Find the eigen values of $Q$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite
2













Find all eigen values of the following matrix $Q$:




Here $n=pq,p<q$ and $p,q $ are primes and $l=phi(n)+1$.



$$Q=beginbmatrix(n-1)I_ltimes l&&&&&& J_ltimes n-l \J^T_(n-l)times l&&&&&& A_(n-l)times (n-l) endbmatrix$$



$A$ is a diagonal matrix of the form



$$A=beginbmatrix
C_(q-1)times (q-1) & 0 \
0 & D_(p-1)times (p-1)
endbmatrix$$



where $$C= beginbmatrix
p(q-1) & 1 & 1 &ldots & 1\1 & p(q-1) & 1 & ldots & 1\1 & 1 & p(q-1) &ldots & 1 \ ldots &ldots& ldots & ldots & ldots \ ldots & ldots & ldots& ldots & ldots \ ldots& ldots& ldots & ldots &ldots
\1 &1 &1 &ldots & p(q-1)
endbmatrix$$



and $$D=
beginbmatrix
q(p-1) & 1 & 1 &ldots & 1\1 & q(p-1) & 1 & ldots & 1\1 & 1 & q(p-1) &ldots & 1 \ ldots &ldots& ldots & ldots & ldots \ ldots & ldots & ldots& ldots & ldots \ ldots& ldots& ldots & ldots &ldots
\1 &1 &1 &ldots & q(p-1)
endbmatrix$$



where $J$ is the all $1$ matrix.







share|cite|improve this question






















  • I suppose definition of $J$ and sizes of $C$, $D$ would help us.
    – dEmigOd
    Aug 19 at 14:00










  • @dEmigOd; can u please help
    – PureMathematics
    Aug 19 at 14:48










  • Give the sizes of the matrix $C$ and $D$. Also, I do NOT think $mathbf1$ (the vector of all ones) is an eigenvector of $A$.
    – G_0_pi_i_e
    Aug 21 at 4:03










  • @G_0_pi_i_e,$C$ has sizes $p(q-1)times p(q-1)$ and $D$ has size $q(p-1)times q(p-1)$
    – PureMathematics
    Aug 22 at 1:10














up vote
1
down vote

favorite
2













Find all eigen values of the following matrix $Q$:




Here $n=pq,p<q$ and $p,q $ are primes and $l=phi(n)+1$.



$$Q=beginbmatrix(n-1)I_ltimes l&&&&&& J_ltimes n-l \J^T_(n-l)times l&&&&&& A_(n-l)times (n-l) endbmatrix$$



$A$ is a diagonal matrix of the form



$$A=beginbmatrix
C_(q-1)times (q-1) & 0 \
0 & D_(p-1)times (p-1)
endbmatrix$$



where $$C= beginbmatrix
p(q-1) & 1 & 1 &ldots & 1\1 & p(q-1) & 1 & ldots & 1\1 & 1 & p(q-1) &ldots & 1 \ ldots &ldots& ldots & ldots & ldots \ ldots & ldots & ldots& ldots & ldots \ ldots& ldots& ldots & ldots &ldots
\1 &1 &1 &ldots & p(q-1)
endbmatrix$$



and $$D=
beginbmatrix
q(p-1) & 1 & 1 &ldots & 1\1 & q(p-1) & 1 & ldots & 1\1 & 1 & q(p-1) &ldots & 1 \ ldots &ldots& ldots & ldots & ldots \ ldots & ldots & ldots& ldots & ldots \ ldots& ldots& ldots & ldots &ldots
\1 &1 &1 &ldots & q(p-1)
endbmatrix$$



where $J$ is the all $1$ matrix.







share|cite|improve this question






















  • I suppose definition of $J$ and sizes of $C$, $D$ would help us.
    – dEmigOd
    Aug 19 at 14:00










  • @dEmigOd; can u please help
    – PureMathematics
    Aug 19 at 14:48










  • Give the sizes of the matrix $C$ and $D$. Also, I do NOT think $mathbf1$ (the vector of all ones) is an eigenvector of $A$.
    – G_0_pi_i_e
    Aug 21 at 4:03










  • @G_0_pi_i_e,$C$ has sizes $p(q-1)times p(q-1)$ and $D$ has size $q(p-1)times q(p-1)$
    – PureMathematics
    Aug 22 at 1:10












up vote
1
down vote

favorite
2









up vote
1
down vote

favorite
2






2






Find all eigen values of the following matrix $Q$:




Here $n=pq,p<q$ and $p,q $ are primes and $l=phi(n)+1$.



$$Q=beginbmatrix(n-1)I_ltimes l&&&&&& J_ltimes n-l \J^T_(n-l)times l&&&&&& A_(n-l)times (n-l) endbmatrix$$



$A$ is a diagonal matrix of the form



$$A=beginbmatrix
C_(q-1)times (q-1) & 0 \
0 & D_(p-1)times (p-1)
endbmatrix$$



where $$C= beginbmatrix
p(q-1) & 1 & 1 &ldots & 1\1 & p(q-1) & 1 & ldots & 1\1 & 1 & p(q-1) &ldots & 1 \ ldots &ldots& ldots & ldots & ldots \ ldots & ldots & ldots& ldots & ldots \ ldots& ldots& ldots & ldots &ldots
\1 &1 &1 &ldots & p(q-1)
endbmatrix$$



and $$D=
beginbmatrix
q(p-1) & 1 & 1 &ldots & 1\1 & q(p-1) & 1 & ldots & 1\1 & 1 & q(p-1) &ldots & 1 \ ldots &ldots& ldots & ldots & ldots \ ldots & ldots & ldots& ldots & ldots \ ldots& ldots& ldots & ldots &ldots
\1 &1 &1 &ldots & q(p-1)
endbmatrix$$



where $J$ is the all $1$ matrix.







share|cite|improve this question















Find all eigen values of the following matrix $Q$:




Here $n=pq,p<q$ and $p,q $ are primes and $l=phi(n)+1$.



$$Q=beginbmatrix(n-1)I_ltimes l&&&&&& J_ltimes n-l \J^T_(n-l)times l&&&&&& A_(n-l)times (n-l) endbmatrix$$



$A$ is a diagonal matrix of the form



$$A=beginbmatrix
C_(q-1)times (q-1) & 0 \
0 & D_(p-1)times (p-1)
endbmatrix$$



where $$C= beginbmatrix
p(q-1) & 1 & 1 &ldots & 1\1 & p(q-1) & 1 & ldots & 1\1 & 1 & p(q-1) &ldots & 1 \ ldots &ldots& ldots & ldots & ldots \ ldots & ldots & ldots& ldots & ldots \ ldots& ldots& ldots & ldots &ldots
\1 &1 &1 &ldots & p(q-1)
endbmatrix$$



and $$D=
beginbmatrix
q(p-1) & 1 & 1 &ldots & 1\1 & q(p-1) & 1 & ldots & 1\1 & 1 & q(p-1) &ldots & 1 \ ldots &ldots& ldots & ldots & ldots \ ldots & ldots & ldots& ldots & ldots \ ldots& ldots& ldots & ldots &ldots
\1 &1 &1 &ldots & q(p-1)
endbmatrix$$



where $J$ is the all $1$ matrix.









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 22 at 14:37

























asked Aug 19 at 11:17









PureMathematics

976




976











  • I suppose definition of $J$ and sizes of $C$, $D$ would help us.
    – dEmigOd
    Aug 19 at 14:00










  • @dEmigOd; can u please help
    – PureMathematics
    Aug 19 at 14:48










  • Give the sizes of the matrix $C$ and $D$. Also, I do NOT think $mathbf1$ (the vector of all ones) is an eigenvector of $A$.
    – G_0_pi_i_e
    Aug 21 at 4:03










  • @G_0_pi_i_e,$C$ has sizes $p(q-1)times p(q-1)$ and $D$ has size $q(p-1)times q(p-1)$
    – PureMathematics
    Aug 22 at 1:10
















  • I suppose definition of $J$ and sizes of $C$, $D$ would help us.
    – dEmigOd
    Aug 19 at 14:00










  • @dEmigOd; can u please help
    – PureMathematics
    Aug 19 at 14:48










  • Give the sizes of the matrix $C$ and $D$. Also, I do NOT think $mathbf1$ (the vector of all ones) is an eigenvector of $A$.
    – G_0_pi_i_e
    Aug 21 at 4:03










  • @G_0_pi_i_e,$C$ has sizes $p(q-1)times p(q-1)$ and $D$ has size $q(p-1)times q(p-1)$
    – PureMathematics
    Aug 22 at 1:10















I suppose definition of $J$ and sizes of $C$, $D$ would help us.
– dEmigOd
Aug 19 at 14:00




I suppose definition of $J$ and sizes of $C$, $D$ would help us.
– dEmigOd
Aug 19 at 14:00












@dEmigOd; can u please help
– PureMathematics
Aug 19 at 14:48




@dEmigOd; can u please help
– PureMathematics
Aug 19 at 14:48












Give the sizes of the matrix $C$ and $D$. Also, I do NOT think $mathbf1$ (the vector of all ones) is an eigenvector of $A$.
– G_0_pi_i_e
Aug 21 at 4:03




Give the sizes of the matrix $C$ and $D$. Also, I do NOT think $mathbf1$ (the vector of all ones) is an eigenvector of $A$.
– G_0_pi_i_e
Aug 21 at 4:03












@G_0_pi_i_e,$C$ has sizes $p(q-1)times p(q-1)$ and $D$ has size $q(p-1)times q(p-1)$
– PureMathematics
Aug 22 at 1:10




@G_0_pi_i_e,$C$ has sizes $p(q-1)times p(q-1)$ and $D$ has size $q(p-1)times q(p-1)$
– PureMathematics
Aug 22 at 1:10










1 Answer
1






active

oldest

votes

















up vote
0
down vote













Here $C=J_stimes s+big(p(q-1)-1big)I_stimes s$ and $D=J_ttimes t+big(q(p-1)-1big)I_ttimes t$, where $s+t=n-l$. Therefore, the eigenvalues of $C$ and $D$ are
$p(q-1)-1$ (multiplicity $colorreds-1$), $n+p(q-1)-1$ (multiplicity $1$) and $q(p-1)-1$ (multiplicity $colorredt-1$), $n+q(p-1)-1$ (multiplicity $1$), respectively which are also the eigenvalues of $A$.



Now, consider $Q$ in the following form
$$Q=beginbmatrix(n-1)I & J_ltimes s & J_ltimes t\ J_stimes n-l & C & mathbf0\J_ttimes n-l & mathbf0 & Dendbmatrix.$$
Let $Cx_i=lambda_i x_i$ and $Dy_j=mu_jy_j$, where $lambda_i=p(q-1)-1$, $x_iperp mathbf1_s$ and $mu_j=q(p-1)-1$, $y_jperp mathbf1_t$.
Observe that $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$ are eigenvectors of $Q$ corresponding to the eigenvalues $lambda_i$ and $mu_j$, respectively. The other eigenvalues should be of the form $X=beginbmatrixmathbf1_l\k_1mathbf1_s\k_2mathbf1_tendbmatrix$, for some constants $k_1$ and $k_2$.
From $QX=lambda X$, we get the following system of equations
$$begincasesn-1+k_1s+k_2t=lambda,\n-l+k_1(n+pq-p-1)=k_1lambda,\n-l+k_2(n+pq-q-1)=k_2lambda.endcases$$
Eliminating $k_1$ and $k_2$ from the above system of equation, you will get a cubic equation in $lambda$. Then, substituting the relationship between $n, p, q, s, t$, you will get a better simplified equation whose roots are the rest three eigenvalues of $Q$.






share|cite|improve this answer






















  • @PureMathematics It's a guess. The other eigenvectors are orthogonal to $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$, so it is most likely of this form.
    – G_0_pi_i_e
    Aug 22 at 3:53










  • Consider the multiplicity of those eigenvalues as well.
    – G_0_pi_i_e
    Aug 23 at 3:46










  • If $A=alpha J_ntimes n+beta I_ntimes n$, then the eigenvalues of $A$ are $alpha+beta$ (multiplicity 1) with corresponding eigenvector as $mathbf1_ntimes 1$ and $beta$ (multiplicity colorblue$n-1$) with corresponding eigenvectors as $e_1,i=e_1-e_i$, where $e_i=(0,0,ldots, 0, 1, 0, ldots, 0)^T$, 1 at the $i$-th place. Use this fact and observe the multiplicities as given in my previous answer.
    – G_0_pi_i_e
    Aug 23 at 8:56











Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2887603%2ffind-the-eigen-values-of-q%23new-answer', 'question_page');

);

Post as a guest






























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
0
down vote













Here $C=J_stimes s+big(p(q-1)-1big)I_stimes s$ and $D=J_ttimes t+big(q(p-1)-1big)I_ttimes t$, where $s+t=n-l$. Therefore, the eigenvalues of $C$ and $D$ are
$p(q-1)-1$ (multiplicity $colorreds-1$), $n+p(q-1)-1$ (multiplicity $1$) and $q(p-1)-1$ (multiplicity $colorredt-1$), $n+q(p-1)-1$ (multiplicity $1$), respectively which are also the eigenvalues of $A$.



Now, consider $Q$ in the following form
$$Q=beginbmatrix(n-1)I & J_ltimes s & J_ltimes t\ J_stimes n-l & C & mathbf0\J_ttimes n-l & mathbf0 & Dendbmatrix.$$
Let $Cx_i=lambda_i x_i$ and $Dy_j=mu_jy_j$, where $lambda_i=p(q-1)-1$, $x_iperp mathbf1_s$ and $mu_j=q(p-1)-1$, $y_jperp mathbf1_t$.
Observe that $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$ are eigenvectors of $Q$ corresponding to the eigenvalues $lambda_i$ and $mu_j$, respectively. The other eigenvalues should be of the form $X=beginbmatrixmathbf1_l\k_1mathbf1_s\k_2mathbf1_tendbmatrix$, for some constants $k_1$ and $k_2$.
From $QX=lambda X$, we get the following system of equations
$$begincasesn-1+k_1s+k_2t=lambda,\n-l+k_1(n+pq-p-1)=k_1lambda,\n-l+k_2(n+pq-q-1)=k_2lambda.endcases$$
Eliminating $k_1$ and $k_2$ from the above system of equation, you will get a cubic equation in $lambda$. Then, substituting the relationship between $n, p, q, s, t$, you will get a better simplified equation whose roots are the rest three eigenvalues of $Q$.






share|cite|improve this answer






















  • @PureMathematics It's a guess. The other eigenvectors are orthogonal to $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$, so it is most likely of this form.
    – G_0_pi_i_e
    Aug 22 at 3:53










  • Consider the multiplicity of those eigenvalues as well.
    – G_0_pi_i_e
    Aug 23 at 3:46










  • If $A=alpha J_ntimes n+beta I_ntimes n$, then the eigenvalues of $A$ are $alpha+beta$ (multiplicity 1) with corresponding eigenvector as $mathbf1_ntimes 1$ and $beta$ (multiplicity colorblue$n-1$) with corresponding eigenvectors as $e_1,i=e_1-e_i$, where $e_i=(0,0,ldots, 0, 1, 0, ldots, 0)^T$, 1 at the $i$-th place. Use this fact and observe the multiplicities as given in my previous answer.
    – G_0_pi_i_e
    Aug 23 at 8:56















up vote
0
down vote













Here $C=J_stimes s+big(p(q-1)-1big)I_stimes s$ and $D=J_ttimes t+big(q(p-1)-1big)I_ttimes t$, where $s+t=n-l$. Therefore, the eigenvalues of $C$ and $D$ are
$p(q-1)-1$ (multiplicity $colorreds-1$), $n+p(q-1)-1$ (multiplicity $1$) and $q(p-1)-1$ (multiplicity $colorredt-1$), $n+q(p-1)-1$ (multiplicity $1$), respectively which are also the eigenvalues of $A$.



Now, consider $Q$ in the following form
$$Q=beginbmatrix(n-1)I & J_ltimes s & J_ltimes t\ J_stimes n-l & C & mathbf0\J_ttimes n-l & mathbf0 & Dendbmatrix.$$
Let $Cx_i=lambda_i x_i$ and $Dy_j=mu_jy_j$, where $lambda_i=p(q-1)-1$, $x_iperp mathbf1_s$ and $mu_j=q(p-1)-1$, $y_jperp mathbf1_t$.
Observe that $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$ are eigenvectors of $Q$ corresponding to the eigenvalues $lambda_i$ and $mu_j$, respectively. The other eigenvalues should be of the form $X=beginbmatrixmathbf1_l\k_1mathbf1_s\k_2mathbf1_tendbmatrix$, for some constants $k_1$ and $k_2$.
From $QX=lambda X$, we get the following system of equations
$$begincasesn-1+k_1s+k_2t=lambda,\n-l+k_1(n+pq-p-1)=k_1lambda,\n-l+k_2(n+pq-q-1)=k_2lambda.endcases$$
Eliminating $k_1$ and $k_2$ from the above system of equation, you will get a cubic equation in $lambda$. Then, substituting the relationship between $n, p, q, s, t$, you will get a better simplified equation whose roots are the rest three eigenvalues of $Q$.






share|cite|improve this answer






















  • @PureMathematics It's a guess. The other eigenvectors are orthogonal to $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$, so it is most likely of this form.
    – G_0_pi_i_e
    Aug 22 at 3:53










  • Consider the multiplicity of those eigenvalues as well.
    – G_0_pi_i_e
    Aug 23 at 3:46










  • If $A=alpha J_ntimes n+beta I_ntimes n$, then the eigenvalues of $A$ are $alpha+beta$ (multiplicity 1) with corresponding eigenvector as $mathbf1_ntimes 1$ and $beta$ (multiplicity colorblue$n-1$) with corresponding eigenvectors as $e_1,i=e_1-e_i$, where $e_i=(0,0,ldots, 0, 1, 0, ldots, 0)^T$, 1 at the $i$-th place. Use this fact and observe the multiplicities as given in my previous answer.
    – G_0_pi_i_e
    Aug 23 at 8:56













up vote
0
down vote










up vote
0
down vote









Here $C=J_stimes s+big(p(q-1)-1big)I_stimes s$ and $D=J_ttimes t+big(q(p-1)-1big)I_ttimes t$, where $s+t=n-l$. Therefore, the eigenvalues of $C$ and $D$ are
$p(q-1)-1$ (multiplicity $colorreds-1$), $n+p(q-1)-1$ (multiplicity $1$) and $q(p-1)-1$ (multiplicity $colorredt-1$), $n+q(p-1)-1$ (multiplicity $1$), respectively which are also the eigenvalues of $A$.



Now, consider $Q$ in the following form
$$Q=beginbmatrix(n-1)I & J_ltimes s & J_ltimes t\ J_stimes n-l & C & mathbf0\J_ttimes n-l & mathbf0 & Dendbmatrix.$$
Let $Cx_i=lambda_i x_i$ and $Dy_j=mu_jy_j$, where $lambda_i=p(q-1)-1$, $x_iperp mathbf1_s$ and $mu_j=q(p-1)-1$, $y_jperp mathbf1_t$.
Observe that $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$ are eigenvectors of $Q$ corresponding to the eigenvalues $lambda_i$ and $mu_j$, respectively. The other eigenvalues should be of the form $X=beginbmatrixmathbf1_l\k_1mathbf1_s\k_2mathbf1_tendbmatrix$, for some constants $k_1$ and $k_2$.
From $QX=lambda X$, we get the following system of equations
$$begincasesn-1+k_1s+k_2t=lambda,\n-l+k_1(n+pq-p-1)=k_1lambda,\n-l+k_2(n+pq-q-1)=k_2lambda.endcases$$
Eliminating $k_1$ and $k_2$ from the above system of equation, you will get a cubic equation in $lambda$. Then, substituting the relationship between $n, p, q, s, t$, you will get a better simplified equation whose roots are the rest three eigenvalues of $Q$.






share|cite|improve this answer














Here $C=J_stimes s+big(p(q-1)-1big)I_stimes s$ and $D=J_ttimes t+big(q(p-1)-1big)I_ttimes t$, where $s+t=n-l$. Therefore, the eigenvalues of $C$ and $D$ are
$p(q-1)-1$ (multiplicity $colorreds-1$), $n+p(q-1)-1$ (multiplicity $1$) and $q(p-1)-1$ (multiplicity $colorredt-1$), $n+q(p-1)-1$ (multiplicity $1$), respectively which are also the eigenvalues of $A$.



Now, consider $Q$ in the following form
$$Q=beginbmatrix(n-1)I & J_ltimes s & J_ltimes t\ J_stimes n-l & C & mathbf0\J_ttimes n-l & mathbf0 & Dendbmatrix.$$
Let $Cx_i=lambda_i x_i$ and $Dy_j=mu_jy_j$, where $lambda_i=p(q-1)-1$, $x_iperp mathbf1_s$ and $mu_j=q(p-1)-1$, $y_jperp mathbf1_t$.
Observe that $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$ are eigenvectors of $Q$ corresponding to the eigenvalues $lambda_i$ and $mu_j$, respectively. The other eigenvalues should be of the form $X=beginbmatrixmathbf1_l\k_1mathbf1_s\k_2mathbf1_tendbmatrix$, for some constants $k_1$ and $k_2$.
From $QX=lambda X$, we get the following system of equations
$$begincasesn-1+k_1s+k_2t=lambda,\n-l+k_1(n+pq-p-1)=k_1lambda,\n-l+k_2(n+pq-q-1)=k_2lambda.endcases$$
Eliminating $k_1$ and $k_2$ from the above system of equation, you will get a cubic equation in $lambda$. Then, substituting the relationship between $n, p, q, s, t$, you will get a better simplified equation whose roots are the rest three eigenvalues of $Q$.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Aug 24 at 3:07

























answered Aug 21 at 4:58









G_0_pi_i_e

604515




604515











  • @PureMathematics It's a guess. The other eigenvectors are orthogonal to $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$, so it is most likely of this form.
    – G_0_pi_i_e
    Aug 22 at 3:53










  • Consider the multiplicity of those eigenvalues as well.
    – G_0_pi_i_e
    Aug 23 at 3:46










  • If $A=alpha J_ntimes n+beta I_ntimes n$, then the eigenvalues of $A$ are $alpha+beta$ (multiplicity 1) with corresponding eigenvector as $mathbf1_ntimes 1$ and $beta$ (multiplicity colorblue$n-1$) with corresponding eigenvectors as $e_1,i=e_1-e_i$, where $e_i=(0,0,ldots, 0, 1, 0, ldots, 0)^T$, 1 at the $i$-th place. Use this fact and observe the multiplicities as given in my previous answer.
    – G_0_pi_i_e
    Aug 23 at 8:56

















  • @PureMathematics It's a guess. The other eigenvectors are orthogonal to $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$, so it is most likely of this form.
    – G_0_pi_i_e
    Aug 22 at 3:53










  • Consider the multiplicity of those eigenvalues as well.
    – G_0_pi_i_e
    Aug 23 at 3:46










  • If $A=alpha J_ntimes n+beta I_ntimes n$, then the eigenvalues of $A$ are $alpha+beta$ (multiplicity 1) with corresponding eigenvector as $mathbf1_ntimes 1$ and $beta$ (multiplicity colorblue$n-1$) with corresponding eigenvectors as $e_1,i=e_1-e_i$, where $e_i=(0,0,ldots, 0, 1, 0, ldots, 0)^T$, 1 at the $i$-th place. Use this fact and observe the multiplicities as given in my previous answer.
    – G_0_pi_i_e
    Aug 23 at 8:56
















@PureMathematics It's a guess. The other eigenvectors are orthogonal to $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$, so it is most likely of this form.
– G_0_pi_i_e
Aug 22 at 3:53




@PureMathematics It's a guess. The other eigenvectors are orthogonal to $beginbmatrixmathbf0\x_i\mathbf0endbmatrix$ and $beginbmatrixmathbf0\mathbf0\y_jendbmatrix$, so it is most likely of this form.
– G_0_pi_i_e
Aug 22 at 3:53












Consider the multiplicity of those eigenvalues as well.
– G_0_pi_i_e
Aug 23 at 3:46




Consider the multiplicity of those eigenvalues as well.
– G_0_pi_i_e
Aug 23 at 3:46












If $A=alpha J_ntimes n+beta I_ntimes n$, then the eigenvalues of $A$ are $alpha+beta$ (multiplicity 1) with corresponding eigenvector as $mathbf1_ntimes 1$ and $beta$ (multiplicity colorblue$n-1$) with corresponding eigenvectors as $e_1,i=e_1-e_i$, where $e_i=(0,0,ldots, 0, 1, 0, ldots, 0)^T$, 1 at the $i$-th place. Use this fact and observe the multiplicities as given in my previous answer.
– G_0_pi_i_e
Aug 23 at 8:56





If $A=alpha J_ntimes n+beta I_ntimes n$, then the eigenvalues of $A$ are $alpha+beta$ (multiplicity 1) with corresponding eigenvector as $mathbf1_ntimes 1$ and $beta$ (multiplicity colorblue$n-1$) with corresponding eigenvectors as $e_1,i=e_1-e_i$, where $e_i=(0,0,ldots, 0, 1, 0, ldots, 0)^T$, 1 at the $i$-th place. Use this fact and observe the multiplicities as given in my previous answer.
– G_0_pi_i_e
Aug 23 at 8:56













 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2887603%2ffind-the-eigen-values-of-q%23new-answer', 'question_page');

);

Post as a guest













































































這個網誌中的熱門文章

How to combine Bézier curves to a surface?

Mutual Information Always Non-negative

Why am i infinitely getting the same tweet with the Twitter Search API?