reciprocal is the reciprocal of the limit.




This shows that in general $n+1sim n$, unless there is some cancellation. (More specifically, $n+1-nnsim n-n$.)






share|cite|improve this answer





























    up vote
    2
    down vote













    You can write $$left(fracnn+1right)^n=left(left(1-frac1n+1right)^n+1right)^fracnn+1=a_n^fracnn+1$$where $lim_ntoinftya_n=e^-1$ and $lim_ntoinftyfracnn+1=1$.



    Then: $$lim_ntoinftya_n^fracnn+1=left(e^-1right)^1=e^-1$$






    share|cite|improve this answer




















    • I love this method. (+)
      – Math
      Sep 4 at 8:40

















    up vote
    2
    down vote













    Note that:
    $$lim_ntoinftyleft(1+frac1nright)^n=lim_nto-inftyleft(1+frac1nright)^n=lim_nto+inftyleft(1+frac1nright)^n=e.$$
    So, one way:
    $$lim_nrightarrow+inftyleft(fracnn+1right)^n=lim_nrightarrow+inftyleft(frac1fracn+1nright)^n=\
    lim_nrightarrow+inftyfrac1left(1+frac1nright)^n=frac1lim_limitsnrightarrow+inftyleft(1+frac1nright)^n=frac1e.$$
    or the other way:
    $$lim_nto+inftyleft(1-frac1n+1right)^n=lim_nto+inftyleft(left[1+frac1-(n+1)right]^-(n+1)right)^fracn-(n+1)=\
    e^lim_limitsnto+infty fracn-(n+1)=e^-1=frac1e.$$






    share|cite|improve this answer



























      up vote
      1
      down vote













      $$L=lim_nrightarrow+inftyleft(fracnn+1right)^n$$
      $$log L=lim_nrightarrow+inftylog left(fracnn+1right)^n$$
      $$log L=lim_nrightarrow+inftynlog left(fracnn+1right)$$
      $$log L=lim_nrightarrow+inftyfraclog left(fracnn+1right)frac1n$$



      Apply LHopital's rule to the RHS



      $$log L=lim_nrightarrow+inftyfracfrac1n^2+nfrac-1n^2$$
      $$log L=-1lim_nrightarrow+inftyfracn^2n^2+n=-1$$



      $$L=e^-1$$






      share|cite|improve this answer



























        up vote
        1
        down vote













        Recall that $forall ain mathbbR$



        $$left(1+frac1nright)^nrightarrow eimplies left(1+fracanright)^nrightarrow e^a$$



        therefore from your step



        $$left(fracnn+1right)^n=left(fracn+1-1n+1right)^n=left(1-frac1n+1right)^n=left(1+frac-1n+1right)^n=fracleft(1+frac-1n+1right)^n+1left(1+frac-1n+1right)to frace^-11=e^-1$$






        share|cite|improve this answer




















          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2904758%2fdefinition-of-lim-n-rightarrow-infty-left-fracnn1-rightn-e%23new-answer', 'question_page');

          );

          Post as a guest






























          5 Answers
          5






          active

          oldest

          votes








          5 Answers
          5






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          4
          down vote



          accepted










          Remark that



          $$left(frac nn+1right)^n=left(1+frac1nright)^-n$$ and by continuity of the reciprocal function, the limit of the reciprocal is the reciprocal of the limit.




          This shows that in general $n+1sim n$, unless there is some cancellation. (More specifically, $n+1-nnsim n-n$.)






          share|cite|improve this answer


























            up vote
            4
            down vote



            accepted










            Remark that



            $$left(frac nn+1right)^n=left(1+frac1nright)^-n$$ and by continuity of the reciprocal function, the limit of the reciprocal is the reciprocal of the limit.




            This shows that in general $n+1sim n$, unless there is some cancellation. (More specifically, $n+1-nnsim n-n$.)






            share|cite|improve this answer
























              up vote
              4
              down vote



              accepted







              up vote
              4
              down vote



              accepted






              Remark that



              $$left(frac nn+1right)^n=left(1+frac1nright)^-n$$ and by continuity of the reciprocal function, the limit of the reciprocal is the reciprocal of the limit.




              This shows that in general $n+1sim n$, unless there is some cancellation. (More specifically, $n+1-nnsim n-n$.)






              share|cite|improve this answer














              Remark that



              $$left(frac nn+1right)^n=left(1+frac1nright)^-n$$ and by continuity of the reciprocal function, the limit of the reciprocal is the reciprocal of the limit.




              This shows that in general $n+1sim n$, unless there is some cancellation. (More specifically, $n+1-nnsim n-n$.)







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Sep 4 at 8:04

























              answered Sep 4 at 7:53









              Yves Daoust

              114k666209




              114k666209




















                  up vote
                  2
                  down vote













                  You can write $$left(fracnn+1right)^n=left(left(1-frac1n+1right)^n+1right)^fracnn+1=a_n^fracnn+1$$where $lim_ntoinftya_n=e^-1$ and $lim_ntoinftyfracnn+1=1$.



                  Then: $$lim_ntoinftya_n^fracnn+1=left(e^-1right)^1=e^-1$$






                  share|cite|improve this answer




















                  • I love this method. (+)
                    – Math
                    Sep 4 at 8:40














                  up vote
                  2
                  down vote













                  You can write $$left(fracnn+1right)^n=left(left(1-frac1n+1right)^n+1right)^fracnn+1=a_n^fracnn+1$$where $lim_ntoinftya_n=e^-1$ and $lim_ntoinftyfracnn+1=1$.



                  Then: $$lim_ntoinftya_n^fracnn+1=left(e^-1right)^1=e^-1$$






                  share|cite|improve this answer




















                  • I love this method. (+)
                    – Math
                    Sep 4 at 8:40












                  up vote
                  2
                  down vote










                  up vote
                  2
                  down vote









                  You can write $$left(fracnn+1right)^n=left(left(1-frac1n+1right)^n+1right)^fracnn+1=a_n^fracnn+1$$where $lim_ntoinftya_n=e^-1$ and $lim_ntoinftyfracnn+1=1$.



                  Then: $$lim_ntoinftya_n^fracnn+1=left(e^-1right)^1=e^-1$$






                  share|cite|improve this answer












                  You can write $$left(fracnn+1right)^n=left(left(1-frac1n+1right)^n+1right)^fracnn+1=a_n^fracnn+1$$where $lim_ntoinftya_n=e^-1$ and $lim_ntoinftyfracnn+1=1$.



                  Then: $$lim_ntoinftya_n^fracnn+1=left(e^-1right)^1=e^-1$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Sep 4 at 8:00









                  drhab

                  89.1k541122




                  89.1k541122











                  • I love this method. (+)
                    – Math
                    Sep 4 at 8:40
















                  • I love this method. (+)
                    – Math
                    Sep 4 at 8:40















                  I love this method. (+)
                  – Math
                  Sep 4 at 8:40




                  I love this method. (+)
                  – Math
                  Sep 4 at 8:40










                  up vote
                  2
                  down vote













                  Note that:
                  $$lim_ntoinftyleft(1+frac1nright)^n=lim_nto-inftyleft(1+frac1nright)^n=lim_nto+inftyleft(1+frac1nright)^n=e.$$
                  So, one way:
                  $$lim_nrightarrow+inftyleft(fracnn+1right)^n=lim_nrightarrow+inftyleft(frac1fracn+1nright)^n=\
                  lim_nrightarrow+inftyfrac1left(1+frac1nright)^n=frac1lim_limitsnrightarrow+inftyleft(1+frac1nright)^n=frac1e.$$
                  or the other way:
                  $$lim_nto+inftyleft(1-frac1n+1right)^n=lim_nto+inftyleft(left[1+frac1-(n+1)right]^-(n+1)right)^fracn-(n+1)=\
                  e^lim_limitsnto+infty fracn-(n+1)=e^-1=frac1e.$$






                  share|cite|improve this answer
























                    up vote
                    2
                    down vote













                    Note that:
                    $$lim_ntoinftyleft(1+frac1nright)^n=lim_nto-inftyleft(1+frac1nright)^n=lim_nto+inftyleft(1+frac1nright)^n=e.$$
                    So, one way:
                    $$lim_nrightarrow+inftyleft(fracnn+1right)^n=lim_nrightarrow+inftyleft(frac1fracn+1nright)^n=\
                    lim_nrightarrow+inftyfrac1left(1+frac1nright)^n=frac1lim_limitsnrightarrow+inftyleft(1+frac1nright)^n=frac1e.$$
                    or the other way:
                    $$lim_nto+inftyleft(1-frac1n+1right)^n=lim_nto+inftyleft(left[1+frac1-(n+1)right]^-(n+1)right)^fracn-(n+1)=\
                    e^lim_limitsnto+infty fracn-(n+1)=e^-1=frac1e.$$






                    share|cite|improve this answer






















                      up vote
                      2
                      down vote










                      up vote
                      2
                      down vote









                      Note that:
                      $$lim_ntoinftyleft(1+frac1nright)^n=lim_nto-inftyleft(1+frac1nright)^n=lim_nto+inftyleft(1+frac1nright)^n=e.$$
                      So, one way:
                      $$lim_nrightarrow+inftyleft(fracnn+1right)^n=lim_nrightarrow+inftyleft(frac1fracn+1nright)^n=\
                      lim_nrightarrow+inftyfrac1left(1+frac1nright)^n=frac1lim_limitsnrightarrow+inftyleft(1+frac1nright)^n=frac1e.$$
                      or the other way:
                      $$lim_nto+inftyleft(1-frac1n+1right)^n=lim_nto+inftyleft(left[1+frac1-(n+1)right]^-(n+1)right)^fracn-(n+1)=\
                      e^lim_limitsnto+infty fracn-(n+1)=e^-1=frac1e.$$






                      share|cite|improve this answer












                      Note that:
                      $$lim_ntoinftyleft(1+frac1nright)^n=lim_nto-inftyleft(1+frac1nright)^n=lim_nto+inftyleft(1+frac1nright)^n=e.$$
                      So, one way:
                      $$lim_nrightarrow+inftyleft(fracnn+1right)^n=lim_nrightarrow+inftyleft(frac1fracn+1nright)^n=\
                      lim_nrightarrow+inftyfrac1left(1+frac1nright)^n=frac1lim_limitsnrightarrow+inftyleft(1+frac1nright)^n=frac1e.$$
                      or the other way:
                      $$lim_nto+inftyleft(1-frac1n+1right)^n=lim_nto+inftyleft(left[1+frac1-(n+1)right]^-(n+1)right)^fracn-(n+1)=\
                      e^lim_limitsnto+infty fracn-(n+1)=e^-1=frac1e.$$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Sep 4 at 10:03









                      farruhota

                      15.3k2734




                      15.3k2734




















                          up vote
                          1
                          down vote













                          $$L=lim_nrightarrow+inftyleft(fracnn+1right)^n$$
                          $$log L=lim_nrightarrow+inftylog left(fracnn+1right)^n$$
                          $$log L=lim_nrightarrow+inftynlog left(fracnn+1right)$$
                          $$log L=lim_nrightarrow+inftyfraclog left(fracnn+1right)frac1n$$



                          Apply LHopital's rule to the RHS



                          $$log L=lim_nrightarrow+inftyfracfrac1n^2+nfrac-1n^2$$
                          $$log L=-1lim_nrightarrow+inftyfracn^2n^2+n=-1$$



                          $$L=e^-1$$






                          share|cite|improve this answer
























                            up vote
                            1
                            down vote













                            $$L=lim_nrightarrow+inftyleft(fracnn+1right)^n$$
                            $$log L=lim_nrightarrow+inftylog left(fracnn+1right)^n$$
                            $$log L=lim_nrightarrow+inftynlog left(fracnn+1right)$$
                            $$log L=lim_nrightarrow+inftyfraclog left(fracnn+1right)frac1n$$



                            Apply LHopital's rule to the RHS



                            $$log L=lim_nrightarrow+inftyfracfrac1n^2+nfrac-1n^2$$
                            $$log L=-1lim_nrightarrow+inftyfracn^2n^2+n=-1$$



                            $$L=e^-1$$






                            share|cite|improve this answer






















                              up vote
                              1
                              down vote










                              up vote
                              1
                              down vote









                              $$L=lim_nrightarrow+inftyleft(fracnn+1right)^n$$
                              $$log L=lim_nrightarrow+inftylog left(fracnn+1right)^n$$
                              $$log L=lim_nrightarrow+inftynlog left(fracnn+1right)$$
                              $$log L=lim_nrightarrow+inftyfraclog left(fracnn+1right)frac1n$$



                              Apply LHopital's rule to the RHS



                              $$log L=lim_nrightarrow+inftyfracfrac1n^2+nfrac-1n^2$$
                              $$log L=-1lim_nrightarrow+inftyfracn^2n^2+n=-1$$



                              $$L=e^-1$$






                              share|cite|improve this answer












                              $$L=lim_nrightarrow+inftyleft(fracnn+1right)^n$$
                              $$log L=lim_nrightarrow+inftylog left(fracnn+1right)^n$$
                              $$log L=lim_nrightarrow+inftynlog left(fracnn+1right)$$
                              $$log L=lim_nrightarrow+inftyfraclog left(fracnn+1right)frac1n$$



                              Apply LHopital's rule to the RHS



                              $$log L=lim_nrightarrow+inftyfracfrac1n^2+nfrac-1n^2$$
                              $$log L=-1lim_nrightarrow+inftyfracn^2n^2+n=-1$$



                              $$L=e^-1$$







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Sep 4 at 7:59









                              Deepesh Meena

                              3,7892825




                              3,7892825




















                                  up vote
                                  1
                                  down vote













                                  Recall that $forall ain mathbbR$



                                  $$left(1+frac1nright)^nrightarrow eimplies left(1+fracanright)^nrightarrow e^a$$



                                  therefore from your step



                                  $$left(fracnn+1right)^n=left(fracn+1-1n+1right)^n=left(1-frac1n+1right)^n=left(1+frac-1n+1right)^n=fracleft(1+frac-1n+1right)^n+1left(1+frac-1n+1right)to frace^-11=e^-1$$






                                  share|cite|improve this answer
























                                    up vote
                                    1
                                    down vote













                                    Recall that $forall ain mathbbR$



                                    $$left(1+frac1nright)^nrightarrow eimplies left(1+fracanright)^nrightarrow e^a$$



                                    therefore from your step



                                    $$left(fracnn+1right)^n=left(fracn+1-1n+1right)^n=left(1-frac1n+1right)^n=left(1+frac-1n+1right)^n=fracleft(1+frac-1n+1right)^n+1left(1+frac-1n+1right)to frace^-11=e^-1$$






                                    share|cite|improve this answer






















                                      up vote
                                      1
                                      down vote










                                      up vote
                                      1
                                      down vote









                                      Recall that $forall ain mathbbR$



                                      $$left(1+frac1nright)^nrightarrow eimplies left(1+fracanright)^nrightarrow e^a$$



                                      therefore from your step



                                      $$left(fracnn+1right)^n=left(fracn+1-1n+1right)^n=left(1-frac1n+1right)^n=left(1+frac-1n+1right)^n=fracleft(1+frac-1n+1right)^n+1left(1+frac-1n+1right)to frace^-11=e^-1$$






                                      share|cite|improve this answer












                                      Recall that $forall ain mathbbR$



                                      $$left(1+frac1nright)^nrightarrow eimplies left(1+fracanright)^nrightarrow e^a$$



                                      therefore from your step



                                      $$left(fracnn+1right)^n=left(fracn+1-1n+1right)^n=left(1-frac1n+1right)^n=left(1+frac-1n+1right)^n=fracleft(1+frac-1n+1right)^n+1left(1+frac-1n+1right)to frace^-11=e^-1$$







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Sep 4 at 8:33









                                      gimusi

                                      72.8k73889




                                      72.8k73889



























                                           

                                          draft saved


                                          draft discarded















































                                           


                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function ()
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2904758%2fdefinition-of-lim-n-rightarrow-infty-left-fracnn1-rightn-e%23new-answer', 'question_page');

                                          );

                                          Post as a guest













































































                                          這個網誌中的熱門文章

                                          How to combine Bézier curves to a surface?

                                          Mutual Information Always Non-negative

                                          Why am i infinitely getting the same tweet with the Twitter Search API?