Find the eigen values of $Q$
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Find all eigen values of the following matrix $Q$:
Here $n=pq,p<q$ and $p,q $ are primes and $l=phi(n)+1$.
$$Q=beginbmatrix(n-1)I_ltimes l&&&&&& J_ltimes n-l \J^T_(n-l)times l&&&&&& A_(n-l)times (n-l) endbmatrix$$
$A$ is a diagonal matrix of the form
$$A=beginbmatrix
C_(q-1)times (q-1) & 0 \
0 & D_(p-1)times (p-1)
endbmatrix$$
where $$C= beginbmatrix
p(q-1) & 1 & 1 &ldots & 1\1 & p(q-1) & 1 & ldots & 1\1 & 1 & p(q-1) &ldots & 1 \ ldots &ldots& ldots & ldots & ldots \ ldots & ldots & ldots& ldots & ldots \ ldots& ldots& ldots & ldots &ldots
\1 &1 &1 &ldots & p(q-1)
endbmatrix$$
and $$D=
beginbmatrix
q(p-1) & 1 & 1 &ldots & 1\1 & q(p-1) & 1 & ldots & 1\1 & 1 & q(p-1) &ldots & 1 \ ldots &ldots& ldots & ldots & ldots \ ldots & ldots & ldots& ldots & ldots \ ldots& ldots& ldots & ldots &ldots
\1 &1 &1 &ldots & q(p-1)
endbmatrix$$
where $J$ is the all $1$ matrix.
linear-algebra matrices eigenvalues-eigenvectors
add a comment |Â
up vote
1
down vote
favorite
Find all eigen values of the following matrix $Q$:
Here $n=pq,p<q$ and $p,q $ are primes and $l=phi(n)+1$.
$$Q=beginbmatrix(n-1)I_ltimes l&&&&&& J_ltimes n-l \J^T_(n-l)times l&&&&&& A_(n-l)times (n-l) endbmatrix$$
$A$ is a diagonal matrix of the form
$$A=beginbmatrix
C_(q-1)times (q-1) & 0 \
0 & D_(p-1)times (p-1)
endbmatrix$$
where $$C= beginbmatrix
p(q-1) & 1 & 1 &ldots & 1\1 & p(q-1) & 1 & ldots & 1\1 & 1 & p(q-1) &ldots & 1 \ ldots &ldots& ldots & ldots & ldots \ ldots & ldots & ldots& ldots & ldots \ ldots& ldots& ldots & ldots &ldots
\1 &1 &1 &ldots & p(q-1)
endbmatrix$$
and $$D=
beginbmatrix
q(p-1) & 1 & 1 &ldots & 1\1 & q(p-1) & 1 & ldots & 1\1 & 1 & q(p-1) &ldots & 1 \ ldots &ldots& ldots & ldots & ldots \ ldots & ldots & ldots& ldots & ldots \ ldots& ldots& ldots & ldots &ldots
\1 &1 &1 &ldots & q(p-1)
endbmatrix$$
where $J$ is the all $1$ matrix.
linear-algebra matrices eigenvalues-eigenvectors
I suppose definition of $J$ and sizes of $C$, $D$ would help us.
â dEmigOd
Aug 19 at 14:00
@dEmigOd; can u please help
â PureMathematics
Aug 19 at 14:48
Give the sizes of the matrix $C$ and $D$. Also, I do NOT think $mathbf1$ (the vector of all ones) is an eigenvector of $A$.
â G_0_pi_i_e
Aug 21 at 4:03
@G_0_pi_i_e,$C$ has sizes $p(q-1)times p(q-1)$ and $D$ has size $q(p-1)times q(p-1)$
â PureMathematics
Aug 22 at 1:10
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Find all eigen values of the following matrix $Q$:
Here $n=pq,p<q$ and $p,q $ are primes and $l=phi(n)+1$.
$$Q=beginbmatrix(n-1)I_ltimes l&&&&&& J_ltimes n-l \J^T_(n-l)times l&&&&&& A_(n-l)times (n-l) endbmatrix$$
$A$ is a diagonal matrix of the form
$$A=beginbmatrix
C_(q-1)times (q-1) & 0 \
0 & D_(p-1)times (p-1)
endbmatrix$$
where $$C= beginbmatrix
p(q-1) & 1 & 1 &ldots & 1\1 & p(q-1) & 1 & ldots & 1\1 & 1 & p(q-1) &ldots & 1 \ ldots &ldots& ldots & ldots & ldots \ ldots & ldots & ldots& ldots & ldots \ ldots& ldots& ldots & ldots &ldots
\1 &1 &1 &ldots & p(q-1)
endbmatrix$$
and $$D=
beginbmatrix
q(p-1) & 1 & 1 &ldots & 1\1 & q(p-1) & 1 & ldots & 1\1 & 1 & q(p-1) &ldots & 1 \ ldots &ldots& ldots & ldots & ldots \ ldots & ldots & ldots& ldots & ldots \ ldots& ldots& ldots & ldots &ldots
\1 &1 &1 &ldots & q(p-1)
endbmatrix$$
where $J$ is the all $1$ matrix.
linear-algebra matrices eigenvalues-eigenvectors
Find all eigen values of the following matrix $Q$:
Here $n=pq,p<q$ and $p,q $ are primes and $l=phi(n)+1$.
$$Q=beginbmatrix(n-1)I_ltimes l&&&&&& J_ltimes n-l \J^T_(n-l)times l&&&&&& A_(n-l)times (n-l) endbmatrix$$
$A$ is a diagonal matrix of the form
$$A=beginbmatrix
C_(q-1)times (q-1) & 0 \
0 & D_(p-1)times (p-1)
endbmatrix$$
where $$C= beginbmatrix
p(q-1) & 1 & 1 &ldots & 1\1 & p(q-1) & 1 & ldots & 1\1 & 1 & p(q-1) &ldots & 1 \ ldots &ldots& ldots & ldots & ldots \ ldots & ldots & ldots& ldots & ldots \ ldots& ldots& ldots & ldots &ldots
\1 &1 &1 &ldots & p(q-1)
endbmatrix$$
and $$D=
beginbmatrix
q(p-1) & 1 & 1 &ldots & 1\1 & q(p-1) & 1 & ldots & 1\1 & 1 & q(p-1) &ldots & 1 \ ldots &ldots& ldots & ldots & ldots \ ldots & ldots & ldots& ldots & ldots \ ldots& ldots& ldots & ldots &ldots
\1 &1 &1 &ldots & q(p-1)
endbmatrix$$
where $J$ is the all $1$ matrix.
linear-algebra matrices eigenvalues-eigenvectors
edited Aug 22 at 14:37
asked Aug 19 at 11:17
PureMathematics
976
976
I suppose definition of $J$ and sizes of $C$, $D$ would help us.
â dEmigOd
Aug 19 at 14:00
@dEmigOd; can u please help
â PureMathematics
Aug 19 at 14:48
Give the sizes of the matrix $C$ and $D$. Also, I do NOT think $mathbf1$ (the vector of all ones) is an eigenvector of $A$.
â G_0_pi_i_e
Aug 21 at 4:03
@G_0_pi_i_e,$C$ has sizes $p(q-1)times p(q-1)$ and $D$ has size $q(p-1)times q(p-1)$
â PureMathematics
Aug 22 at 1:10
add a comment |Â
I suppose definition of $J$ and sizes of $C$, $D$ would help us.
â dEmigOd
Aug 19 at 14:00
@dEmigOd; can u please help
â PureMathematics
Aug 19 at 14:48
Give the sizes of the matrix $C$ and $D$. Also, I do NOT think $mathbf1$ (the vector of all ones) is an eigenvector of $A$.
â G_0_pi_i_e
Aug 21 at 4:03
@G_0_pi_i_e,$C$ has sizes $p(q-1)times p(q-1)$ and $D$ has size $q(p-1)times q(p-1)$
â PureMathematics
Aug 22 at 1:10
I suppose definition of $J$ and sizes of $C$, $D$ would help us.
â dEmigOd
Aug 19 at 14:00
I suppose definition of $J$ and sizes of $C$, $D$ would help us.
â dEmigOd
Aug 19 at 14:00
@dEmigOd; can u please help
â PureMathematics
Aug 19 at 14:48
@dEmigOd; can u please help
â PureMathematics
Aug 19 at 14:48
Give the sizes of the matrix $C$ and $D$. Also, I do NOT think $mathbf1$ (the vector of all ones) is an eigenvector of $A$.
â G_0_pi_i_e
Aug 21 at 4:03
Give the sizes of the matrix $C$ and $D$. Also, I do NOT think $mathbf1$ (the vector of all ones) is an eigenvector of $A$.
â G_0_pi_i_e
Aug 21 at 4:03
@G_0_pi_i_e,$C$ has sizes $p(q-1)times p(q-1)$ and $D$ has size $q(p-1)times q(p-1)$
â PureMathematics
Aug 22 at 1:10
@G_0_pi_i_e,$C$ has sizes $p(q-1)times p(q-1)$ and $D$ has size $q(p-1)times q(p-1)$
â PureMathematics
Aug 22 at 1:10
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
Here $C=J_stimes s+big(p(q-1)-1big)I_stimes s$ and $D=J_ttimes t+big(q(p-1)-1big)I_ttimes t$, where $s+t=n-l$. Therefore, the eigenvalues of $C$ and $D$ are
$p(q-1)-1$ (multiplicity $colorreds-1$), $n+p(q-1)-1$ (multiplicity $1$) and $q(p-1)-1$ (multiplicity $colorredt-1$), $n+q(p-1)-1$ (multiplicity $1$), respectively which are also the eigenvalues of $A$.
Now, consider $Q$ in the following form
$$Q=beginbmatrix(n-1)I & J_ltimes s & J_ltimes t\ J_stimes n-l & C & mathbf0\J_ttimes n-l & mathbf0 & Dendbmatrix.$$
Let $Cx_i=lambda_i x_i$ and $Dy_j=mu_jy_j$, where $lambda_i=p(q-1)-1$, $x_iperp mathbf1_s$ and $mu_j=q(p-1)-1$, $y_jperp mathbf1_t$.
Observe that $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$ are eigenvectors of $Q$ corresponding to the eigenvalues $lambda_i$ and $mu_j$, respectively. The other eigenvalues should be of the form $X=beginbmatrixmathbf1_l\k_1mathbf1_s\k_2mathbf1_tendbmatrix$, for some constants $k_1$ and $k_2$.
From $QX=lambda X$, we get the following system of equations
$$begincasesn-1+k_1s+k_2t=lambda,\n-l+k_1(n+pq-p-1)=k_1lambda,\n-l+k_2(n+pq-q-1)=k_2lambda.endcases$$
Eliminating $k_1$ and $k_2$ from the above system of equation, you will get a cubic equation in $lambda$. Then, substituting the relationship between $n, p, q, s, t$, you will get a better simplified equation whose roots are the rest three eigenvalues of $Q$.
@PureMathematics It's a guess. The other eigenvectors are orthogonal to $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$, so it is most likely of this form.
â G_0_pi_i_e
Aug 22 at 3:53
Consider the multiplicity of those eigenvalues as well.
â G_0_pi_i_e
Aug 23 at 3:46
If $A=alpha J_ntimes n+beta I_ntimes n$, then the eigenvalues of $A$ are $alpha+beta$ (multiplicity 1) with corresponding eigenvector as $mathbf1_ntimes 1$ and $beta$ (multiplicity colorblue$n-1$) with corresponding eigenvectors as $e_1,i=e_1-e_i$, where $e_i=(0,0,ldots, 0, 1, 0, ldots, 0)^T$, 1 at the $i$-th place. Use this fact and observe the multiplicities as given in my previous answer.
â G_0_pi_i_e
Aug 23 at 8:56
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
Here $C=J_stimes s+big(p(q-1)-1big)I_stimes s$ and $D=J_ttimes t+big(q(p-1)-1big)I_ttimes t$, where $s+t=n-l$. Therefore, the eigenvalues of $C$ and $D$ are
$p(q-1)-1$ (multiplicity $colorreds-1$), $n+p(q-1)-1$ (multiplicity $1$) and $q(p-1)-1$ (multiplicity $colorredt-1$), $n+q(p-1)-1$ (multiplicity $1$), respectively which are also the eigenvalues of $A$.
Now, consider $Q$ in the following form
$$Q=beginbmatrix(n-1)I & J_ltimes s & J_ltimes t\ J_stimes n-l & C & mathbf0\J_ttimes n-l & mathbf0 & Dendbmatrix.$$
Let $Cx_i=lambda_i x_i$ and $Dy_j=mu_jy_j$, where $lambda_i=p(q-1)-1$, $x_iperp mathbf1_s$ and $mu_j=q(p-1)-1$, $y_jperp mathbf1_t$.
Observe that $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$ are eigenvectors of $Q$ corresponding to the eigenvalues $lambda_i$ and $mu_j$, respectively. The other eigenvalues should be of the form $X=beginbmatrixmathbf1_l\k_1mathbf1_s\k_2mathbf1_tendbmatrix$, for some constants $k_1$ and $k_2$.
From $QX=lambda X$, we get the following system of equations
$$begincasesn-1+k_1s+k_2t=lambda,\n-l+k_1(n+pq-p-1)=k_1lambda,\n-l+k_2(n+pq-q-1)=k_2lambda.endcases$$
Eliminating $k_1$ and $k_2$ from the above system of equation, you will get a cubic equation in $lambda$. Then, substituting the relationship between $n, p, q, s, t$, you will get a better simplified equation whose roots are the rest three eigenvalues of $Q$.
@PureMathematics It's a guess. The other eigenvectors are orthogonal to $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$, so it is most likely of this form.
â G_0_pi_i_e
Aug 22 at 3:53
Consider the multiplicity of those eigenvalues as well.
â G_0_pi_i_e
Aug 23 at 3:46
If $A=alpha J_ntimes n+beta I_ntimes n$, then the eigenvalues of $A$ are $alpha+beta$ (multiplicity 1) with corresponding eigenvector as $mathbf1_ntimes 1$ and $beta$ (multiplicity colorblue$n-1$) with corresponding eigenvectors as $e_1,i=e_1-e_i$, where $e_i=(0,0,ldots, 0, 1, 0, ldots, 0)^T$, 1 at the $i$-th place. Use this fact and observe the multiplicities as given in my previous answer.
â G_0_pi_i_e
Aug 23 at 8:56
add a comment |Â
up vote
0
down vote
Here $C=J_stimes s+big(p(q-1)-1big)I_stimes s$ and $D=J_ttimes t+big(q(p-1)-1big)I_ttimes t$, where $s+t=n-l$. Therefore, the eigenvalues of $C$ and $D$ are
$p(q-1)-1$ (multiplicity $colorreds-1$), $n+p(q-1)-1$ (multiplicity $1$) and $q(p-1)-1$ (multiplicity $colorredt-1$), $n+q(p-1)-1$ (multiplicity $1$), respectively which are also the eigenvalues of $A$.
Now, consider $Q$ in the following form
$$Q=beginbmatrix(n-1)I & J_ltimes s & J_ltimes t\ J_stimes n-l & C & mathbf0\J_ttimes n-l & mathbf0 & Dendbmatrix.$$
Let $Cx_i=lambda_i x_i$ and $Dy_j=mu_jy_j$, where $lambda_i=p(q-1)-1$, $x_iperp mathbf1_s$ and $mu_j=q(p-1)-1$, $y_jperp mathbf1_t$.
Observe that $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$ are eigenvectors of $Q$ corresponding to the eigenvalues $lambda_i$ and $mu_j$, respectively. The other eigenvalues should be of the form $X=beginbmatrixmathbf1_l\k_1mathbf1_s\k_2mathbf1_tendbmatrix$, for some constants $k_1$ and $k_2$.
From $QX=lambda X$, we get the following system of equations
$$begincasesn-1+k_1s+k_2t=lambda,\n-l+k_1(n+pq-p-1)=k_1lambda,\n-l+k_2(n+pq-q-1)=k_2lambda.endcases$$
Eliminating $k_1$ and $k_2$ from the above system of equation, you will get a cubic equation in $lambda$. Then, substituting the relationship between $n, p, q, s, t$, you will get a better simplified equation whose roots are the rest three eigenvalues of $Q$.
@PureMathematics It's a guess. The other eigenvectors are orthogonal to $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$, so it is most likely of this form.
â G_0_pi_i_e
Aug 22 at 3:53
Consider the multiplicity of those eigenvalues as well.
â G_0_pi_i_e
Aug 23 at 3:46
If $A=alpha J_ntimes n+beta I_ntimes n$, then the eigenvalues of $A$ are $alpha+beta$ (multiplicity 1) with corresponding eigenvector as $mathbf1_ntimes 1$ and $beta$ (multiplicity colorblue$n-1$) with corresponding eigenvectors as $e_1,i=e_1-e_i$, where $e_i=(0,0,ldots, 0, 1, 0, ldots, 0)^T$, 1 at the $i$-th place. Use this fact and observe the multiplicities as given in my previous answer.
â G_0_pi_i_e
Aug 23 at 8:56
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Here $C=J_stimes s+big(p(q-1)-1big)I_stimes s$ and $D=J_ttimes t+big(q(p-1)-1big)I_ttimes t$, where $s+t=n-l$. Therefore, the eigenvalues of $C$ and $D$ are
$p(q-1)-1$ (multiplicity $colorreds-1$), $n+p(q-1)-1$ (multiplicity $1$) and $q(p-1)-1$ (multiplicity $colorredt-1$), $n+q(p-1)-1$ (multiplicity $1$), respectively which are also the eigenvalues of $A$.
Now, consider $Q$ in the following form
$$Q=beginbmatrix(n-1)I & J_ltimes s & J_ltimes t\ J_stimes n-l & C & mathbf0\J_ttimes n-l & mathbf0 & Dendbmatrix.$$
Let $Cx_i=lambda_i x_i$ and $Dy_j=mu_jy_j$, where $lambda_i=p(q-1)-1$, $x_iperp mathbf1_s$ and $mu_j=q(p-1)-1$, $y_jperp mathbf1_t$.
Observe that $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$ are eigenvectors of $Q$ corresponding to the eigenvalues $lambda_i$ and $mu_j$, respectively. The other eigenvalues should be of the form $X=beginbmatrixmathbf1_l\k_1mathbf1_s\k_2mathbf1_tendbmatrix$, for some constants $k_1$ and $k_2$.
From $QX=lambda X$, we get the following system of equations
$$begincasesn-1+k_1s+k_2t=lambda,\n-l+k_1(n+pq-p-1)=k_1lambda,\n-l+k_2(n+pq-q-1)=k_2lambda.endcases$$
Eliminating $k_1$ and $k_2$ from the above system of equation, you will get a cubic equation in $lambda$. Then, substituting the relationship between $n, p, q, s, t$, you will get a better simplified equation whose roots are the rest three eigenvalues of $Q$.
Here $C=J_stimes s+big(p(q-1)-1big)I_stimes s$ and $D=J_ttimes t+big(q(p-1)-1big)I_ttimes t$, where $s+t=n-l$. Therefore, the eigenvalues of $C$ and $D$ are
$p(q-1)-1$ (multiplicity $colorreds-1$), $n+p(q-1)-1$ (multiplicity $1$) and $q(p-1)-1$ (multiplicity $colorredt-1$), $n+q(p-1)-1$ (multiplicity $1$), respectively which are also the eigenvalues of $A$.
Now, consider $Q$ in the following form
$$Q=beginbmatrix(n-1)I & J_ltimes s & J_ltimes t\ J_stimes n-l & C & mathbf0\J_ttimes n-l & mathbf0 & Dendbmatrix.$$
Let $Cx_i=lambda_i x_i$ and $Dy_j=mu_jy_j$, where $lambda_i=p(q-1)-1$, $x_iperp mathbf1_s$ and $mu_j=q(p-1)-1$, $y_jperp mathbf1_t$.
Observe that $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$ are eigenvectors of $Q$ corresponding to the eigenvalues $lambda_i$ and $mu_j$, respectively. The other eigenvalues should be of the form $X=beginbmatrixmathbf1_l\k_1mathbf1_s\k_2mathbf1_tendbmatrix$, for some constants $k_1$ and $k_2$.
From $QX=lambda X$, we get the following system of equations
$$begincasesn-1+k_1s+k_2t=lambda,\n-l+k_1(n+pq-p-1)=k_1lambda,\n-l+k_2(n+pq-q-1)=k_2lambda.endcases$$
Eliminating $k_1$ and $k_2$ from the above system of equation, you will get a cubic equation in $lambda$. Then, substituting the relationship between $n, p, q, s, t$, you will get a better simplified equation whose roots are the rest three eigenvalues of $Q$.
edited Aug 24 at 3:07
answered Aug 21 at 4:58
G_0_pi_i_e
604515
604515
@PureMathematics It's a guess. The other eigenvectors are orthogonal to $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$, so it is most likely of this form.
â G_0_pi_i_e
Aug 22 at 3:53
Consider the multiplicity of those eigenvalues as well.
â G_0_pi_i_e
Aug 23 at 3:46
If $A=alpha J_ntimes n+beta I_ntimes n$, then the eigenvalues of $A$ are $alpha+beta$ (multiplicity 1) with corresponding eigenvector as $mathbf1_ntimes 1$ and $beta$ (multiplicity colorblue$n-1$) with corresponding eigenvectors as $e_1,i=e_1-e_i$, where $e_i=(0,0,ldots, 0, 1, 0, ldots, 0)^T$, 1 at the $i$-th place. Use this fact and observe the multiplicities as given in my previous answer.
â G_0_pi_i_e
Aug 23 at 8:56
add a comment |Â
@PureMathematics It's a guess. The other eigenvectors are orthogonal to $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$, so it is most likely of this form.
â G_0_pi_i_e
Aug 22 at 3:53
Consider the multiplicity of those eigenvalues as well.
â G_0_pi_i_e
Aug 23 at 3:46
If $A=alpha J_ntimes n+beta I_ntimes n$, then the eigenvalues of $A$ are $alpha+beta$ (multiplicity 1) with corresponding eigenvector as $mathbf1_ntimes 1$ and $beta$ (multiplicity colorblue$n-1$) with corresponding eigenvectors as $e_1,i=e_1-e_i$, where $e_i=(0,0,ldots, 0, 1, 0, ldots, 0)^T$, 1 at the $i$-th place. Use this fact and observe the multiplicities as given in my previous answer.
â G_0_pi_i_e
Aug 23 at 8:56
@PureMathematics It's a guess. The other eigenvectors are orthogonal to $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$, so it is most likely of this form.
â G_0_pi_i_e
Aug 22 at 3:53
@PureMathematics It's a guess. The other eigenvectors are orthogonal to $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$, so it is most likely of this form.
â G_0_pi_i_e
Aug 22 at 3:53
Consider the multiplicity of those eigenvalues as well.
â G_0_pi_i_e
Aug 23 at 3:46
Consider the multiplicity of those eigenvalues as well.
â G_0_pi_i_e
Aug 23 at 3:46
If $A=alpha J_ntimes n+beta I_ntimes n$, then the eigenvalues of $A$ are $alpha+beta$ (multiplicity 1) with corresponding eigenvector as $mathbf1_ntimes 1$ and $beta$ (multiplicity colorblue$n-1$) with corresponding eigenvectors as $e_1,i=e_1-e_i$, where $e_i=(0,0,ldots, 0, 1, 0, ldots, 0)^T$, 1 at the $i$-th place. Use this fact and observe the multiplicities as given in my previous answer.
â G_0_pi_i_e
Aug 23 at 8:56
If $A=alpha J_ntimes n+beta I_ntimes n$, then the eigenvalues of $A$ are $alpha+beta$ (multiplicity 1) with corresponding eigenvector as $mathbf1_ntimes 1$ and $beta$ (multiplicity colorblue$n-1$) with corresponding eigenvectors as $e_1,i=e_1-e_i$, where $e_i=(0,0,ldots, 0, 1, 0, ldots, 0)^T$, 1 at the $i$-th place. Use this fact and observe the multiplicities as given in my previous answer.
â G_0_pi_i_e
Aug 23 at 8:56
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2887603%2ffind-the-eigen-values-of-q%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
I suppose definition of $J$ and sizes of $C$, $D$ would help us.
â dEmigOd
Aug 19 at 14:00
@dEmigOd; can u please help
â PureMathematics
Aug 19 at 14:48
Give the sizes of the matrix $C$ and $D$. Also, I do NOT think $mathbf1$ (the vector of all ones) is an eigenvector of $A$.
â G_0_pi_i_e
Aug 21 at 4:03
@G_0_pi_i_e,$C$ has sizes $p(q-1)times p(q-1)$ and $D$ has size $q(p-1)times q(p-1)$
â PureMathematics
Aug 22 at 1:10