N-th power of a matrix

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite
1












I have to find the n-th power for the following matrix $$A=beginpmatrix 1+sqrt3 & 1-sqrt3\ sqrt3 - 1 & sqrt3 +1endpmatrix
$$ My thoughts is that here could be the same situation as for $B=beginpmatrix sin x & - cos x\ cos x & sin xendpmatrix
$ which give $$B^n=beginpmatrix sin (nx) & - cos (nx) \ cos (nx) & sin (nx) endpmatrix.
$$ So I think I have to make a connection between A and B, however in A I dont have only $1$ term per place so I dont know how to proceed. $$frac12 A=beginpmatrix sin(pi /6) +cos(pi /6) &sin(pi /6) - cos(pi /6) \ cos(pi /6) - sin(pi /6) &sin(pi /6) +cos(pi /6) endpmatrix
$$ Couls you help me?







share|cite|improve this question


















  • 1




    Is it diagonalizable?
    – Arnaud Mortier
    Aug 9 at 23:12










  • What is a rotation matrix?
    – Sonkun
    Aug 9 at 23:13






  • 1




    Try pulling out a different common factor. You want the rows/columns of the matrix to end up being unit vectors.
    – amd
    Aug 9 at 23:14










  • A rotation matrix is one like $B$.
    – amd
    Aug 9 at 23:14














up vote
3
down vote

favorite
1












I have to find the n-th power for the following matrix $$A=beginpmatrix 1+sqrt3 & 1-sqrt3\ sqrt3 - 1 & sqrt3 +1endpmatrix
$$ My thoughts is that here could be the same situation as for $B=beginpmatrix sin x & - cos x\ cos x & sin xendpmatrix
$ which give $$B^n=beginpmatrix sin (nx) & - cos (nx) \ cos (nx) & sin (nx) endpmatrix.
$$ So I think I have to make a connection between A and B, however in A I dont have only $1$ term per place so I dont know how to proceed. $$frac12 A=beginpmatrix sin(pi /6) +cos(pi /6) &sin(pi /6) - cos(pi /6) \ cos(pi /6) - sin(pi /6) &sin(pi /6) +cos(pi /6) endpmatrix
$$ Couls you help me?







share|cite|improve this question


















  • 1




    Is it diagonalizable?
    – Arnaud Mortier
    Aug 9 at 23:12










  • What is a rotation matrix?
    – Sonkun
    Aug 9 at 23:13






  • 1




    Try pulling out a different common factor. You want the rows/columns of the matrix to end up being unit vectors.
    – amd
    Aug 9 at 23:14










  • A rotation matrix is one like $B$.
    – amd
    Aug 9 at 23:14












up vote
3
down vote

favorite
1









up vote
3
down vote

favorite
1






1





I have to find the n-th power for the following matrix $$A=beginpmatrix 1+sqrt3 & 1-sqrt3\ sqrt3 - 1 & sqrt3 +1endpmatrix
$$ My thoughts is that here could be the same situation as for $B=beginpmatrix sin x & - cos x\ cos x & sin xendpmatrix
$ which give $$B^n=beginpmatrix sin (nx) & - cos (nx) \ cos (nx) & sin (nx) endpmatrix.
$$ So I think I have to make a connection between A and B, however in A I dont have only $1$ term per place so I dont know how to proceed. $$frac12 A=beginpmatrix sin(pi /6) +cos(pi /6) &sin(pi /6) - cos(pi /6) \ cos(pi /6) - sin(pi /6) &sin(pi /6) +cos(pi /6) endpmatrix
$$ Couls you help me?







share|cite|improve this question














I have to find the n-th power for the following matrix $$A=beginpmatrix 1+sqrt3 & 1-sqrt3\ sqrt3 - 1 & sqrt3 +1endpmatrix
$$ My thoughts is that here could be the same situation as for $B=beginpmatrix sin x & - cos x\ cos x & sin xendpmatrix
$ which give $$B^n=beginpmatrix sin (nx) & - cos (nx) \ cos (nx) & sin (nx) endpmatrix.
$$ So I think I have to make a connection between A and B, however in A I dont have only $1$ term per place so I dont know how to proceed. $$frac12 A=beginpmatrix sin(pi /6) +cos(pi /6) &sin(pi /6) - cos(pi /6) \ cos(pi /6) - sin(pi /6) &sin(pi /6) +cos(pi /6) endpmatrix
$$ Couls you help me?









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 9 at 23:12









Bernard

110k635103




110k635103










asked Aug 9 at 23:08









Sonkun

4979




4979







  • 1




    Is it diagonalizable?
    – Arnaud Mortier
    Aug 9 at 23:12










  • What is a rotation matrix?
    – Sonkun
    Aug 9 at 23:13






  • 1




    Try pulling out a different common factor. You want the rows/columns of the matrix to end up being unit vectors.
    – amd
    Aug 9 at 23:14










  • A rotation matrix is one like $B$.
    – amd
    Aug 9 at 23:14












  • 1




    Is it diagonalizable?
    – Arnaud Mortier
    Aug 9 at 23:12










  • What is a rotation matrix?
    – Sonkun
    Aug 9 at 23:13






  • 1




    Try pulling out a different common factor. You want the rows/columns of the matrix to end up being unit vectors.
    – amd
    Aug 9 at 23:14










  • A rotation matrix is one like $B$.
    – amd
    Aug 9 at 23:14







1




1




Is it diagonalizable?
– Arnaud Mortier
Aug 9 at 23:12




Is it diagonalizable?
– Arnaud Mortier
Aug 9 at 23:12












What is a rotation matrix?
– Sonkun
Aug 9 at 23:13




What is a rotation matrix?
– Sonkun
Aug 9 at 23:13




1




1




Try pulling out a different common factor. You want the rows/columns of the matrix to end up being unit vectors.
– amd
Aug 9 at 23:14




Try pulling out a different common factor. You want the rows/columns of the matrix to end up being unit vectors.
– amd
Aug 9 at 23:14












A rotation matrix is one like $B$.
– amd
Aug 9 at 23:14




A rotation matrix is one like $B$.
– amd
Aug 9 at 23:14










4 Answers
4






active

oldest

votes

















up vote
1
down vote



accepted










As can be easily verified
$$
left(beginarraycc
a & -b\
b & a
endarrayright)=left(beginarraycc
sintheta & -costheta\
costheta & sintheta
endarrayright)left(beginarraycc
bcostheta+asintheta & acostheta-bsintheta\
-acostheta+bsintheta & bcostheta+asintheta
endarrayright)
$$



but



$$
bcostheta+asintheta=sqrta^2+b^2left(fracbsqrta^2+b^2costheta+fracasqrta^2+b^2sinthetaright)=rhocosleft(theta_0-thetaright)
$$



and then



$$
left(beginarraycc
bcostheta+asintheta & acostheta-bsintheta\
-acostheta+bsintheta & bcostheta+asintheta
endarrayright)=rholeft(beginarraycc
cosleft(theta_0-thetaright) & sinleft(theta_0-thetaright)\
-sinleft(theta_0-thetaright) & cosleft(theta_0-thetaright)
endarrayright)
$$



so



$$
left(beginarraycc
a & -b\
b & a
endarrayright)=rholeft(beginarraycc
sintheta & -costheta\
costheta & sintheta
endarrayright)left(beginarraycc
cosleft(theta_0-thetaright) & sinleft(theta_0-thetaright)\
-sinleft(theta_0-thetaright) & cosleft(theta_0-thetaright)
endarrayright)=rholeft(beginarraycc
sintheta_0 & -costheta_0\
costheta_0 & sintheta_0
endarrayright)
$$



hence



$$
left(beginarraycc
a & -b\
b & a
endarrayright)^n=rho^nleft(beginarraycc
sinleft(ntheta_0right) & -cosleft(ntheta_0right)\
cosleft(ntheta_0right) & sinleft(ntheta_0right)
endarrayright)
$$



with



$$
theta_0 = arctanleft(frac abright)\
rho = sqrta^2+b^2
$$






share|cite|improve this answer





























    up vote
    2
    down vote













    Hint:
    beginalign
    sin(pi/6)+cos(pi/6) =& sqrt2left(fracsin(pi/6)sqrt2+fraccos(pi/6)sqrt2 right)\
    =&sqrt2left(sin(pi/6)sin(pi/4)+cos(pi/6)cos(pi/4)right)=ldots
    endalign






    share|cite|improve this answer




















    • that is $sqrt 2 cos (pi/6 - pi/4)$ right? Oh so I have to find similar values for the other $3$ places.
      – Sonkun
      Aug 9 at 23:19











    • You are correct.
      – Jacky Chong
      Aug 9 at 23:21

















    up vote
    2
    down vote













    You’re on the right track by trying to pull out a common scalar factor. You just have to use a different one. Hint: A key feature of $B$ is that its rows and columns are unit vectors, so see if both rows of $A$ have the same norm. You will then have $A = kB$, from which $A^n=k^nB^n$.






    share|cite|improve this answer




















    • In this case, $k=sqrt 2$?
      – Sonkun
      Aug 9 at 23:25










    • @Sonkun No, but close. It’s $sqrt(1+sqrt3)^2+(1-sqrt3)^2$. After factoring this out, you’ll likely also need Jacky Chong’s hint to find the angle $x$ for $B$.
      – amd
      Aug 9 at 23:31

















    up vote
    1
    down vote













    $$frac12 A=beginpmatrix sin(pi /6) +cos(pi /6) &sin(pi /6) - cos(pi /6) \ cos(pi /6) - sin(pi /6) &sin(pi /6) +cos(pi /6) endpmatrix$$
    $$frac12 A= beginpmatrix sin(pi /6) &cos(pi /6) \ cos(pi /6) &-sin(pi /6) endpmatrixbeginpmatrix 1 &1 \ 1 &-1 endpmatrix$$






    share|cite|improve this answer




















      Your Answer




      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );








       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2877810%2fn-th-power-of-a-matrix%23new-answer', 'question_page');

      );

      Post as a guest






























      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      1
      down vote



      accepted










      As can be easily verified
      $$
      left(beginarraycc
      a & -b\
      b & a
      endarrayright)=left(beginarraycc
      sintheta & -costheta\
      costheta & sintheta
      endarrayright)left(beginarraycc
      bcostheta+asintheta & acostheta-bsintheta\
      -acostheta+bsintheta & bcostheta+asintheta
      endarrayright)
      $$



      but



      $$
      bcostheta+asintheta=sqrta^2+b^2left(fracbsqrta^2+b^2costheta+fracasqrta^2+b^2sinthetaright)=rhocosleft(theta_0-thetaright)
      $$



      and then



      $$
      left(beginarraycc
      bcostheta+asintheta & acostheta-bsintheta\
      -acostheta+bsintheta & bcostheta+asintheta
      endarrayright)=rholeft(beginarraycc
      cosleft(theta_0-thetaright) & sinleft(theta_0-thetaright)\
      -sinleft(theta_0-thetaright) & cosleft(theta_0-thetaright)
      endarrayright)
      $$



      so



      $$
      left(beginarraycc
      a & -b\
      b & a
      endarrayright)=rholeft(beginarraycc
      sintheta & -costheta\
      costheta & sintheta
      endarrayright)left(beginarraycc
      cosleft(theta_0-thetaright) & sinleft(theta_0-thetaright)\
      -sinleft(theta_0-thetaright) & cosleft(theta_0-thetaright)
      endarrayright)=rholeft(beginarraycc
      sintheta_0 & -costheta_0\
      costheta_0 & sintheta_0
      endarrayright)
      $$



      hence



      $$
      left(beginarraycc
      a & -b\
      b & a
      endarrayright)^n=rho^nleft(beginarraycc
      sinleft(ntheta_0right) & -cosleft(ntheta_0right)\
      cosleft(ntheta_0right) & sinleft(ntheta_0right)
      endarrayright)
      $$



      with



      $$
      theta_0 = arctanleft(frac abright)\
      rho = sqrta^2+b^2
      $$






      share|cite|improve this answer


























        up vote
        1
        down vote



        accepted










        As can be easily verified
        $$
        left(beginarraycc
        a & -b\
        b & a
        endarrayright)=left(beginarraycc
        sintheta & -costheta\
        costheta & sintheta
        endarrayright)left(beginarraycc
        bcostheta+asintheta & acostheta-bsintheta\
        -acostheta+bsintheta & bcostheta+asintheta
        endarrayright)
        $$



        but



        $$
        bcostheta+asintheta=sqrta^2+b^2left(fracbsqrta^2+b^2costheta+fracasqrta^2+b^2sinthetaright)=rhocosleft(theta_0-thetaright)
        $$



        and then



        $$
        left(beginarraycc
        bcostheta+asintheta & acostheta-bsintheta\
        -acostheta+bsintheta & bcostheta+asintheta
        endarrayright)=rholeft(beginarraycc
        cosleft(theta_0-thetaright) & sinleft(theta_0-thetaright)\
        -sinleft(theta_0-thetaright) & cosleft(theta_0-thetaright)
        endarrayright)
        $$



        so



        $$
        left(beginarraycc
        a & -b\
        b & a
        endarrayright)=rholeft(beginarraycc
        sintheta & -costheta\
        costheta & sintheta
        endarrayright)left(beginarraycc
        cosleft(theta_0-thetaright) & sinleft(theta_0-thetaright)\
        -sinleft(theta_0-thetaright) & cosleft(theta_0-thetaright)
        endarrayright)=rholeft(beginarraycc
        sintheta_0 & -costheta_0\
        costheta_0 & sintheta_0
        endarrayright)
        $$



        hence



        $$
        left(beginarraycc
        a & -b\
        b & a
        endarrayright)^n=rho^nleft(beginarraycc
        sinleft(ntheta_0right) & -cosleft(ntheta_0right)\
        cosleft(ntheta_0right) & sinleft(ntheta_0right)
        endarrayright)
        $$



        with



        $$
        theta_0 = arctanleft(frac abright)\
        rho = sqrta^2+b^2
        $$






        share|cite|improve this answer
























          up vote
          1
          down vote



          accepted







          up vote
          1
          down vote



          accepted






          As can be easily verified
          $$
          left(beginarraycc
          a & -b\
          b & a
          endarrayright)=left(beginarraycc
          sintheta & -costheta\
          costheta & sintheta
          endarrayright)left(beginarraycc
          bcostheta+asintheta & acostheta-bsintheta\
          -acostheta+bsintheta & bcostheta+asintheta
          endarrayright)
          $$



          but



          $$
          bcostheta+asintheta=sqrta^2+b^2left(fracbsqrta^2+b^2costheta+fracasqrta^2+b^2sinthetaright)=rhocosleft(theta_0-thetaright)
          $$



          and then



          $$
          left(beginarraycc
          bcostheta+asintheta & acostheta-bsintheta\
          -acostheta+bsintheta & bcostheta+asintheta
          endarrayright)=rholeft(beginarraycc
          cosleft(theta_0-thetaright) & sinleft(theta_0-thetaright)\
          -sinleft(theta_0-thetaright) & cosleft(theta_0-thetaright)
          endarrayright)
          $$



          so



          $$
          left(beginarraycc
          a & -b\
          b & a
          endarrayright)=rholeft(beginarraycc
          sintheta & -costheta\
          costheta & sintheta
          endarrayright)left(beginarraycc
          cosleft(theta_0-thetaright) & sinleft(theta_0-thetaright)\
          -sinleft(theta_0-thetaright) & cosleft(theta_0-thetaright)
          endarrayright)=rholeft(beginarraycc
          sintheta_0 & -costheta_0\
          costheta_0 & sintheta_0
          endarrayright)
          $$



          hence



          $$
          left(beginarraycc
          a & -b\
          b & a
          endarrayright)^n=rho^nleft(beginarraycc
          sinleft(ntheta_0right) & -cosleft(ntheta_0right)\
          cosleft(ntheta_0right) & sinleft(ntheta_0right)
          endarrayright)
          $$



          with



          $$
          theta_0 = arctanleft(frac abright)\
          rho = sqrta^2+b^2
          $$






          share|cite|improve this answer














          As can be easily verified
          $$
          left(beginarraycc
          a & -b\
          b & a
          endarrayright)=left(beginarraycc
          sintheta & -costheta\
          costheta & sintheta
          endarrayright)left(beginarraycc
          bcostheta+asintheta & acostheta-bsintheta\
          -acostheta+bsintheta & bcostheta+asintheta
          endarrayright)
          $$



          but



          $$
          bcostheta+asintheta=sqrta^2+b^2left(fracbsqrta^2+b^2costheta+fracasqrta^2+b^2sinthetaright)=rhocosleft(theta_0-thetaright)
          $$



          and then



          $$
          left(beginarraycc
          bcostheta+asintheta & acostheta-bsintheta\
          -acostheta+bsintheta & bcostheta+asintheta
          endarrayright)=rholeft(beginarraycc
          cosleft(theta_0-thetaright) & sinleft(theta_0-thetaright)\
          -sinleft(theta_0-thetaright) & cosleft(theta_0-thetaright)
          endarrayright)
          $$



          so



          $$
          left(beginarraycc
          a & -b\
          b & a
          endarrayright)=rholeft(beginarraycc
          sintheta & -costheta\
          costheta & sintheta
          endarrayright)left(beginarraycc
          cosleft(theta_0-thetaright) & sinleft(theta_0-thetaright)\
          -sinleft(theta_0-thetaright) & cosleft(theta_0-thetaright)
          endarrayright)=rholeft(beginarraycc
          sintheta_0 & -costheta_0\
          costheta_0 & sintheta_0
          endarrayright)
          $$



          hence



          $$
          left(beginarraycc
          a & -b\
          b & a
          endarrayright)^n=rho^nleft(beginarraycc
          sinleft(ntheta_0right) & -cosleft(ntheta_0right)\
          cosleft(ntheta_0right) & sinleft(ntheta_0right)
          endarrayright)
          $$



          with



          $$
          theta_0 = arctanleft(frac abright)\
          rho = sqrta^2+b^2
          $$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Aug 11 at 13:06

























          answered Aug 10 at 11:47









          Cesareo

          5,8572412




          5,8572412




















              up vote
              2
              down vote













              Hint:
              beginalign
              sin(pi/6)+cos(pi/6) =& sqrt2left(fracsin(pi/6)sqrt2+fraccos(pi/6)sqrt2 right)\
              =&sqrt2left(sin(pi/6)sin(pi/4)+cos(pi/6)cos(pi/4)right)=ldots
              endalign






              share|cite|improve this answer




















              • that is $sqrt 2 cos (pi/6 - pi/4)$ right? Oh so I have to find similar values for the other $3$ places.
                – Sonkun
                Aug 9 at 23:19











              • You are correct.
                – Jacky Chong
                Aug 9 at 23:21














              up vote
              2
              down vote













              Hint:
              beginalign
              sin(pi/6)+cos(pi/6) =& sqrt2left(fracsin(pi/6)sqrt2+fraccos(pi/6)sqrt2 right)\
              =&sqrt2left(sin(pi/6)sin(pi/4)+cos(pi/6)cos(pi/4)right)=ldots
              endalign






              share|cite|improve this answer




















              • that is $sqrt 2 cos (pi/6 - pi/4)$ right? Oh so I have to find similar values for the other $3$ places.
                – Sonkun
                Aug 9 at 23:19











              • You are correct.
                – Jacky Chong
                Aug 9 at 23:21












              up vote
              2
              down vote










              up vote
              2
              down vote









              Hint:
              beginalign
              sin(pi/6)+cos(pi/6) =& sqrt2left(fracsin(pi/6)sqrt2+fraccos(pi/6)sqrt2 right)\
              =&sqrt2left(sin(pi/6)sin(pi/4)+cos(pi/6)cos(pi/4)right)=ldots
              endalign






              share|cite|improve this answer












              Hint:
              beginalign
              sin(pi/6)+cos(pi/6) =& sqrt2left(fracsin(pi/6)sqrt2+fraccos(pi/6)sqrt2 right)\
              =&sqrt2left(sin(pi/6)sin(pi/4)+cos(pi/6)cos(pi/4)right)=ldots
              endalign







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Aug 9 at 23:14









              Jacky Chong

              16.1k2925




              16.1k2925











              • that is $sqrt 2 cos (pi/6 - pi/4)$ right? Oh so I have to find similar values for the other $3$ places.
                – Sonkun
                Aug 9 at 23:19











              • You are correct.
                – Jacky Chong
                Aug 9 at 23:21
















              • that is $sqrt 2 cos (pi/6 - pi/4)$ right? Oh so I have to find similar values for the other $3$ places.
                – Sonkun
                Aug 9 at 23:19











              • You are correct.
                – Jacky Chong
                Aug 9 at 23:21















              that is $sqrt 2 cos (pi/6 - pi/4)$ right? Oh so I have to find similar values for the other $3$ places.
              – Sonkun
              Aug 9 at 23:19





              that is $sqrt 2 cos (pi/6 - pi/4)$ right? Oh so I have to find similar values for the other $3$ places.
              – Sonkun
              Aug 9 at 23:19













              You are correct.
              – Jacky Chong
              Aug 9 at 23:21




              You are correct.
              – Jacky Chong
              Aug 9 at 23:21










              up vote
              2
              down vote













              You’re on the right track by trying to pull out a common scalar factor. You just have to use a different one. Hint: A key feature of $B$ is that its rows and columns are unit vectors, so see if both rows of $A$ have the same norm. You will then have $A = kB$, from which $A^n=k^nB^n$.






              share|cite|improve this answer




















              • In this case, $k=sqrt 2$?
                – Sonkun
                Aug 9 at 23:25










              • @Sonkun No, but close. It’s $sqrt(1+sqrt3)^2+(1-sqrt3)^2$. After factoring this out, you’ll likely also need Jacky Chong’s hint to find the angle $x$ for $B$.
                – amd
                Aug 9 at 23:31














              up vote
              2
              down vote













              You’re on the right track by trying to pull out a common scalar factor. You just have to use a different one. Hint: A key feature of $B$ is that its rows and columns are unit vectors, so see if both rows of $A$ have the same norm. You will then have $A = kB$, from which $A^n=k^nB^n$.






              share|cite|improve this answer




















              • In this case, $k=sqrt 2$?
                – Sonkun
                Aug 9 at 23:25










              • @Sonkun No, but close. It’s $sqrt(1+sqrt3)^2+(1-sqrt3)^2$. After factoring this out, you’ll likely also need Jacky Chong’s hint to find the angle $x$ for $B$.
                – amd
                Aug 9 at 23:31












              up vote
              2
              down vote










              up vote
              2
              down vote









              You’re on the right track by trying to pull out a common scalar factor. You just have to use a different one. Hint: A key feature of $B$ is that its rows and columns are unit vectors, so see if both rows of $A$ have the same norm. You will then have $A = kB$, from which $A^n=k^nB^n$.






              share|cite|improve this answer












              You’re on the right track by trying to pull out a common scalar factor. You just have to use a different one. Hint: A key feature of $B$ is that its rows and columns are unit vectors, so see if both rows of $A$ have the same norm. You will then have $A = kB$, from which $A^n=k^nB^n$.







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Aug 9 at 23:19









              amd

              26.1k2944




              26.1k2944











              • In this case, $k=sqrt 2$?
                – Sonkun
                Aug 9 at 23:25










              • @Sonkun No, but close. It’s $sqrt(1+sqrt3)^2+(1-sqrt3)^2$. After factoring this out, you’ll likely also need Jacky Chong’s hint to find the angle $x$ for $B$.
                – amd
                Aug 9 at 23:31
















              • In this case, $k=sqrt 2$?
                – Sonkun
                Aug 9 at 23:25










              • @Sonkun No, but close. It’s $sqrt(1+sqrt3)^2+(1-sqrt3)^2$. After factoring this out, you’ll likely also need Jacky Chong’s hint to find the angle $x$ for $B$.
                – amd
                Aug 9 at 23:31















              In this case, $k=sqrt 2$?
              – Sonkun
              Aug 9 at 23:25




              In this case, $k=sqrt 2$?
              – Sonkun
              Aug 9 at 23:25












              @Sonkun No, but close. It’s $sqrt(1+sqrt3)^2+(1-sqrt3)^2$. After factoring this out, you’ll likely also need Jacky Chong’s hint to find the angle $x$ for $B$.
              – amd
              Aug 9 at 23:31




              @Sonkun No, but close. It’s $sqrt(1+sqrt3)^2+(1-sqrt3)^2$. After factoring this out, you’ll likely also need Jacky Chong’s hint to find the angle $x$ for $B$.
              – amd
              Aug 9 at 23:31










              up vote
              1
              down vote













              $$frac12 A=beginpmatrix sin(pi /6) +cos(pi /6) &sin(pi /6) - cos(pi /6) \ cos(pi /6) - sin(pi /6) &sin(pi /6) +cos(pi /6) endpmatrix$$
              $$frac12 A= beginpmatrix sin(pi /6) &cos(pi /6) \ cos(pi /6) &-sin(pi /6) endpmatrixbeginpmatrix 1 &1 \ 1 &-1 endpmatrix$$






              share|cite|improve this answer
























                up vote
                1
                down vote













                $$frac12 A=beginpmatrix sin(pi /6) +cos(pi /6) &sin(pi /6) - cos(pi /6) \ cos(pi /6) - sin(pi /6) &sin(pi /6) +cos(pi /6) endpmatrix$$
                $$frac12 A= beginpmatrix sin(pi /6) &cos(pi /6) \ cos(pi /6) &-sin(pi /6) endpmatrixbeginpmatrix 1 &1 \ 1 &-1 endpmatrix$$






                share|cite|improve this answer






















                  up vote
                  1
                  down vote










                  up vote
                  1
                  down vote









                  $$frac12 A=beginpmatrix sin(pi /6) +cos(pi /6) &sin(pi /6) - cos(pi /6) \ cos(pi /6) - sin(pi /6) &sin(pi /6) +cos(pi /6) endpmatrix$$
                  $$frac12 A= beginpmatrix sin(pi /6) &cos(pi /6) \ cos(pi /6) &-sin(pi /6) endpmatrixbeginpmatrix 1 &1 \ 1 &-1 endpmatrix$$






                  share|cite|improve this answer












                  $$frac12 A=beginpmatrix sin(pi /6) +cos(pi /6) &sin(pi /6) - cos(pi /6) \ cos(pi /6) - sin(pi /6) &sin(pi /6) +cos(pi /6) endpmatrix$$
                  $$frac12 A= beginpmatrix sin(pi /6) &cos(pi /6) \ cos(pi /6) &-sin(pi /6) endpmatrixbeginpmatrix 1 &1 \ 1 &-1 endpmatrix$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Aug 9 at 23:22









                  James

                  1,631318




                  1,631318






















                       

                      draft saved


                      draft discarded


























                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2877810%2fn-th-power-of-a-matrix%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      這個網誌中的熱門文章

                      How to combine Bézier curves to a surface?

                      Mutual Information Always Non-negative

                      Why am i infinitely getting the same tweet with the Twitter Search API?