How to prove the two identities

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite
1












Let $m,n$ be positive integers and $N=1,ldots, n$. Try to prove the two following identites:



  1. For $m<n$, we have
    $$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^m = 0.$$

E.g., for $n=3, m=1$, we have
$$(x_1+x_2+x_3) = (x_1+x_2) + (x_1+x_3) + (x_2+x_3) - x_1 - x_2 - x_3,$$
and for $n=3, m=2$, we have again
$$(x_1+x_2+x_3)^2 = (x_1+x_2)^2 + (x_1+x_3)^2 + (x_2+x_3)^2 - x_1^2 - x_2^2 - x_3^2.$$



  1. For $m=n$, we have
    $$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^n = (-1)^n n! prod_i=1^nx_i.$$

E.g., for $m=n=2$, we have
$$(x_1+x_2)^2 = x_1^2 + x_2^2 + 2!x_1 x_2,$$
and for $m=n=3$, we have
$$(x_1+x_2+x_3)^3 = (x_1+x_2)^3 + (x_1+x_3)^3 + (x_2+x_3)^3 - x_1^3 - x_2^3 - x_3^3 + 3!x_1x_2x_3.$$



I think the both identities could be proved by mathematical induction, but I still have no idea how to prove them. Hoping to see some smart ideas. Thanks a lot!







share|cite|improve this question


























    up vote
    3
    down vote

    favorite
    1












    Let $m,n$ be positive integers and $N=1,ldots, n$. Try to prove the two following identites:



    1. For $m<n$, we have
      $$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^m = 0.$$

    E.g., for $n=3, m=1$, we have
    $$(x_1+x_2+x_3) = (x_1+x_2) + (x_1+x_3) + (x_2+x_3) - x_1 - x_2 - x_3,$$
    and for $n=3, m=2$, we have again
    $$(x_1+x_2+x_3)^2 = (x_1+x_2)^2 + (x_1+x_3)^2 + (x_2+x_3)^2 - x_1^2 - x_2^2 - x_3^2.$$



    1. For $m=n$, we have
      $$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^n = (-1)^n n! prod_i=1^nx_i.$$

    E.g., for $m=n=2$, we have
    $$(x_1+x_2)^2 = x_1^2 + x_2^2 + 2!x_1 x_2,$$
    and for $m=n=3$, we have
    $$(x_1+x_2+x_3)^3 = (x_1+x_2)^3 + (x_1+x_3)^3 + (x_2+x_3)^3 - x_1^3 - x_2^3 - x_3^3 + 3!x_1x_2x_3.$$



    I think the both identities could be proved by mathematical induction, but I still have no idea how to prove them. Hoping to see some smart ideas. Thanks a lot!







    share|cite|improve this question
























      up vote
      3
      down vote

      favorite
      1









      up vote
      3
      down vote

      favorite
      1






      1





      Let $m,n$ be positive integers and $N=1,ldots, n$. Try to prove the two following identites:



      1. For $m<n$, we have
        $$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^m = 0.$$

      E.g., for $n=3, m=1$, we have
      $$(x_1+x_2+x_3) = (x_1+x_2) + (x_1+x_3) + (x_2+x_3) - x_1 - x_2 - x_3,$$
      and for $n=3, m=2$, we have again
      $$(x_1+x_2+x_3)^2 = (x_1+x_2)^2 + (x_1+x_3)^2 + (x_2+x_3)^2 - x_1^2 - x_2^2 - x_3^2.$$



      1. For $m=n$, we have
        $$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^n = (-1)^n n! prod_i=1^nx_i.$$

      E.g., for $m=n=2$, we have
      $$(x_1+x_2)^2 = x_1^2 + x_2^2 + 2!x_1 x_2,$$
      and for $m=n=3$, we have
      $$(x_1+x_2+x_3)^3 = (x_1+x_2)^3 + (x_1+x_3)^3 + (x_2+x_3)^3 - x_1^3 - x_2^3 - x_3^3 + 3!x_1x_2x_3.$$



      I think the both identities could be proved by mathematical induction, but I still have no idea how to prove them. Hoping to see some smart ideas. Thanks a lot!







      share|cite|improve this question














      Let $m,n$ be positive integers and $N=1,ldots, n$. Try to prove the two following identites:



      1. For $m<n$, we have
        $$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^m = 0.$$

      E.g., for $n=3, m=1$, we have
      $$(x_1+x_2+x_3) = (x_1+x_2) + (x_1+x_3) + (x_2+x_3) - x_1 - x_2 - x_3,$$
      and for $n=3, m=2$, we have again
      $$(x_1+x_2+x_3)^2 = (x_1+x_2)^2 + (x_1+x_3)^2 + (x_2+x_3)^2 - x_1^2 - x_2^2 - x_3^2.$$



      1. For $m=n$, we have
        $$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^n = (-1)^n n! prod_i=1^nx_i.$$

      E.g., for $m=n=2$, we have
      $$(x_1+x_2)^2 = x_1^2 + x_2^2 + 2!x_1 x_2,$$
      and for $m=n=3$, we have
      $$(x_1+x_2+x_3)^3 = (x_1+x_2)^3 + (x_1+x_3)^3 + (x_2+x_3)^3 - x_1^3 - x_2^3 - x_3^3 + 3!x_1x_2x_3.$$



      I think the both identities could be proved by mathematical induction, but I still have no idea how to prove them. Hoping to see some smart ideas. Thanks a lot!









      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Aug 19 at 13:10

























      asked Aug 19 at 10:56









      kaienfr

      212




      212




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          2
          down vote













          First note that
          $$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^mtag 1$$
          is an homogeneus polynomial of degree $m$ in the variables $x_1,ldots,x_n$.
          Let consider a generic monomial $prod_i=1^nx_i^e_i$ with $e_iinBbb N$ and $sum_i=1^ne_i=m$.
          Its coefficient in $(1)$ is given by
          $$sum_Ssubseteq Asubseteq N(-1)^fracm!prod_i=1^ne_i!$$
          where $S=i:e_i>0$.
          Moreover
          beginalign
          sum_Ssubseteq Asubseteq N(-1)^
          &=(-1)^Ssum_Bsubseteq Nsetminus S(-1)^\
          &=(-1)^Ssum_k=0^binomk(-1)^k\
          &=
          begincases
          0&Sneq N\
          (-1)^S&S=N
          endcases
          endalign



          If $m<n$ or ($m=n$ and $e_i>1$ for some $i$), then $Sneq N$, hence $(1)$ is proved to be $0$ in this case.



          If $m=n$ and $e_i=1$ for all $i$, then $S=N$, hence the coefficient is $(-1)^nn!$ and this proves the second identity.






          share|cite|improve this answer






















          • Thanks a lot for your nice reply, w've found a nice proof on artofproblemsolving.com/community/c7h1694032 thanks a lot again!
            – kaienfr
            Aug 22 at 8:55











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2887587%2fhow-to-prove-the-two-identities%23new-answer', 'question_page');

          );

          Post as a guest






























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          2
          down vote













          First note that
          $$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^mtag 1$$
          is an homogeneus polynomial of degree $m$ in the variables $x_1,ldots,x_n$.
          Let consider a generic monomial $prod_i=1^nx_i^e_i$ with $e_iinBbb N$ and $sum_i=1^ne_i=m$.
          Its coefficient in $(1)$ is given by
          $$sum_Ssubseteq Asubseteq N(-1)^fracm!prod_i=1^ne_i!$$
          where $S=i:e_i>0$.
          Moreover
          beginalign
          sum_Ssubseteq Asubseteq N(-1)^
          &=(-1)^Ssum_Bsubseteq Nsetminus S(-1)^\
          &=(-1)^Ssum_k=0^binomk(-1)^k\
          &=
          begincases
          0&Sneq N\
          (-1)^S&S=N
          endcases
          endalign



          If $m<n$ or ($m=n$ and $e_i>1$ for some $i$), then $Sneq N$, hence $(1)$ is proved to be $0$ in this case.



          If $m=n$ and $e_i=1$ for all $i$, then $S=N$, hence the coefficient is $(-1)^nn!$ and this proves the second identity.






          share|cite|improve this answer






















          • Thanks a lot for your nice reply, w've found a nice proof on artofproblemsolving.com/community/c7h1694032 thanks a lot again!
            – kaienfr
            Aug 22 at 8:55















          up vote
          2
          down vote













          First note that
          $$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^mtag 1$$
          is an homogeneus polynomial of degree $m$ in the variables $x_1,ldots,x_n$.
          Let consider a generic monomial $prod_i=1^nx_i^e_i$ with $e_iinBbb N$ and $sum_i=1^ne_i=m$.
          Its coefficient in $(1)$ is given by
          $$sum_Ssubseteq Asubseteq N(-1)^fracm!prod_i=1^ne_i!$$
          where $S=i:e_i>0$.
          Moreover
          beginalign
          sum_Ssubseteq Asubseteq N(-1)^
          &=(-1)^Ssum_Bsubseteq Nsetminus S(-1)^\
          &=(-1)^Ssum_k=0^binomk(-1)^k\
          &=
          begincases
          0&Sneq N\
          (-1)^S&S=N
          endcases
          endalign



          If $m<n$ or ($m=n$ and $e_i>1$ for some $i$), then $Sneq N$, hence $(1)$ is proved to be $0$ in this case.



          If $m=n$ and $e_i=1$ for all $i$, then $S=N$, hence the coefficient is $(-1)^nn!$ and this proves the second identity.






          share|cite|improve this answer






















          • Thanks a lot for your nice reply, w've found a nice proof on artofproblemsolving.com/community/c7h1694032 thanks a lot again!
            – kaienfr
            Aug 22 at 8:55













          up vote
          2
          down vote










          up vote
          2
          down vote









          First note that
          $$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^mtag 1$$
          is an homogeneus polynomial of degree $m$ in the variables $x_1,ldots,x_n$.
          Let consider a generic monomial $prod_i=1^nx_i^e_i$ with $e_iinBbb N$ and $sum_i=1^ne_i=m$.
          Its coefficient in $(1)$ is given by
          $$sum_Ssubseteq Asubseteq N(-1)^fracm!prod_i=1^ne_i!$$
          where $S=i:e_i>0$.
          Moreover
          beginalign
          sum_Ssubseteq Asubseteq N(-1)^
          &=(-1)^Ssum_Bsubseteq Nsetminus S(-1)^\
          &=(-1)^Ssum_k=0^binomk(-1)^k\
          &=
          begincases
          0&Sneq N\
          (-1)^S&S=N
          endcases
          endalign



          If $m<n$ or ($m=n$ and $e_i>1$ for some $i$), then $Sneq N$, hence $(1)$ is proved to be $0$ in this case.



          If $m=n$ and $e_i=1$ for all $i$, then $S=N$, hence the coefficient is $(-1)^nn!$ and this proves the second identity.






          share|cite|improve this answer














          First note that
          $$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^mtag 1$$
          is an homogeneus polynomial of degree $m$ in the variables $x_1,ldots,x_n$.
          Let consider a generic monomial $prod_i=1^nx_i^e_i$ with $e_iinBbb N$ and $sum_i=1^ne_i=m$.
          Its coefficient in $(1)$ is given by
          $$sum_Ssubseteq Asubseteq N(-1)^fracm!prod_i=1^ne_i!$$
          where $S=i:e_i>0$.
          Moreover
          beginalign
          sum_Ssubseteq Asubseteq N(-1)^
          &=(-1)^Ssum_Bsubseteq Nsetminus S(-1)^\
          &=(-1)^Ssum_k=0^binomk(-1)^k\
          &=
          begincases
          0&Sneq N\
          (-1)^S&S=N
          endcases
          endalign



          If $m<n$ or ($m=n$ and $e_i>1$ for some $i$), then $Sneq N$, hence $(1)$ is proved to be $0$ in this case.



          If $m=n$ and $e_i=1$ for all $i$, then $S=N$, hence the coefficient is $(-1)^nn!$ and this proves the second identity.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Aug 19 at 18:57

























          answered Aug 19 at 15:33









          Fabio Lucchini

          5,96411025




          5,96411025











          • Thanks a lot for your nice reply, w've found a nice proof on artofproblemsolving.com/community/c7h1694032 thanks a lot again!
            – kaienfr
            Aug 22 at 8:55

















          • Thanks a lot for your nice reply, w've found a nice proof on artofproblemsolving.com/community/c7h1694032 thanks a lot again!
            – kaienfr
            Aug 22 at 8:55
















          Thanks a lot for your nice reply, w've found a nice proof on artofproblemsolving.com/community/c7h1694032 thanks a lot again!
          – kaienfr
          Aug 22 at 8:55





          Thanks a lot for your nice reply, w've found a nice proof on artofproblemsolving.com/community/c7h1694032 thanks a lot again!
          – kaienfr
          Aug 22 at 8:55













           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2887587%2fhow-to-prove-the-two-identities%23new-answer', 'question_page');

          );

          Post as a guest













































































          這個網誌中的熱門文章

          How to combine Bézier curves to a surface?

          Mutual Information Always Non-negative

          Why am i infinitely getting the same tweet with the Twitter Search API?