Proof by $epsilon-delta$ definition $lim_x to 0 frace^x cos x - 1x = 1$
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Proof by definition $limlimits_x to 0 dfrace^x cos x - 1x=1$.
I could not go far because I am lacking insight of how to find $delta>0$ in this case.
Let $epsilon>0$.
$displaystylebigg|frace^x cos x - 1x-1bigg|=bigg|frace^xcos x-1-xxbigg|leqbigg|frace^x-1-xxbigg|$
Any help would be appreciated.
real-analysis limits limits-without-lhopital
add a comment |Â
up vote
0
down vote
favorite
Proof by definition $limlimits_x to 0 dfrace^x cos x - 1x=1$.
I could not go far because I am lacking insight of how to find $delta>0$ in this case.
Let $epsilon>0$.
$displaystylebigg|frace^x cos x - 1x-1bigg|=bigg|frace^xcos x-1-xxbigg|leqbigg|frace^x-1-xxbigg|$
Any help would be appreciated.
real-analysis limits limits-without-lhopital
1
The inequality that you wrote is false. For $x=pi$ we have $frace^pi+1+pipi$ on the left and $frace^pi-1-pipi$ on the right. $frace^xcos(x)-1x = cos(x)frace^x-1x + fraccos(x)-1x$ may prove helpful.
â Rumpelstiltskin
Aug 19 at 8:38
true. so I really could not go far
â dude3221
Aug 19 at 8:41
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Proof by definition $limlimits_x to 0 dfrace^x cos x - 1x=1$.
I could not go far because I am lacking insight of how to find $delta>0$ in this case.
Let $epsilon>0$.
$displaystylebigg|frace^x cos x - 1x-1bigg|=bigg|frace^xcos x-1-xxbigg|leqbigg|frace^x-1-xxbigg|$
Any help would be appreciated.
real-analysis limits limits-without-lhopital
Proof by definition $limlimits_x to 0 dfrace^x cos x - 1x=1$.
I could not go far because I am lacking insight of how to find $delta>0$ in this case.
Let $epsilon>0$.
$displaystylebigg|frace^x cos x - 1x-1bigg|=bigg|frace^xcos x-1-xxbigg|leqbigg|frace^x-1-xxbigg|$
Any help would be appreciated.
real-analysis limits limits-without-lhopital
edited Aug 19 at 9:24
asked Aug 19 at 8:27
dude3221
31812
31812
1
The inequality that you wrote is false. For $x=pi$ we have $frace^pi+1+pipi$ on the left and $frace^pi-1-pipi$ on the right. $frace^xcos(x)-1x = cos(x)frace^x-1x + fraccos(x)-1x$ may prove helpful.
â Rumpelstiltskin
Aug 19 at 8:38
true. so I really could not go far
â dude3221
Aug 19 at 8:41
add a comment |Â
1
The inequality that you wrote is false. For $x=pi$ we have $frace^pi+1+pipi$ on the left and $frace^pi-1-pipi$ on the right. $frace^xcos(x)-1x = cos(x)frace^x-1x + fraccos(x)-1x$ may prove helpful.
â Rumpelstiltskin
Aug 19 at 8:38
true. so I really could not go far
â dude3221
Aug 19 at 8:41
1
1
The inequality that you wrote is false. For $x=pi$ we have $frace^pi+1+pipi$ on the left and $frace^pi-1-pipi$ on the right. $frace^xcos(x)-1x = cos(x)frace^x-1x + fraccos(x)-1x$ may prove helpful.
â Rumpelstiltskin
Aug 19 at 8:38
The inequality that you wrote is false. For $x=pi$ we have $frace^pi+1+pipi$ on the left and $frace^pi-1-pipi$ on the right. $frace^xcos(x)-1x = cos(x)frace^x-1x + fraccos(x)-1x$ may prove helpful.
â Rumpelstiltskin
Aug 19 at 8:38
true. so I really could not go far
â dude3221
Aug 19 at 8:41
true. so I really could not go far
â dude3221
Aug 19 at 8:41
add a comment |Â
4 Answers
4
active
oldest
votes
up vote
2
down vote
accepted
$$frace^xcos(x)-1x = cos(x)frace^x-1x+fraccos(x)-1x = cos(x)frace^x-1x-frac2sin^2(x/2)x $$
We have for some fixed $delta$, and $0<|x|<delta$:
$$|frac2sin^2(x/2)x|leq |x/2|<delta/2 $$
For $delta<1$
$$1+x+x^2geq e^xgeq 1+x implies |frace^x-1x-1|leq|x|<delta$$
$$ $$
$$|frace^xcos(x)-1x-1|leq |1-cos(x)|+ |frace^x-1x-1|+|frac2sin^2(x)x|< delta^2+2delta $$
$$ varepsilon = delta^2+2delta implies delta = sqrtvarepsilon+1-1 $$
We went backwards, but it's the final result that matters.
For any $varepsilon>0$, if we take $delta = minsqrtvarepsilon+1-1, 1>0$, then$$0<|x|<delta implies |frace^xcos(x)-1x-1|< varepsilon $$
From the definition of a limit, $lim_xto 0 frace^xcos(x)-1x = 1$
add a comment |Â
up vote
2
down vote
By definition of the derivative one has
$$lim_ x to 0 frac e^x cos(x) - 1 x$$
$$= lim_ x to 0 frac e^x cos(x) - e^0 cos(0) x - 0$$
$$= fracddx Big|_x=0 ( e^x cos(x) )$$
$$= e^x ( cos(x) - sin(x) ) Big|_x=0$$
$$= 1$$
And we did not use L'Hospital.
But I need a proof by $epsilon-delta$ definition
â dude3221
Aug 19 at 9:23
add a comment |Â
up vote
1
down vote
Notice that $$0leq e^x-1-x leq x^2,~~~|x|leq 1.$$ and $$0leq sin^2 x leq x^2,~~~x in mathbbR.$$
Let's say that $|x|leq 1.$ Hence,
beginalign*left|frace^xcos x-1x-1right|&=left|frace^xleft(1-2sin^2dfracx2right)-1-xxright|\&leqleft|frace^x-1-xxright|+left|frace^xcdot2sin^2dfracx2xright|\&leqfracx^2+frace^xcdot 2cdot(dfracx2)^2\&=left(1+frace2right)|x|.endalign*
Now, let $$left(1+frace2right)|x|<varepsilon.$$ We obtain $$|x|<dfracvarepsilon1+dfrace2.$$
Thus, we take $$delta=minleft(1,dfracvarepsilon1+dfrace2right),$$then when $|x|<delta$, we have $$left|frace^xcos x-1x-1right|<varepsilon.$$
add a comment |Â
up vote
0
down vote
You have an indetermined expression "0/0" involving smooth numerator and denominator. So you can perform Taylor expansions of both, and first order suffices. This way $exp(x) simeq 1+x$, $cos x simeq 1$, and the numerator $simeq x$. The limit follows.
But I need a proof by $epsilon-delta$ definition
â dude3221
Aug 19 at 9:23
add a comment |Â
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
$$frace^xcos(x)-1x = cos(x)frace^x-1x+fraccos(x)-1x = cos(x)frace^x-1x-frac2sin^2(x/2)x $$
We have for some fixed $delta$, and $0<|x|<delta$:
$$|frac2sin^2(x/2)x|leq |x/2|<delta/2 $$
For $delta<1$
$$1+x+x^2geq e^xgeq 1+x implies |frace^x-1x-1|leq|x|<delta$$
$$ $$
$$|frace^xcos(x)-1x-1|leq |1-cos(x)|+ |frace^x-1x-1|+|frac2sin^2(x)x|< delta^2+2delta $$
$$ varepsilon = delta^2+2delta implies delta = sqrtvarepsilon+1-1 $$
We went backwards, but it's the final result that matters.
For any $varepsilon>0$, if we take $delta = minsqrtvarepsilon+1-1, 1>0$, then$$0<|x|<delta implies |frace^xcos(x)-1x-1|< varepsilon $$
From the definition of a limit, $lim_xto 0 frace^xcos(x)-1x = 1$
add a comment |Â
up vote
2
down vote
accepted
$$frace^xcos(x)-1x = cos(x)frace^x-1x+fraccos(x)-1x = cos(x)frace^x-1x-frac2sin^2(x/2)x $$
We have for some fixed $delta$, and $0<|x|<delta$:
$$|frac2sin^2(x/2)x|leq |x/2|<delta/2 $$
For $delta<1$
$$1+x+x^2geq e^xgeq 1+x implies |frace^x-1x-1|leq|x|<delta$$
$$ $$
$$|frace^xcos(x)-1x-1|leq |1-cos(x)|+ |frace^x-1x-1|+|frac2sin^2(x)x|< delta^2+2delta $$
$$ varepsilon = delta^2+2delta implies delta = sqrtvarepsilon+1-1 $$
We went backwards, but it's the final result that matters.
For any $varepsilon>0$, if we take $delta = minsqrtvarepsilon+1-1, 1>0$, then$$0<|x|<delta implies |frace^xcos(x)-1x-1|< varepsilon $$
From the definition of a limit, $lim_xto 0 frace^xcos(x)-1x = 1$
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
$$frace^xcos(x)-1x = cos(x)frace^x-1x+fraccos(x)-1x = cos(x)frace^x-1x-frac2sin^2(x/2)x $$
We have for some fixed $delta$, and $0<|x|<delta$:
$$|frac2sin^2(x/2)x|leq |x/2|<delta/2 $$
For $delta<1$
$$1+x+x^2geq e^xgeq 1+x implies |frace^x-1x-1|leq|x|<delta$$
$$ $$
$$|frace^xcos(x)-1x-1|leq |1-cos(x)|+ |frace^x-1x-1|+|frac2sin^2(x)x|< delta^2+2delta $$
$$ varepsilon = delta^2+2delta implies delta = sqrtvarepsilon+1-1 $$
We went backwards, but it's the final result that matters.
For any $varepsilon>0$, if we take $delta = minsqrtvarepsilon+1-1, 1>0$, then$$0<|x|<delta implies |frace^xcos(x)-1x-1|< varepsilon $$
From the definition of a limit, $lim_xto 0 frace^xcos(x)-1x = 1$
$$frace^xcos(x)-1x = cos(x)frace^x-1x+fraccos(x)-1x = cos(x)frace^x-1x-frac2sin^2(x/2)x $$
We have for some fixed $delta$, and $0<|x|<delta$:
$$|frac2sin^2(x/2)x|leq |x/2|<delta/2 $$
For $delta<1$
$$1+x+x^2geq e^xgeq 1+x implies |frace^x-1x-1|leq|x|<delta$$
$$ $$
$$|frace^xcos(x)-1x-1|leq |1-cos(x)|+ |frace^x-1x-1|+|frac2sin^2(x)x|< delta^2+2delta $$
$$ varepsilon = delta^2+2delta implies delta = sqrtvarepsilon+1-1 $$
We went backwards, but it's the final result that matters.
For any $varepsilon>0$, if we take $delta = minsqrtvarepsilon+1-1, 1>0$, then$$0<|x|<delta implies |frace^xcos(x)-1x-1|< varepsilon $$
From the definition of a limit, $lim_xto 0 frace^xcos(x)-1x = 1$
edited Aug 19 at 9:38
J.G.
13.8k11424
13.8k11424
answered Aug 19 at 9:06
Rumpelstiltskin
1,604415
1,604415
add a comment |Â
add a comment |Â
up vote
2
down vote
By definition of the derivative one has
$$lim_ x to 0 frac e^x cos(x) - 1 x$$
$$= lim_ x to 0 frac e^x cos(x) - e^0 cos(0) x - 0$$
$$= fracddx Big|_x=0 ( e^x cos(x) )$$
$$= e^x ( cos(x) - sin(x) ) Big|_x=0$$
$$= 1$$
And we did not use L'Hospital.
But I need a proof by $epsilon-delta$ definition
â dude3221
Aug 19 at 9:23
add a comment |Â
up vote
2
down vote
By definition of the derivative one has
$$lim_ x to 0 frac e^x cos(x) - 1 x$$
$$= lim_ x to 0 frac e^x cos(x) - e^0 cos(0) x - 0$$
$$= fracddx Big|_x=0 ( e^x cos(x) )$$
$$= e^x ( cos(x) - sin(x) ) Big|_x=0$$
$$= 1$$
And we did not use L'Hospital.
But I need a proof by $epsilon-delta$ definition
â dude3221
Aug 19 at 9:23
add a comment |Â
up vote
2
down vote
up vote
2
down vote
By definition of the derivative one has
$$lim_ x to 0 frac e^x cos(x) - 1 x$$
$$= lim_ x to 0 frac e^x cos(x) - e^0 cos(0) x - 0$$
$$= fracddx Big|_x=0 ( e^x cos(x) )$$
$$= e^x ( cos(x) - sin(x) ) Big|_x=0$$
$$= 1$$
And we did not use L'Hospital.
By definition of the derivative one has
$$lim_ x to 0 frac e^x cos(x) - 1 x$$
$$= lim_ x to 0 frac e^x cos(x) - e^0 cos(0) x - 0$$
$$= fracddx Big|_x=0 ( e^x cos(x) )$$
$$= e^x ( cos(x) - sin(x) ) Big|_x=0$$
$$= 1$$
And we did not use L'Hospital.
edited Aug 19 at 9:25
answered Aug 19 at 9:21
Arun Soor
312
312
But I need a proof by $epsilon-delta$ definition
â dude3221
Aug 19 at 9:23
add a comment |Â
But I need a proof by $epsilon-delta$ definition
â dude3221
Aug 19 at 9:23
But I need a proof by $epsilon-delta$ definition
â dude3221
Aug 19 at 9:23
But I need a proof by $epsilon-delta$ definition
â dude3221
Aug 19 at 9:23
add a comment |Â
up vote
1
down vote
Notice that $$0leq e^x-1-x leq x^2,~~~|x|leq 1.$$ and $$0leq sin^2 x leq x^2,~~~x in mathbbR.$$
Let's say that $|x|leq 1.$ Hence,
beginalign*left|frace^xcos x-1x-1right|&=left|frace^xleft(1-2sin^2dfracx2right)-1-xxright|\&leqleft|frace^x-1-xxright|+left|frace^xcdot2sin^2dfracx2xright|\&leqfracx^2+frace^xcdot 2cdot(dfracx2)^2\&=left(1+frace2right)|x|.endalign*
Now, let $$left(1+frace2right)|x|<varepsilon.$$ We obtain $$|x|<dfracvarepsilon1+dfrace2.$$
Thus, we take $$delta=minleft(1,dfracvarepsilon1+dfrace2right),$$then when $|x|<delta$, we have $$left|frace^xcos x-1x-1right|<varepsilon.$$
add a comment |Â
up vote
1
down vote
Notice that $$0leq e^x-1-x leq x^2,~~~|x|leq 1.$$ and $$0leq sin^2 x leq x^2,~~~x in mathbbR.$$
Let's say that $|x|leq 1.$ Hence,
beginalign*left|frace^xcos x-1x-1right|&=left|frace^xleft(1-2sin^2dfracx2right)-1-xxright|\&leqleft|frace^x-1-xxright|+left|frace^xcdot2sin^2dfracx2xright|\&leqfracx^2+frace^xcdot 2cdot(dfracx2)^2\&=left(1+frace2right)|x|.endalign*
Now, let $$left(1+frace2right)|x|<varepsilon.$$ We obtain $$|x|<dfracvarepsilon1+dfrace2.$$
Thus, we take $$delta=minleft(1,dfracvarepsilon1+dfrace2right),$$then when $|x|<delta$, we have $$left|frace^xcos x-1x-1right|<varepsilon.$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Notice that $$0leq e^x-1-x leq x^2,~~~|x|leq 1.$$ and $$0leq sin^2 x leq x^2,~~~x in mathbbR.$$
Let's say that $|x|leq 1.$ Hence,
beginalign*left|frace^xcos x-1x-1right|&=left|frace^xleft(1-2sin^2dfracx2right)-1-xxright|\&leqleft|frace^x-1-xxright|+left|frace^xcdot2sin^2dfracx2xright|\&leqfracx^2+frace^xcdot 2cdot(dfracx2)^2\&=left(1+frace2right)|x|.endalign*
Now, let $$left(1+frace2right)|x|<varepsilon.$$ We obtain $$|x|<dfracvarepsilon1+dfrace2.$$
Thus, we take $$delta=minleft(1,dfracvarepsilon1+dfrace2right),$$then when $|x|<delta$, we have $$left|frace^xcos x-1x-1right|<varepsilon.$$
Notice that $$0leq e^x-1-x leq x^2,~~~|x|leq 1.$$ and $$0leq sin^2 x leq x^2,~~~x in mathbbR.$$
Let's say that $|x|leq 1.$ Hence,
beginalign*left|frace^xcos x-1x-1right|&=left|frace^xleft(1-2sin^2dfracx2right)-1-xxright|\&leqleft|frace^x-1-xxright|+left|frace^xcdot2sin^2dfracx2xright|\&leqfracx^2+frace^xcdot 2cdot(dfracx2)^2\&=left(1+frace2right)|x|.endalign*
Now, let $$left(1+frace2right)|x|<varepsilon.$$ We obtain $$|x|<dfracvarepsilon1+dfrace2.$$
Thus, we take $$delta=minleft(1,dfracvarepsilon1+dfrace2right),$$then when $|x|<delta$, we have $$left|frace^xcos x-1x-1right|<varepsilon.$$
edited Aug 19 at 10:07
answered Aug 19 at 10:01
mengdie1982
3,457216
3,457216
add a comment |Â
add a comment |Â
up vote
0
down vote
You have an indetermined expression "0/0" involving smooth numerator and denominator. So you can perform Taylor expansions of both, and first order suffices. This way $exp(x) simeq 1+x$, $cos x simeq 1$, and the numerator $simeq x$. The limit follows.
But I need a proof by $epsilon-delta$ definition
â dude3221
Aug 19 at 9:23
add a comment |Â
up vote
0
down vote
You have an indetermined expression "0/0" involving smooth numerator and denominator. So you can perform Taylor expansions of both, and first order suffices. This way $exp(x) simeq 1+x$, $cos x simeq 1$, and the numerator $simeq x$. The limit follows.
But I need a proof by $epsilon-delta$ definition
â dude3221
Aug 19 at 9:23
add a comment |Â
up vote
0
down vote
up vote
0
down vote
You have an indetermined expression "0/0" involving smooth numerator and denominator. So you can perform Taylor expansions of both, and first order suffices. This way $exp(x) simeq 1+x$, $cos x simeq 1$, and the numerator $simeq x$. The limit follows.
You have an indetermined expression "0/0" involving smooth numerator and denominator. So you can perform Taylor expansions of both, and first order suffices. This way $exp(x) simeq 1+x$, $cos x simeq 1$, and the numerator $simeq x$. The limit follows.
answered Aug 19 at 9:10
Laurent
127
127
But I need a proof by $epsilon-delta$ definition
â dude3221
Aug 19 at 9:23
add a comment |Â
But I need a proof by $epsilon-delta$ definition
â dude3221
Aug 19 at 9:23
But I need a proof by $epsilon-delta$ definition
â dude3221
Aug 19 at 9:23
But I need a proof by $epsilon-delta$ definition
â dude3221
Aug 19 at 9:23
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2887489%2fproof-by-epsilon-delta-definition-lim-x-to-0-fracex-cos-x-1x%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
The inequality that you wrote is false. For $x=pi$ we have $frace^pi+1+pipi$ on the left and $frace^pi-1-pipi$ on the right. $frace^xcos(x)-1x = cos(x)frace^x-1x + fraccos(x)-1x$ may prove helpful.
â Rumpelstiltskin
Aug 19 at 8:38
true. so I really could not go far
â dude3221
Aug 19 at 8:41