How to prove the two identities
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
Let $m,n$ be positive integers and $N=1,ldots, n$. Try to prove the two following identites:
- For $m<n$, we have
$$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^m = 0.$$
E.g., for $n=3, m=1$, we have
$$(x_1+x_2+x_3) = (x_1+x_2) + (x_1+x_3) + (x_2+x_3) - x_1 - x_2 - x_3,$$
and for $n=3, m=2$, we have again
$$(x_1+x_2+x_3)^2 = (x_1+x_2)^2 + (x_1+x_3)^2 + (x_2+x_3)^2 - x_1^2 - x_2^2 - x_3^2.$$
- For $m=n$, we have
$$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^n = (-1)^n n! prod_i=1^nx_i.$$
E.g., for $m=n=2$, we have
$$(x_1+x_2)^2 = x_1^2 + x_2^2 + 2!x_1 x_2,$$
and for $m=n=3$, we have
$$(x_1+x_2+x_3)^3 = (x_1+x_2)^3 + (x_1+x_3)^3 + (x_2+x_3)^3 - x_1^3 - x_2^3 - x_3^3 + 3!x_1x_2x_3.$$
I think the both identities could be proved by mathematical induction, but I still have no idea how to prove them. Hoping to see some smart ideas. Thanks a lot!
calculus abstract-algebra sequences-and-series multivariable-calculus binomial-theorem
add a comment |Â
up vote
3
down vote
favorite
Let $m,n$ be positive integers and $N=1,ldots, n$. Try to prove the two following identites:
- For $m<n$, we have
$$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^m = 0.$$
E.g., for $n=3, m=1$, we have
$$(x_1+x_2+x_3) = (x_1+x_2) + (x_1+x_3) + (x_2+x_3) - x_1 - x_2 - x_3,$$
and for $n=3, m=2$, we have again
$$(x_1+x_2+x_3)^2 = (x_1+x_2)^2 + (x_1+x_3)^2 + (x_2+x_3)^2 - x_1^2 - x_2^2 - x_3^2.$$
- For $m=n$, we have
$$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^n = (-1)^n n! prod_i=1^nx_i.$$
E.g., for $m=n=2$, we have
$$(x_1+x_2)^2 = x_1^2 + x_2^2 + 2!x_1 x_2,$$
and for $m=n=3$, we have
$$(x_1+x_2+x_3)^3 = (x_1+x_2)^3 + (x_1+x_3)^3 + (x_2+x_3)^3 - x_1^3 - x_2^3 - x_3^3 + 3!x_1x_2x_3.$$
I think the both identities could be proved by mathematical induction, but I still have no idea how to prove them. Hoping to see some smart ideas. Thanks a lot!
calculus abstract-algebra sequences-and-series multivariable-calculus binomial-theorem
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
Let $m,n$ be positive integers and $N=1,ldots, n$. Try to prove the two following identites:
- For $m<n$, we have
$$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^m = 0.$$
E.g., for $n=3, m=1$, we have
$$(x_1+x_2+x_3) = (x_1+x_2) + (x_1+x_3) + (x_2+x_3) - x_1 - x_2 - x_3,$$
and for $n=3, m=2$, we have again
$$(x_1+x_2+x_3)^2 = (x_1+x_2)^2 + (x_1+x_3)^2 + (x_2+x_3)^2 - x_1^2 - x_2^2 - x_3^2.$$
- For $m=n$, we have
$$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^n = (-1)^n n! prod_i=1^nx_i.$$
E.g., for $m=n=2$, we have
$$(x_1+x_2)^2 = x_1^2 + x_2^2 + 2!x_1 x_2,$$
and for $m=n=3$, we have
$$(x_1+x_2+x_3)^3 = (x_1+x_2)^3 + (x_1+x_3)^3 + (x_2+x_3)^3 - x_1^3 - x_2^3 - x_3^3 + 3!x_1x_2x_3.$$
I think the both identities could be proved by mathematical induction, but I still have no idea how to prove them. Hoping to see some smart ideas. Thanks a lot!
calculus abstract-algebra sequences-and-series multivariable-calculus binomial-theorem
Let $m,n$ be positive integers and $N=1,ldots, n$. Try to prove the two following identites:
- For $m<n$, we have
$$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^m = 0.$$
E.g., for $n=3, m=1$, we have
$$(x_1+x_2+x_3) = (x_1+x_2) + (x_1+x_3) + (x_2+x_3) - x_1 - x_2 - x_3,$$
and for $n=3, m=2$, we have again
$$(x_1+x_2+x_3)^2 = (x_1+x_2)^2 + (x_1+x_3)^2 + (x_2+x_3)^2 - x_1^2 - x_2^2 - x_3^2.$$
- For $m=n$, we have
$$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^n = (-1)^n n! prod_i=1^nx_i.$$
E.g., for $m=n=2$, we have
$$(x_1+x_2)^2 = x_1^2 + x_2^2 + 2!x_1 x_2,$$
and for $m=n=3$, we have
$$(x_1+x_2+x_3)^3 = (x_1+x_2)^3 + (x_1+x_3)^3 + (x_2+x_3)^3 - x_1^3 - x_2^3 - x_3^3 + 3!x_1x_2x_3.$$
I think the both identities could be proved by mathematical induction, but I still have no idea how to prove them. Hoping to see some smart ideas. Thanks a lot!
calculus abstract-algebra sequences-and-series multivariable-calculus binomial-theorem
edited Aug 19 at 13:10
asked Aug 19 at 10:56
kaienfr
212
212
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
2
down vote
First note that
$$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^mtag 1$$
is an homogeneus polynomial of degree $m$ in the variables $x_1,ldots,x_n$.
Let consider a generic monomial $prod_i=1^nx_i^e_i$ with $e_iinBbb N$ and $sum_i=1^ne_i=m$.
Its coefficient in $(1)$ is given by
$$sum_Ssubseteq Asubseteq N(-1)^fracm!prod_i=1^ne_i!$$
where $S=i:e_i>0$.
Moreover
beginalign
sum_Ssubseteq Asubseteq N(-1)^
&=(-1)^Ssum_Bsubseteq Nsetminus S(-1)^\
&=(-1)^Ssum_k=0^binomk(-1)^k\
&=
begincases
0&Sneq N\
(-1)^S&S=N
endcases
endalign
If $m<n$ or ($m=n$ and $e_i>1$ for some $i$), then $Sneq N$, hence $(1)$ is proved to be $0$ in this case.
If $m=n$ and $e_i=1$ for all $i$, then $S=N$, hence the coefficient is $(-1)^nn!$ and this proves the second identity.
Thanks a lot for your nice reply, w've found a nice proof on artofproblemsolving.com/community/c7h1694032 thanks a lot again!
â kaienfr
Aug 22 at 8:55
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
First note that
$$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^mtag 1$$
is an homogeneus polynomial of degree $m$ in the variables $x_1,ldots,x_n$.
Let consider a generic monomial $prod_i=1^nx_i^e_i$ with $e_iinBbb N$ and $sum_i=1^ne_i=m$.
Its coefficient in $(1)$ is given by
$$sum_Ssubseteq Asubseteq N(-1)^fracm!prod_i=1^ne_i!$$
where $S=i:e_i>0$.
Moreover
beginalign
sum_Ssubseteq Asubseteq N(-1)^
&=(-1)^Ssum_Bsubseteq Nsetminus S(-1)^\
&=(-1)^Ssum_k=0^binomk(-1)^k\
&=
begincases
0&Sneq N\
(-1)^S&S=N
endcases
endalign
If $m<n$ or ($m=n$ and $e_i>1$ for some $i$), then $Sneq N$, hence $(1)$ is proved to be $0$ in this case.
If $m=n$ and $e_i=1$ for all $i$, then $S=N$, hence the coefficient is $(-1)^nn!$ and this proves the second identity.
Thanks a lot for your nice reply, w've found a nice proof on artofproblemsolving.com/community/c7h1694032 thanks a lot again!
â kaienfr
Aug 22 at 8:55
add a comment |Â
up vote
2
down vote
First note that
$$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^mtag 1$$
is an homogeneus polynomial of degree $m$ in the variables $x_1,ldots,x_n$.
Let consider a generic monomial $prod_i=1^nx_i^e_i$ with $e_iinBbb N$ and $sum_i=1^ne_i=m$.
Its coefficient in $(1)$ is given by
$$sum_Ssubseteq Asubseteq N(-1)^fracm!prod_i=1^ne_i!$$
where $S=i:e_i>0$.
Moreover
beginalign
sum_Ssubseteq Asubseteq N(-1)^
&=(-1)^Ssum_Bsubseteq Nsetminus S(-1)^\
&=(-1)^Ssum_k=0^binomk(-1)^k\
&=
begincases
0&Sneq N\
(-1)^S&S=N
endcases
endalign
If $m<n$ or ($m=n$ and $e_i>1$ for some $i$), then $Sneq N$, hence $(1)$ is proved to be $0$ in this case.
If $m=n$ and $e_i=1$ for all $i$, then $S=N$, hence the coefficient is $(-1)^nn!$ and this proves the second identity.
Thanks a lot for your nice reply, w've found a nice proof on artofproblemsolving.com/community/c7h1694032 thanks a lot again!
â kaienfr
Aug 22 at 8:55
add a comment |Â
up vote
2
down vote
up vote
2
down vote
First note that
$$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^mtag 1$$
is an homogeneus polynomial of degree $m$ in the variables $x_1,ldots,x_n$.
Let consider a generic monomial $prod_i=1^nx_i^e_i$ with $e_iinBbb N$ and $sum_i=1^ne_i=m$.
Its coefficient in $(1)$ is given by
$$sum_Ssubseteq Asubseteq N(-1)^fracm!prod_i=1^ne_i!$$
where $S=i:e_i>0$.
Moreover
beginalign
sum_Ssubseteq Asubseteq N(-1)^
&=(-1)^Ssum_Bsubseteq Nsetminus S(-1)^\
&=(-1)^Ssum_k=0^binomk(-1)^k\
&=
begincases
0&Sneq N\
(-1)^S&S=N
endcases
endalign
If $m<n$ or ($m=n$ and $e_i>1$ for some $i$), then $Sneq N$, hence $(1)$ is proved to be $0$ in this case.
If $m=n$ and $e_i=1$ for all $i$, then $S=N$, hence the coefficient is $(-1)^nn!$ and this proves the second identity.
First note that
$$sum_A subseteq N (-1)^ Aright left(sum_j in A x_jright)^mtag 1$$
is an homogeneus polynomial of degree $m$ in the variables $x_1,ldots,x_n$.
Let consider a generic monomial $prod_i=1^nx_i^e_i$ with $e_iinBbb N$ and $sum_i=1^ne_i=m$.
Its coefficient in $(1)$ is given by
$$sum_Ssubseteq Asubseteq N(-1)^fracm!prod_i=1^ne_i!$$
where $S=i:e_i>0$.
Moreover
beginalign
sum_Ssubseteq Asubseteq N(-1)^
&=(-1)^Ssum_Bsubseteq Nsetminus S(-1)^\
&=(-1)^Ssum_k=0^binomk(-1)^k\
&=
begincases
0&Sneq N\
(-1)^S&S=N
endcases
endalign
If $m<n$ or ($m=n$ and $e_i>1$ for some $i$), then $Sneq N$, hence $(1)$ is proved to be $0$ in this case.
If $m=n$ and $e_i=1$ for all $i$, then $S=N$, hence the coefficient is $(-1)^nn!$ and this proves the second identity.
edited Aug 19 at 18:57
answered Aug 19 at 15:33
Fabio Lucchini
5,96411025
5,96411025
Thanks a lot for your nice reply, w've found a nice proof on artofproblemsolving.com/community/c7h1694032 thanks a lot again!
â kaienfr
Aug 22 at 8:55
add a comment |Â
Thanks a lot for your nice reply, w've found a nice proof on artofproblemsolving.com/community/c7h1694032 thanks a lot again!
â kaienfr
Aug 22 at 8:55
Thanks a lot for your nice reply, w've found a nice proof on artofproblemsolving.com/community/c7h1694032 thanks a lot again!
â kaienfr
Aug 22 at 8:55
Thanks a lot for your nice reply, w've found a nice proof on artofproblemsolving.com/community/c7h1694032 thanks a lot again!
â kaienfr
Aug 22 at 8:55
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2887587%2fhow-to-prove-the-two-identities%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password