N-th power of a matrix
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
I have to find the n-th power for the following matrix $$A=beginpmatrix 1+sqrt3 & 1-sqrt3\ sqrt3 - 1 & sqrt3 +1endpmatrix
$$ My thoughts is that here could be the same situation as for $B=beginpmatrix sin x & - cos x\ cos x & sin xendpmatrix
$ which give $$B^n=beginpmatrix sin (nx) & - cos (nx) \ cos (nx) & sin (nx) endpmatrix.
$$ So I think I have to make a connection between A and B, however in A I dont have only $1$ term per place so I dont know how to proceed. $$frac12 A=beginpmatrix sin(pi /6) +cos(pi /6) &sin(pi /6) - cos(pi /6) \ cos(pi /6) - sin(pi /6) &sin(pi /6) +cos(pi /6) endpmatrix
$$ Couls you help me?
linear-algebra matrices
add a comment |Â
up vote
3
down vote
favorite
I have to find the n-th power for the following matrix $$A=beginpmatrix 1+sqrt3 & 1-sqrt3\ sqrt3 - 1 & sqrt3 +1endpmatrix
$$ My thoughts is that here could be the same situation as for $B=beginpmatrix sin x & - cos x\ cos x & sin xendpmatrix
$ which give $$B^n=beginpmatrix sin (nx) & - cos (nx) \ cos (nx) & sin (nx) endpmatrix.
$$ So I think I have to make a connection between A and B, however in A I dont have only $1$ term per place so I dont know how to proceed. $$frac12 A=beginpmatrix sin(pi /6) +cos(pi /6) &sin(pi /6) - cos(pi /6) \ cos(pi /6) - sin(pi /6) &sin(pi /6) +cos(pi /6) endpmatrix
$$ Couls you help me?
linear-algebra matrices
1
Is it diagonalizable?
â Arnaud Mortier
Aug 9 at 23:12
What is a rotation matrix?
â Sonkun
Aug 9 at 23:13
1
Try pulling out a different common factor. You want the rows/columns of the matrix to end up being unit vectors.
â amd
Aug 9 at 23:14
A rotation matrix is one like $B$.
â amd
Aug 9 at 23:14
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
I have to find the n-th power for the following matrix $$A=beginpmatrix 1+sqrt3 & 1-sqrt3\ sqrt3 - 1 & sqrt3 +1endpmatrix
$$ My thoughts is that here could be the same situation as for $B=beginpmatrix sin x & - cos x\ cos x & sin xendpmatrix
$ which give $$B^n=beginpmatrix sin (nx) & - cos (nx) \ cos (nx) & sin (nx) endpmatrix.
$$ So I think I have to make a connection between A and B, however in A I dont have only $1$ term per place so I dont know how to proceed. $$frac12 A=beginpmatrix sin(pi /6) +cos(pi /6) &sin(pi /6) - cos(pi /6) \ cos(pi /6) - sin(pi /6) &sin(pi /6) +cos(pi /6) endpmatrix
$$ Couls you help me?
linear-algebra matrices
I have to find the n-th power for the following matrix $$A=beginpmatrix 1+sqrt3 & 1-sqrt3\ sqrt3 - 1 & sqrt3 +1endpmatrix
$$ My thoughts is that here could be the same situation as for $B=beginpmatrix sin x & - cos x\ cos x & sin xendpmatrix
$ which give $$B^n=beginpmatrix sin (nx) & - cos (nx) \ cos (nx) & sin (nx) endpmatrix.
$$ So I think I have to make a connection between A and B, however in A I dont have only $1$ term per place so I dont know how to proceed. $$frac12 A=beginpmatrix sin(pi /6) +cos(pi /6) &sin(pi /6) - cos(pi /6) \ cos(pi /6) - sin(pi /6) &sin(pi /6) +cos(pi /6) endpmatrix
$$ Couls you help me?
linear-algebra matrices
edited Aug 9 at 23:12
Bernard
110k635103
110k635103
asked Aug 9 at 23:08
Sonkun
4979
4979
1
Is it diagonalizable?
â Arnaud Mortier
Aug 9 at 23:12
What is a rotation matrix?
â Sonkun
Aug 9 at 23:13
1
Try pulling out a different common factor. You want the rows/columns of the matrix to end up being unit vectors.
â amd
Aug 9 at 23:14
A rotation matrix is one like $B$.
â amd
Aug 9 at 23:14
add a comment |Â
1
Is it diagonalizable?
â Arnaud Mortier
Aug 9 at 23:12
What is a rotation matrix?
â Sonkun
Aug 9 at 23:13
1
Try pulling out a different common factor. You want the rows/columns of the matrix to end up being unit vectors.
â amd
Aug 9 at 23:14
A rotation matrix is one like $B$.
â amd
Aug 9 at 23:14
1
1
Is it diagonalizable?
â Arnaud Mortier
Aug 9 at 23:12
Is it diagonalizable?
â Arnaud Mortier
Aug 9 at 23:12
What is a rotation matrix?
â Sonkun
Aug 9 at 23:13
What is a rotation matrix?
â Sonkun
Aug 9 at 23:13
1
1
Try pulling out a different common factor. You want the rows/columns of the matrix to end up being unit vectors.
â amd
Aug 9 at 23:14
Try pulling out a different common factor. You want the rows/columns of the matrix to end up being unit vectors.
â amd
Aug 9 at 23:14
A rotation matrix is one like $B$.
â amd
Aug 9 at 23:14
A rotation matrix is one like $B$.
â amd
Aug 9 at 23:14
add a comment |Â
4 Answers
4
active
oldest
votes
up vote
1
down vote
accepted
As can be easily verified
$$
left(beginarraycc
a & -b\
b & a
endarrayright)=left(beginarraycc
sintheta & -costheta\
costheta & sintheta
endarrayright)left(beginarraycc
bcostheta+asintheta & acostheta-bsintheta\
-acostheta+bsintheta & bcostheta+asintheta
endarrayright)
$$
but
$$
bcostheta+asintheta=sqrta^2+b^2left(fracbsqrta^2+b^2costheta+fracasqrta^2+b^2sinthetaright)=rhocosleft(theta_0-thetaright)
$$
and then
$$
left(beginarraycc
bcostheta+asintheta & acostheta-bsintheta\
-acostheta+bsintheta & bcostheta+asintheta
endarrayright)=rholeft(beginarraycc
cosleft(theta_0-thetaright) & sinleft(theta_0-thetaright)\
-sinleft(theta_0-thetaright) & cosleft(theta_0-thetaright)
endarrayright)
$$
so
$$
left(beginarraycc
a & -b\
b & a
endarrayright)=rholeft(beginarraycc
sintheta & -costheta\
costheta & sintheta
endarrayright)left(beginarraycc
cosleft(theta_0-thetaright) & sinleft(theta_0-thetaright)\
-sinleft(theta_0-thetaright) & cosleft(theta_0-thetaright)
endarrayright)=rholeft(beginarraycc
sintheta_0 & -costheta_0\
costheta_0 & sintheta_0
endarrayright)
$$
hence
$$
left(beginarraycc
a & -b\
b & a
endarrayright)^n=rho^nleft(beginarraycc
sinleft(ntheta_0right) & -cosleft(ntheta_0right)\
cosleft(ntheta_0right) & sinleft(ntheta_0right)
endarrayright)
$$
with
$$
theta_0 = arctanleft(frac abright)\
rho = sqrta^2+b^2
$$
add a comment |Â
up vote
2
down vote
Hint:
beginalign
sin(pi/6)+cos(pi/6) =& sqrt2left(fracsin(pi/6)sqrt2+fraccos(pi/6)sqrt2 right)\
=&sqrt2left(sin(pi/6)sin(pi/4)+cos(pi/6)cos(pi/4)right)=ldots
endalign
that is $sqrt 2 cos (pi/6 - pi/4)$ right? Oh so I have to find similar values for the other $3$ places.
â Sonkun
Aug 9 at 23:19
You are correct.
â Jacky Chong
Aug 9 at 23:21
add a comment |Â
up vote
2
down vote
YouâÂÂre on the right track by trying to pull out a common scalar factor. You just have to use a different one. Hint: A key feature of $B$ is that its rows and columns are unit vectors, so see if both rows of $A$ have the same norm. You will then have $A = kB$, from which $A^n=k^nB^n$.
In this case, $k=sqrt 2$?
â Sonkun
Aug 9 at 23:25
@Sonkun No, but close. ItâÂÂs $sqrt(1+sqrt3)^2+(1-sqrt3)^2$. After factoring this out, youâÂÂll likely also need Jacky ChongâÂÂs hint to find the angle $x$ for $B$.
â amd
Aug 9 at 23:31
add a comment |Â
up vote
1
down vote
$$frac12 A=beginpmatrix sin(pi /6) +cos(pi /6) &sin(pi /6) - cos(pi /6) \ cos(pi /6) - sin(pi /6) &sin(pi /6) +cos(pi /6) endpmatrix$$
$$frac12 A= beginpmatrix sin(pi /6) &cos(pi /6) \ cos(pi /6) &-sin(pi /6) endpmatrixbeginpmatrix 1 &1 \ 1 &-1 endpmatrix$$
add a comment |Â
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
As can be easily verified
$$
left(beginarraycc
a & -b\
b & a
endarrayright)=left(beginarraycc
sintheta & -costheta\
costheta & sintheta
endarrayright)left(beginarraycc
bcostheta+asintheta & acostheta-bsintheta\
-acostheta+bsintheta & bcostheta+asintheta
endarrayright)
$$
but
$$
bcostheta+asintheta=sqrta^2+b^2left(fracbsqrta^2+b^2costheta+fracasqrta^2+b^2sinthetaright)=rhocosleft(theta_0-thetaright)
$$
and then
$$
left(beginarraycc
bcostheta+asintheta & acostheta-bsintheta\
-acostheta+bsintheta & bcostheta+asintheta
endarrayright)=rholeft(beginarraycc
cosleft(theta_0-thetaright) & sinleft(theta_0-thetaright)\
-sinleft(theta_0-thetaright) & cosleft(theta_0-thetaright)
endarrayright)
$$
so
$$
left(beginarraycc
a & -b\
b & a
endarrayright)=rholeft(beginarraycc
sintheta & -costheta\
costheta & sintheta
endarrayright)left(beginarraycc
cosleft(theta_0-thetaright) & sinleft(theta_0-thetaright)\
-sinleft(theta_0-thetaright) & cosleft(theta_0-thetaright)
endarrayright)=rholeft(beginarraycc
sintheta_0 & -costheta_0\
costheta_0 & sintheta_0
endarrayright)
$$
hence
$$
left(beginarraycc
a & -b\
b & a
endarrayright)^n=rho^nleft(beginarraycc
sinleft(ntheta_0right) & -cosleft(ntheta_0right)\
cosleft(ntheta_0right) & sinleft(ntheta_0right)
endarrayright)
$$
with
$$
theta_0 = arctanleft(frac abright)\
rho = sqrta^2+b^2
$$
add a comment |Â
up vote
1
down vote
accepted
As can be easily verified
$$
left(beginarraycc
a & -b\
b & a
endarrayright)=left(beginarraycc
sintheta & -costheta\
costheta & sintheta
endarrayright)left(beginarraycc
bcostheta+asintheta & acostheta-bsintheta\
-acostheta+bsintheta & bcostheta+asintheta
endarrayright)
$$
but
$$
bcostheta+asintheta=sqrta^2+b^2left(fracbsqrta^2+b^2costheta+fracasqrta^2+b^2sinthetaright)=rhocosleft(theta_0-thetaright)
$$
and then
$$
left(beginarraycc
bcostheta+asintheta & acostheta-bsintheta\
-acostheta+bsintheta & bcostheta+asintheta
endarrayright)=rholeft(beginarraycc
cosleft(theta_0-thetaright) & sinleft(theta_0-thetaright)\
-sinleft(theta_0-thetaright) & cosleft(theta_0-thetaright)
endarrayright)
$$
so
$$
left(beginarraycc
a & -b\
b & a
endarrayright)=rholeft(beginarraycc
sintheta & -costheta\
costheta & sintheta
endarrayright)left(beginarraycc
cosleft(theta_0-thetaright) & sinleft(theta_0-thetaright)\
-sinleft(theta_0-thetaright) & cosleft(theta_0-thetaright)
endarrayright)=rholeft(beginarraycc
sintheta_0 & -costheta_0\
costheta_0 & sintheta_0
endarrayright)
$$
hence
$$
left(beginarraycc
a & -b\
b & a
endarrayright)^n=rho^nleft(beginarraycc
sinleft(ntheta_0right) & -cosleft(ntheta_0right)\
cosleft(ntheta_0right) & sinleft(ntheta_0right)
endarrayright)
$$
with
$$
theta_0 = arctanleft(frac abright)\
rho = sqrta^2+b^2
$$
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
As can be easily verified
$$
left(beginarraycc
a & -b\
b & a
endarrayright)=left(beginarraycc
sintheta & -costheta\
costheta & sintheta
endarrayright)left(beginarraycc
bcostheta+asintheta & acostheta-bsintheta\
-acostheta+bsintheta & bcostheta+asintheta
endarrayright)
$$
but
$$
bcostheta+asintheta=sqrta^2+b^2left(fracbsqrta^2+b^2costheta+fracasqrta^2+b^2sinthetaright)=rhocosleft(theta_0-thetaright)
$$
and then
$$
left(beginarraycc
bcostheta+asintheta & acostheta-bsintheta\
-acostheta+bsintheta & bcostheta+asintheta
endarrayright)=rholeft(beginarraycc
cosleft(theta_0-thetaright) & sinleft(theta_0-thetaright)\
-sinleft(theta_0-thetaright) & cosleft(theta_0-thetaright)
endarrayright)
$$
so
$$
left(beginarraycc
a & -b\
b & a
endarrayright)=rholeft(beginarraycc
sintheta & -costheta\
costheta & sintheta
endarrayright)left(beginarraycc
cosleft(theta_0-thetaright) & sinleft(theta_0-thetaright)\
-sinleft(theta_0-thetaright) & cosleft(theta_0-thetaright)
endarrayright)=rholeft(beginarraycc
sintheta_0 & -costheta_0\
costheta_0 & sintheta_0
endarrayright)
$$
hence
$$
left(beginarraycc
a & -b\
b & a
endarrayright)^n=rho^nleft(beginarraycc
sinleft(ntheta_0right) & -cosleft(ntheta_0right)\
cosleft(ntheta_0right) & sinleft(ntheta_0right)
endarrayright)
$$
with
$$
theta_0 = arctanleft(frac abright)\
rho = sqrta^2+b^2
$$
As can be easily verified
$$
left(beginarraycc
a & -b\
b & a
endarrayright)=left(beginarraycc
sintheta & -costheta\
costheta & sintheta
endarrayright)left(beginarraycc
bcostheta+asintheta & acostheta-bsintheta\
-acostheta+bsintheta & bcostheta+asintheta
endarrayright)
$$
but
$$
bcostheta+asintheta=sqrta^2+b^2left(fracbsqrta^2+b^2costheta+fracasqrta^2+b^2sinthetaright)=rhocosleft(theta_0-thetaright)
$$
and then
$$
left(beginarraycc
bcostheta+asintheta & acostheta-bsintheta\
-acostheta+bsintheta & bcostheta+asintheta
endarrayright)=rholeft(beginarraycc
cosleft(theta_0-thetaright) & sinleft(theta_0-thetaright)\
-sinleft(theta_0-thetaright) & cosleft(theta_0-thetaright)
endarrayright)
$$
so
$$
left(beginarraycc
a & -b\
b & a
endarrayright)=rholeft(beginarraycc
sintheta & -costheta\
costheta & sintheta
endarrayright)left(beginarraycc
cosleft(theta_0-thetaright) & sinleft(theta_0-thetaright)\
-sinleft(theta_0-thetaright) & cosleft(theta_0-thetaright)
endarrayright)=rholeft(beginarraycc
sintheta_0 & -costheta_0\
costheta_0 & sintheta_0
endarrayright)
$$
hence
$$
left(beginarraycc
a & -b\
b & a
endarrayright)^n=rho^nleft(beginarraycc
sinleft(ntheta_0right) & -cosleft(ntheta_0right)\
cosleft(ntheta_0right) & sinleft(ntheta_0right)
endarrayright)
$$
with
$$
theta_0 = arctanleft(frac abright)\
rho = sqrta^2+b^2
$$
edited Aug 11 at 13:06
answered Aug 10 at 11:47
Cesareo
5,8572412
5,8572412
add a comment |Â
add a comment |Â
up vote
2
down vote
Hint:
beginalign
sin(pi/6)+cos(pi/6) =& sqrt2left(fracsin(pi/6)sqrt2+fraccos(pi/6)sqrt2 right)\
=&sqrt2left(sin(pi/6)sin(pi/4)+cos(pi/6)cos(pi/4)right)=ldots
endalign
that is $sqrt 2 cos (pi/6 - pi/4)$ right? Oh so I have to find similar values for the other $3$ places.
â Sonkun
Aug 9 at 23:19
You are correct.
â Jacky Chong
Aug 9 at 23:21
add a comment |Â
up vote
2
down vote
Hint:
beginalign
sin(pi/6)+cos(pi/6) =& sqrt2left(fracsin(pi/6)sqrt2+fraccos(pi/6)sqrt2 right)\
=&sqrt2left(sin(pi/6)sin(pi/4)+cos(pi/6)cos(pi/4)right)=ldots
endalign
that is $sqrt 2 cos (pi/6 - pi/4)$ right? Oh so I have to find similar values for the other $3$ places.
â Sonkun
Aug 9 at 23:19
You are correct.
â Jacky Chong
Aug 9 at 23:21
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Hint:
beginalign
sin(pi/6)+cos(pi/6) =& sqrt2left(fracsin(pi/6)sqrt2+fraccos(pi/6)sqrt2 right)\
=&sqrt2left(sin(pi/6)sin(pi/4)+cos(pi/6)cos(pi/4)right)=ldots
endalign
Hint:
beginalign
sin(pi/6)+cos(pi/6) =& sqrt2left(fracsin(pi/6)sqrt2+fraccos(pi/6)sqrt2 right)\
=&sqrt2left(sin(pi/6)sin(pi/4)+cos(pi/6)cos(pi/4)right)=ldots
endalign
answered Aug 9 at 23:14
Jacky Chong
16.1k2925
16.1k2925
that is $sqrt 2 cos (pi/6 - pi/4)$ right? Oh so I have to find similar values for the other $3$ places.
â Sonkun
Aug 9 at 23:19
You are correct.
â Jacky Chong
Aug 9 at 23:21
add a comment |Â
that is $sqrt 2 cos (pi/6 - pi/4)$ right? Oh so I have to find similar values for the other $3$ places.
â Sonkun
Aug 9 at 23:19
You are correct.
â Jacky Chong
Aug 9 at 23:21
that is $sqrt 2 cos (pi/6 - pi/4)$ right? Oh so I have to find similar values for the other $3$ places.
â Sonkun
Aug 9 at 23:19
that is $sqrt 2 cos (pi/6 - pi/4)$ right? Oh so I have to find similar values for the other $3$ places.
â Sonkun
Aug 9 at 23:19
You are correct.
â Jacky Chong
Aug 9 at 23:21
You are correct.
â Jacky Chong
Aug 9 at 23:21
add a comment |Â
up vote
2
down vote
YouâÂÂre on the right track by trying to pull out a common scalar factor. You just have to use a different one. Hint: A key feature of $B$ is that its rows and columns are unit vectors, so see if both rows of $A$ have the same norm. You will then have $A = kB$, from which $A^n=k^nB^n$.
In this case, $k=sqrt 2$?
â Sonkun
Aug 9 at 23:25
@Sonkun No, but close. ItâÂÂs $sqrt(1+sqrt3)^2+(1-sqrt3)^2$. After factoring this out, youâÂÂll likely also need Jacky ChongâÂÂs hint to find the angle $x$ for $B$.
â amd
Aug 9 at 23:31
add a comment |Â
up vote
2
down vote
YouâÂÂre on the right track by trying to pull out a common scalar factor. You just have to use a different one. Hint: A key feature of $B$ is that its rows and columns are unit vectors, so see if both rows of $A$ have the same norm. You will then have $A = kB$, from which $A^n=k^nB^n$.
In this case, $k=sqrt 2$?
â Sonkun
Aug 9 at 23:25
@Sonkun No, but close. ItâÂÂs $sqrt(1+sqrt3)^2+(1-sqrt3)^2$. After factoring this out, youâÂÂll likely also need Jacky ChongâÂÂs hint to find the angle $x$ for $B$.
â amd
Aug 9 at 23:31
add a comment |Â
up vote
2
down vote
up vote
2
down vote
YouâÂÂre on the right track by trying to pull out a common scalar factor. You just have to use a different one. Hint: A key feature of $B$ is that its rows and columns are unit vectors, so see if both rows of $A$ have the same norm. You will then have $A = kB$, from which $A^n=k^nB^n$.
YouâÂÂre on the right track by trying to pull out a common scalar factor. You just have to use a different one. Hint: A key feature of $B$ is that its rows and columns are unit vectors, so see if both rows of $A$ have the same norm. You will then have $A = kB$, from which $A^n=k^nB^n$.
answered Aug 9 at 23:19
amd
26.1k2944
26.1k2944
In this case, $k=sqrt 2$?
â Sonkun
Aug 9 at 23:25
@Sonkun No, but close. ItâÂÂs $sqrt(1+sqrt3)^2+(1-sqrt3)^2$. After factoring this out, youâÂÂll likely also need Jacky ChongâÂÂs hint to find the angle $x$ for $B$.
â amd
Aug 9 at 23:31
add a comment |Â
In this case, $k=sqrt 2$?
â Sonkun
Aug 9 at 23:25
@Sonkun No, but close. ItâÂÂs $sqrt(1+sqrt3)^2+(1-sqrt3)^2$. After factoring this out, youâÂÂll likely also need Jacky ChongâÂÂs hint to find the angle $x$ for $B$.
â amd
Aug 9 at 23:31
In this case, $k=sqrt 2$?
â Sonkun
Aug 9 at 23:25
In this case, $k=sqrt 2$?
â Sonkun
Aug 9 at 23:25
@Sonkun No, but close. ItâÂÂs $sqrt(1+sqrt3)^2+(1-sqrt3)^2$. After factoring this out, youâÂÂll likely also need Jacky ChongâÂÂs hint to find the angle $x$ for $B$.
â amd
Aug 9 at 23:31
@Sonkun No, but close. ItâÂÂs $sqrt(1+sqrt3)^2+(1-sqrt3)^2$. After factoring this out, youâÂÂll likely also need Jacky ChongâÂÂs hint to find the angle $x$ for $B$.
â amd
Aug 9 at 23:31
add a comment |Â
up vote
1
down vote
$$frac12 A=beginpmatrix sin(pi /6) +cos(pi /6) &sin(pi /6) - cos(pi /6) \ cos(pi /6) - sin(pi /6) &sin(pi /6) +cos(pi /6) endpmatrix$$
$$frac12 A= beginpmatrix sin(pi /6) &cos(pi /6) \ cos(pi /6) &-sin(pi /6) endpmatrixbeginpmatrix 1 &1 \ 1 &-1 endpmatrix$$
add a comment |Â
up vote
1
down vote
$$frac12 A=beginpmatrix sin(pi /6) +cos(pi /6) &sin(pi /6) - cos(pi /6) \ cos(pi /6) - sin(pi /6) &sin(pi /6) +cos(pi /6) endpmatrix$$
$$frac12 A= beginpmatrix sin(pi /6) &cos(pi /6) \ cos(pi /6) &-sin(pi /6) endpmatrixbeginpmatrix 1 &1 \ 1 &-1 endpmatrix$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
$$frac12 A=beginpmatrix sin(pi /6) +cos(pi /6) &sin(pi /6) - cos(pi /6) \ cos(pi /6) - sin(pi /6) &sin(pi /6) +cos(pi /6) endpmatrix$$
$$frac12 A= beginpmatrix sin(pi /6) &cos(pi /6) \ cos(pi /6) &-sin(pi /6) endpmatrixbeginpmatrix 1 &1 \ 1 &-1 endpmatrix$$
$$frac12 A=beginpmatrix sin(pi /6) +cos(pi /6) &sin(pi /6) - cos(pi /6) \ cos(pi /6) - sin(pi /6) &sin(pi /6) +cos(pi /6) endpmatrix$$
$$frac12 A= beginpmatrix sin(pi /6) &cos(pi /6) \ cos(pi /6) &-sin(pi /6) endpmatrixbeginpmatrix 1 &1 \ 1 &-1 endpmatrix$$
answered Aug 9 at 23:22
James
1,631318
1,631318
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2877810%2fn-th-power-of-a-matrix%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
Is it diagonalizable?
â Arnaud Mortier
Aug 9 at 23:12
What is a rotation matrix?
â Sonkun
Aug 9 at 23:13
1
Try pulling out a different common factor. You want the rows/columns of the matrix to end up being unit vectors.
â amd
Aug 9 at 23:14
A rotation matrix is one like $B$.
â amd
Aug 9 at 23:14