Joint Density of two Cauchy Distribution

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












$mathbf Problem:$ If $X, Y, Z$ are i.i.d. from standard normal, find the joint density of
$W=X/Y$ and $V=Y /Z$?



$mathbf Attempt:$ All I know is $W=X/Y$ and $V=Y /Z$ both follows Cauchy Distribution. But how do I find out the joint density of $W$ and $V$? I think $W$ and $Z$ are not independent, so can't use $$ f_W,V(w,v) = f_W(w) cdot f_V(v)$$ Where $f$ denote density.



Any help would be much appreciated.







share|cite|improve this question
























    up vote
    0
    down vote

    favorite












    $mathbf Problem:$ If $X, Y, Z$ are i.i.d. from standard normal, find the joint density of
    $W=X/Y$ and $V=Y /Z$?



    $mathbf Attempt:$ All I know is $W=X/Y$ and $V=Y /Z$ both follows Cauchy Distribution. But how do I find out the joint density of $W$ and $V$? I think $W$ and $Z$ are not independent, so can't use $$ f_W,V(w,v) = f_W(w) cdot f_V(v)$$ Where $f$ denote density.



    Any help would be much appreciated.







    share|cite|improve this question






















      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      $mathbf Problem:$ If $X, Y, Z$ are i.i.d. from standard normal, find the joint density of
      $W=X/Y$ and $V=Y /Z$?



      $mathbf Attempt:$ All I know is $W=X/Y$ and $V=Y /Z$ both follows Cauchy Distribution. But how do I find out the joint density of $W$ and $V$? I think $W$ and $Z$ are not independent, so can't use $$ f_W,V(w,v) = f_W(w) cdot f_V(v)$$ Where $f$ denote density.



      Any help would be much appreciated.







      share|cite|improve this question












      $mathbf Problem:$ If $X, Y, Z$ are i.i.d. from standard normal, find the joint density of
      $W=X/Y$ and $V=Y /Z$?



      $mathbf Attempt:$ All I know is $W=X/Y$ and $V=Y /Z$ both follows Cauchy Distribution. But how do I find out the joint density of $W$ and $V$? I think $W$ and $Z$ are not independent, so can't use $$ f_W,V(w,v) = f_W(w) cdot f_V(v)$$ Where $f$ denote density.



      Any help would be much appreciated.









      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Aug 19 at 7:39









      RATNODEEP BAIN

      283




      283




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote













          There could be an easier way but you could try applying the usual change of variables technique.



          Joint density of $(X,Y,Z)$ is $$f_X,Y,Z(x,y,z)=frac1(sqrt2pi)^3e^-frac12(x^2+y^2+z^2)qquad,,(x,y,z)inmathbb R^3$$



          Transform $(X,Y,Z)to(U,V,W)$ such that $$U=fracXY,quad V=fracYZ,quad W=Z$$



          We have the inverse solutions $$x=uvw,quad y=vw,quad z=w$$



          Then $(x,y,z)inmathbb R^3implies (u,v,w)inmathbb R^3$.



          A quick calculation gives the absolute value of Jacobian as $|J|=|v|w^2$.



          So the joint density of $(U,V,W)$ is $$f_U,V,W(u,v,w)=frac(sqrt2pi)^3e^-fracw^22(u^2v^2+v^2+1)qquad,,(u,v,w)inmathbb R^3$$



          Integrating over $w$ you get the joint pdf of $(U,V)$ as



          beginalign
          f_U,V(u,v)&=fracv(sqrt2pi)^3int_mathbb Rw^2e^-fracw^22(u^2v^2+v^2+1),dw
          \&=fracv(sqrt2pi)^3int_0^infty w^2e^-fracw^22(u^2v^2+v^2+1),dw
          \&=fracv(sqrt2pi)^3int_0^inftysqrtte^-alpha t,dtqquadleft[w^2=t;quad (u^2v^2+v^2+1)/2=alpharight]
          \&=fracv(sqrt2pi)^3fracGamma(3/2)alpha^3/2
          endalign



          So finally,



          $$f_U,V(u,v)=fracv2pi(u^2v^2+v^2+1)^3/2qquad,,(u,v)inmathbb R^2$$



          Integrating this over the support yields $1$, so looks like this is the correct density.






          share|cite|improve this answer






















          • Just got struck integrating the density to get 1. Got something like $frac12int_0^inftyfracdz(zu^2+z+1)^3/2$ after substituting $z=v^2$ .
            – RATNODEEP BAIN
            Aug 19 at 15:58










          • @RATNODEEPBAIN Well, I used software to verify that. Didn't do it myself.
            – StubbornAtom
            Aug 19 at 16:01










          • Oh! Can you name the software.
            – RATNODEEP BAIN
            Aug 19 at 17:15










          • @RATNODEEPBAIN wolframalpha.com/input/…
            – StubbornAtom
            Aug 19 at 19:45










          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2887465%2fjoint-density-of-two-cauchy-distribution%23new-answer', 'question_page');

          );

          Post as a guest






























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote













          There could be an easier way but you could try applying the usual change of variables technique.



          Joint density of $(X,Y,Z)$ is $$f_X,Y,Z(x,y,z)=frac1(sqrt2pi)^3e^-frac12(x^2+y^2+z^2)qquad,,(x,y,z)inmathbb R^3$$



          Transform $(X,Y,Z)to(U,V,W)$ such that $$U=fracXY,quad V=fracYZ,quad W=Z$$



          We have the inverse solutions $$x=uvw,quad y=vw,quad z=w$$



          Then $(x,y,z)inmathbb R^3implies (u,v,w)inmathbb R^3$.



          A quick calculation gives the absolute value of Jacobian as $|J|=|v|w^2$.



          So the joint density of $(U,V,W)$ is $$f_U,V,W(u,v,w)=frac(sqrt2pi)^3e^-fracw^22(u^2v^2+v^2+1)qquad,,(u,v,w)inmathbb R^3$$



          Integrating over $w$ you get the joint pdf of $(U,V)$ as



          beginalign
          f_U,V(u,v)&=fracv(sqrt2pi)^3int_mathbb Rw^2e^-fracw^22(u^2v^2+v^2+1),dw
          \&=fracv(sqrt2pi)^3int_0^infty w^2e^-fracw^22(u^2v^2+v^2+1),dw
          \&=fracv(sqrt2pi)^3int_0^inftysqrtte^-alpha t,dtqquadleft[w^2=t;quad (u^2v^2+v^2+1)/2=alpharight]
          \&=fracv(sqrt2pi)^3fracGamma(3/2)alpha^3/2
          endalign



          So finally,



          $$f_U,V(u,v)=fracv2pi(u^2v^2+v^2+1)^3/2qquad,,(u,v)inmathbb R^2$$



          Integrating this over the support yields $1$, so looks like this is the correct density.






          share|cite|improve this answer






















          • Just got struck integrating the density to get 1. Got something like $frac12int_0^inftyfracdz(zu^2+z+1)^3/2$ after substituting $z=v^2$ .
            – RATNODEEP BAIN
            Aug 19 at 15:58










          • @RATNODEEPBAIN Well, I used software to verify that. Didn't do it myself.
            – StubbornAtom
            Aug 19 at 16:01










          • Oh! Can you name the software.
            – RATNODEEP BAIN
            Aug 19 at 17:15










          • @RATNODEEPBAIN wolframalpha.com/input/…
            – StubbornAtom
            Aug 19 at 19:45














          up vote
          1
          down vote













          There could be an easier way but you could try applying the usual change of variables technique.



          Joint density of $(X,Y,Z)$ is $$f_X,Y,Z(x,y,z)=frac1(sqrt2pi)^3e^-frac12(x^2+y^2+z^2)qquad,,(x,y,z)inmathbb R^3$$



          Transform $(X,Y,Z)to(U,V,W)$ such that $$U=fracXY,quad V=fracYZ,quad W=Z$$



          We have the inverse solutions $$x=uvw,quad y=vw,quad z=w$$



          Then $(x,y,z)inmathbb R^3implies (u,v,w)inmathbb R^3$.



          A quick calculation gives the absolute value of Jacobian as $|J|=|v|w^2$.



          So the joint density of $(U,V,W)$ is $$f_U,V,W(u,v,w)=frac(sqrt2pi)^3e^-fracw^22(u^2v^2+v^2+1)qquad,,(u,v,w)inmathbb R^3$$



          Integrating over $w$ you get the joint pdf of $(U,V)$ as



          beginalign
          f_U,V(u,v)&=fracv(sqrt2pi)^3int_mathbb Rw^2e^-fracw^22(u^2v^2+v^2+1),dw
          \&=fracv(sqrt2pi)^3int_0^infty w^2e^-fracw^22(u^2v^2+v^2+1),dw
          \&=fracv(sqrt2pi)^3int_0^inftysqrtte^-alpha t,dtqquadleft[w^2=t;quad (u^2v^2+v^2+1)/2=alpharight]
          \&=fracv(sqrt2pi)^3fracGamma(3/2)alpha^3/2
          endalign



          So finally,



          $$f_U,V(u,v)=fracv2pi(u^2v^2+v^2+1)^3/2qquad,,(u,v)inmathbb R^2$$



          Integrating this over the support yields $1$, so looks like this is the correct density.






          share|cite|improve this answer






















          • Just got struck integrating the density to get 1. Got something like $frac12int_0^inftyfracdz(zu^2+z+1)^3/2$ after substituting $z=v^2$ .
            – RATNODEEP BAIN
            Aug 19 at 15:58










          • @RATNODEEPBAIN Well, I used software to verify that. Didn't do it myself.
            – StubbornAtom
            Aug 19 at 16:01










          • Oh! Can you name the software.
            – RATNODEEP BAIN
            Aug 19 at 17:15










          • @RATNODEEPBAIN wolframalpha.com/input/…
            – StubbornAtom
            Aug 19 at 19:45












          up vote
          1
          down vote










          up vote
          1
          down vote









          There could be an easier way but you could try applying the usual change of variables technique.



          Joint density of $(X,Y,Z)$ is $$f_X,Y,Z(x,y,z)=frac1(sqrt2pi)^3e^-frac12(x^2+y^2+z^2)qquad,,(x,y,z)inmathbb R^3$$



          Transform $(X,Y,Z)to(U,V,W)$ such that $$U=fracXY,quad V=fracYZ,quad W=Z$$



          We have the inverse solutions $$x=uvw,quad y=vw,quad z=w$$



          Then $(x,y,z)inmathbb R^3implies (u,v,w)inmathbb R^3$.



          A quick calculation gives the absolute value of Jacobian as $|J|=|v|w^2$.



          So the joint density of $(U,V,W)$ is $$f_U,V,W(u,v,w)=frac(sqrt2pi)^3e^-fracw^22(u^2v^2+v^2+1)qquad,,(u,v,w)inmathbb R^3$$



          Integrating over $w$ you get the joint pdf of $(U,V)$ as



          beginalign
          f_U,V(u,v)&=fracv(sqrt2pi)^3int_mathbb Rw^2e^-fracw^22(u^2v^2+v^2+1),dw
          \&=fracv(sqrt2pi)^3int_0^infty w^2e^-fracw^22(u^2v^2+v^2+1),dw
          \&=fracv(sqrt2pi)^3int_0^inftysqrtte^-alpha t,dtqquadleft[w^2=t;quad (u^2v^2+v^2+1)/2=alpharight]
          \&=fracv(sqrt2pi)^3fracGamma(3/2)alpha^3/2
          endalign



          So finally,



          $$f_U,V(u,v)=fracv2pi(u^2v^2+v^2+1)^3/2qquad,,(u,v)inmathbb R^2$$



          Integrating this over the support yields $1$, so looks like this is the correct density.






          share|cite|improve this answer














          There could be an easier way but you could try applying the usual change of variables technique.



          Joint density of $(X,Y,Z)$ is $$f_X,Y,Z(x,y,z)=frac1(sqrt2pi)^3e^-frac12(x^2+y^2+z^2)qquad,,(x,y,z)inmathbb R^3$$



          Transform $(X,Y,Z)to(U,V,W)$ such that $$U=fracXY,quad V=fracYZ,quad W=Z$$



          We have the inverse solutions $$x=uvw,quad y=vw,quad z=w$$



          Then $(x,y,z)inmathbb R^3implies (u,v,w)inmathbb R^3$.



          A quick calculation gives the absolute value of Jacobian as $|J|=|v|w^2$.



          So the joint density of $(U,V,W)$ is $$f_U,V,W(u,v,w)=frac(sqrt2pi)^3e^-fracw^22(u^2v^2+v^2+1)qquad,,(u,v,w)inmathbb R^3$$



          Integrating over $w$ you get the joint pdf of $(U,V)$ as



          beginalign
          f_U,V(u,v)&=fracv(sqrt2pi)^3int_mathbb Rw^2e^-fracw^22(u^2v^2+v^2+1),dw
          \&=fracv(sqrt2pi)^3int_0^infty w^2e^-fracw^22(u^2v^2+v^2+1),dw
          \&=fracv(sqrt2pi)^3int_0^inftysqrtte^-alpha t,dtqquadleft[w^2=t;quad (u^2v^2+v^2+1)/2=alpharight]
          \&=fracv(sqrt2pi)^3fracGamma(3/2)alpha^3/2
          endalign



          So finally,



          $$f_U,V(u,v)=fracv2pi(u^2v^2+v^2+1)^3/2qquad,,(u,v)inmathbb R^2$$



          Integrating this over the support yields $1$, so looks like this is the correct density.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Aug 19 at 20:05

























          answered Aug 19 at 8:15









          StubbornAtom

          3,93811134




          3,93811134











          • Just got struck integrating the density to get 1. Got something like $frac12int_0^inftyfracdz(zu^2+z+1)^3/2$ after substituting $z=v^2$ .
            – RATNODEEP BAIN
            Aug 19 at 15:58










          • @RATNODEEPBAIN Well, I used software to verify that. Didn't do it myself.
            – StubbornAtom
            Aug 19 at 16:01










          • Oh! Can you name the software.
            – RATNODEEP BAIN
            Aug 19 at 17:15










          • @RATNODEEPBAIN wolframalpha.com/input/…
            – StubbornAtom
            Aug 19 at 19:45
















          • Just got struck integrating the density to get 1. Got something like $frac12int_0^inftyfracdz(zu^2+z+1)^3/2$ after substituting $z=v^2$ .
            – RATNODEEP BAIN
            Aug 19 at 15:58










          • @RATNODEEPBAIN Well, I used software to verify that. Didn't do it myself.
            – StubbornAtom
            Aug 19 at 16:01










          • Oh! Can you name the software.
            – RATNODEEP BAIN
            Aug 19 at 17:15










          • @RATNODEEPBAIN wolframalpha.com/input/…
            – StubbornAtom
            Aug 19 at 19:45















          Just got struck integrating the density to get 1. Got something like $frac12int_0^inftyfracdz(zu^2+z+1)^3/2$ after substituting $z=v^2$ .
          – RATNODEEP BAIN
          Aug 19 at 15:58




          Just got struck integrating the density to get 1. Got something like $frac12int_0^inftyfracdz(zu^2+z+1)^3/2$ after substituting $z=v^2$ .
          – RATNODEEP BAIN
          Aug 19 at 15:58












          @RATNODEEPBAIN Well, I used software to verify that. Didn't do it myself.
          – StubbornAtom
          Aug 19 at 16:01




          @RATNODEEPBAIN Well, I used software to verify that. Didn't do it myself.
          – StubbornAtom
          Aug 19 at 16:01












          Oh! Can you name the software.
          – RATNODEEP BAIN
          Aug 19 at 17:15




          Oh! Can you name the software.
          – RATNODEEP BAIN
          Aug 19 at 17:15












          @RATNODEEPBAIN wolframalpha.com/input/…
          – StubbornAtom
          Aug 19 at 19:45




          @RATNODEEPBAIN wolframalpha.com/input/…
          – StubbornAtom
          Aug 19 at 19:45












           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2887465%2fjoint-density-of-two-cauchy-distribution%23new-answer', 'question_page');

          );

          Post as a guest













































































          這個網誌中的熱門文章

          How to combine Bézier curves to a surface?

          Mutual Information Always Non-negative

          Why am i infinitely getting the same tweet with the Twitter Search API?