Prove that this is a metric

Multi tool use
Multi tool use

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
4
down vote

favorite
4












$d:Bbb C times Bbb C to Bbb R$ Defined by $$d(z,w) := 2fracz-wsqrt^2)(1+,$$ prove that $d$ is metric in $Bbb C$.



I had proved $d$ satisfies the two conditions to be metric..
I do not know how to prove the triangular inequality. Can anyone help me?










share|cite|improve this question



























    up vote
    4
    down vote

    favorite
    4












    $d:Bbb C times Bbb C to Bbb R$ Defined by $$d(z,w) := 2fracz-wsqrt^2)(1+,$$ prove that $d$ is metric in $Bbb C$.



    I had proved $d$ satisfies the two conditions to be metric..
    I do not know how to prove the triangular inequality. Can anyone help me?










    share|cite|improve this question

























      up vote
      4
      down vote

      favorite
      4









      up vote
      4
      down vote

      favorite
      4






      4





      $d:Bbb C times Bbb C to Bbb R$ Defined by $$d(z,w) := 2fracz-wsqrt^2)(1+,$$ prove that $d$ is metric in $Bbb C$.



      I had proved $d$ satisfies the two conditions to be metric..
      I do not know how to prove the triangular inequality. Can anyone help me?










      share|cite|improve this question















      $d:Bbb C times Bbb C to Bbb R$ Defined by $$d(z,w) := 2fracz-wsqrt^2)(1+,$$ prove that $d$ is metric in $Bbb C$.



      I had proved $d$ satisfies the two conditions to be metric..
      I do not know how to prove the triangular inequality. Can anyone help me?







      complex-numbers metric-spaces radicals absolute-value cauchy-schwarz-inequality






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Sep 10 at 7:31









      Michael Rozenberg

      89.3k1583179




      89.3k1583179










      asked Jun 23 '14 at 15:12









      user157562

      557




      557




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          6
          down vote



          accepted











          Lemma. Let $(E,langle,rangle)$ be an inner product space. Then, for non-zero vectors $x$ and $y$ we have
          $$
          leftVertfracxVert xVert^2-fracyVert yVert^2rightVert=fracVert x-yVertVert yVert Vert xVert.
          $$




          Proof. Indeed,
          $$eqalign
          left( Vert yVert Vert xVert
          leftVertfracxVert xVert^2-fracyVert yVert^2rightVertright)^2&=
          leftVertfracVert yVertVert xVertx-fracVert xVertVert yVertyrightVert^2cr
          &=Vert yVert^2+Vert xVert^2-2Re(langle x,yrangle)cr
          &=Vert x-yVert^2

          $$




          Corollary. Let $(H,langle,rangle)$ be an inner product space. For $(x,y)in H^2$, define
          $$d(x,y)=fracVert x-yVertsqrt(1+Vert xVert^2)(1+Vert yVert^2).$$
          Then $d(x,z)leq d(x,y)+d(y,z)$ for every $x,y,z$ in $H$.




          Proof. Indeed, we consider $E=Htimes mathbbC$, equipped with the inner product
          $$
          langle (x,a),(y,b)rangle_E=langle x,yrangle_H+barab
          $$
          Applying the Lemma to the nonzero elements $X=(x,1)$ and $Y=(y,1)$ we see that
          $$
          d(x,y)=leftVert fracXVert XVert^2-fracYVert YVert^2rightVert_E
          $$
          Thus, for $x,y,z$ from $H$, then, (with notation $X=(x,1)$, $Y=(y,1)$ and $Z=(z,1)$,) we have
          $$eqalign
          d(x,z)&=leftVert fracXVert XVert^2-fracZVert ZVert^2rightVert_Ecr
          &leqleftVert fracXVert XVert^2-fracYVert YVert^2rightVert_E
          +leftVert fracYVert YVert^2-fracZVert ZVert^2rightVert_Ecr
          &leq d(x,y)+d(y,z),

          $$
          and the corollary follows.



          Finally, the considered question corresponds to the particular case $H=mathbbC$. because the factor $2$ is superfluous.






          share|cite|improve this answer




















          • A beautiful approach! Well done
            – Omnomnomnom
            Jun 23 '14 at 18:53

















          up vote
          -1
          down vote













          We need to prove that:
          $$|u-v|sqrt^2le |u-w|sqrtv+|v-w|sqrtu.$$
          Indeed, by C-S and the triangle inequality we obtain:
          $$left(|u-w|sqrtv+|v-w|sqrturight)^2=$$
          $$=|u-w|^2left(1+|v|^2right)+|v-w|^2left(1+|u|^2right)+2|(u-w)(v-w)|sqrtvgeq$$
          $$geq|u-w|^2left(1+|v|^2right)+|v-w|^2(1+|u|^2)+2|(u-w)(v-w)|left(1+|uv|right)=$$
          $$=left(|u-w|+|w-v|right)^2+left(|(u-w)v|+|(w-v)u|right)^2geq$$
          $$geqleft(|u-w+w-v|right)^2+left(|uv-wv+wu-vu|right)^2=|u-v|^2left(1+|w|^2right).$$






          share|cite|improve this answer




















          • Can someone explain the down voting?
            – Michael Rozenberg
            Sep 12 at 2:37










          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f844759%2fprove-that-this-is-a-metric%23new-answer', 'question_page');

          );

          Post as a guest






























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          6
          down vote



          accepted











          Lemma. Let $(E,langle,rangle)$ be an inner product space. Then, for non-zero vectors $x$ and $y$ we have
          $$
          leftVertfracxVert xVert^2-fracyVert yVert^2rightVert=fracVert x-yVertVert yVert Vert xVert.
          $$




          Proof. Indeed,
          $$eqalign
          left( Vert yVert Vert xVert
          leftVertfracxVert xVert^2-fracyVert yVert^2rightVertright)^2&=
          leftVertfracVert yVertVert xVertx-fracVert xVertVert yVertyrightVert^2cr
          &=Vert yVert^2+Vert xVert^2-2Re(langle x,yrangle)cr
          &=Vert x-yVert^2

          $$




          Corollary. Let $(H,langle,rangle)$ be an inner product space. For $(x,y)in H^2$, define
          $$d(x,y)=fracVert x-yVertsqrt(1+Vert xVert^2)(1+Vert yVert^2).$$
          Then $d(x,z)leq d(x,y)+d(y,z)$ for every $x,y,z$ in $H$.




          Proof. Indeed, we consider $E=Htimes mathbbC$, equipped with the inner product
          $$
          langle (x,a),(y,b)rangle_E=langle x,yrangle_H+barab
          $$
          Applying the Lemma to the nonzero elements $X=(x,1)$ and $Y=(y,1)$ we see that
          $$
          d(x,y)=leftVert fracXVert XVert^2-fracYVert YVert^2rightVert_E
          $$
          Thus, for $x,y,z$ from $H$, then, (with notation $X=(x,1)$, $Y=(y,1)$ and $Z=(z,1)$,) we have
          $$eqalign
          d(x,z)&=leftVert fracXVert XVert^2-fracZVert ZVert^2rightVert_Ecr
          &leqleftVert fracXVert XVert^2-fracYVert YVert^2rightVert_E
          +leftVert fracYVert YVert^2-fracZVert ZVert^2rightVert_Ecr
          &leq d(x,y)+d(y,z),

          $$
          and the corollary follows.



          Finally, the considered question corresponds to the particular case $H=mathbbC$. because the factor $2$ is superfluous.






          share|cite|improve this answer




















          • A beautiful approach! Well done
            – Omnomnomnom
            Jun 23 '14 at 18:53














          up vote
          6
          down vote



          accepted











          Lemma. Let $(E,langle,rangle)$ be an inner product space. Then, for non-zero vectors $x$ and $y$ we have
          $$
          leftVertfracxVert xVert^2-fracyVert yVert^2rightVert=fracVert x-yVertVert yVert Vert xVert.
          $$




          Proof. Indeed,
          $$eqalign
          left( Vert yVert Vert xVert
          leftVertfracxVert xVert^2-fracyVert yVert^2rightVertright)^2&=
          leftVertfracVert yVertVert xVertx-fracVert xVertVert yVertyrightVert^2cr
          &=Vert yVert^2+Vert xVert^2-2Re(langle x,yrangle)cr
          &=Vert x-yVert^2

          $$




          Corollary. Let $(H,langle,rangle)$ be an inner product space. For $(x,y)in H^2$, define
          $$d(x,y)=fracVert x-yVertsqrt(1+Vert xVert^2)(1+Vert yVert^2).$$
          Then $d(x,z)leq d(x,y)+d(y,z)$ for every $x,y,z$ in $H$.




          Proof. Indeed, we consider $E=Htimes mathbbC$, equipped with the inner product
          $$
          langle (x,a),(y,b)rangle_E=langle x,yrangle_H+barab
          $$
          Applying the Lemma to the nonzero elements $X=(x,1)$ and $Y=(y,1)$ we see that
          $$
          d(x,y)=leftVert fracXVert XVert^2-fracYVert YVert^2rightVert_E
          $$
          Thus, for $x,y,z$ from $H$, then, (with notation $X=(x,1)$, $Y=(y,1)$ and $Z=(z,1)$,) we have
          $$eqalign
          d(x,z)&=leftVert fracXVert XVert^2-fracZVert ZVert^2rightVert_Ecr
          &leqleftVert fracXVert XVert^2-fracYVert YVert^2rightVert_E
          +leftVert fracYVert YVert^2-fracZVert ZVert^2rightVert_Ecr
          &leq d(x,y)+d(y,z),

          $$
          and the corollary follows.



          Finally, the considered question corresponds to the particular case $H=mathbbC$. because the factor $2$ is superfluous.






          share|cite|improve this answer




















          • A beautiful approach! Well done
            – Omnomnomnom
            Jun 23 '14 at 18:53












          up vote
          6
          down vote



          accepted







          up vote
          6
          down vote



          accepted







          Lemma. Let $(E,langle,rangle)$ be an inner product space. Then, for non-zero vectors $x$ and $y$ we have
          $$
          leftVertfracxVert xVert^2-fracyVert yVert^2rightVert=fracVert x-yVertVert yVert Vert xVert.
          $$




          Proof. Indeed,
          $$eqalign
          left( Vert yVert Vert xVert
          leftVertfracxVert xVert^2-fracyVert yVert^2rightVertright)^2&=
          leftVertfracVert yVertVert xVertx-fracVert xVertVert yVertyrightVert^2cr
          &=Vert yVert^2+Vert xVert^2-2Re(langle x,yrangle)cr
          &=Vert x-yVert^2

          $$




          Corollary. Let $(H,langle,rangle)$ be an inner product space. For $(x,y)in H^2$, define
          $$d(x,y)=fracVert x-yVertsqrt(1+Vert xVert^2)(1+Vert yVert^2).$$
          Then $d(x,z)leq d(x,y)+d(y,z)$ for every $x,y,z$ in $H$.




          Proof. Indeed, we consider $E=Htimes mathbbC$, equipped with the inner product
          $$
          langle (x,a),(y,b)rangle_E=langle x,yrangle_H+barab
          $$
          Applying the Lemma to the nonzero elements $X=(x,1)$ and $Y=(y,1)$ we see that
          $$
          d(x,y)=leftVert fracXVert XVert^2-fracYVert YVert^2rightVert_E
          $$
          Thus, for $x,y,z$ from $H$, then, (with notation $X=(x,1)$, $Y=(y,1)$ and $Z=(z,1)$,) we have
          $$eqalign
          d(x,z)&=leftVert fracXVert XVert^2-fracZVert ZVert^2rightVert_Ecr
          &leqleftVert fracXVert XVert^2-fracYVert YVert^2rightVert_E
          +leftVert fracYVert YVert^2-fracZVert ZVert^2rightVert_Ecr
          &leq d(x,y)+d(y,z),

          $$
          and the corollary follows.



          Finally, the considered question corresponds to the particular case $H=mathbbC$. because the factor $2$ is superfluous.






          share|cite|improve this answer













          Lemma. Let $(E,langle,rangle)$ be an inner product space. Then, for non-zero vectors $x$ and $y$ we have
          $$
          leftVertfracxVert xVert^2-fracyVert yVert^2rightVert=fracVert x-yVertVert yVert Vert xVert.
          $$




          Proof. Indeed,
          $$eqalign
          left( Vert yVert Vert xVert
          leftVertfracxVert xVert^2-fracyVert yVert^2rightVertright)^2&=
          leftVertfracVert yVertVert xVertx-fracVert xVertVert yVertyrightVert^2cr
          &=Vert yVert^2+Vert xVert^2-2Re(langle x,yrangle)cr
          &=Vert x-yVert^2

          $$




          Corollary. Let $(H,langle,rangle)$ be an inner product space. For $(x,y)in H^2$, define
          $$d(x,y)=fracVert x-yVertsqrt(1+Vert xVert^2)(1+Vert yVert^2).$$
          Then $d(x,z)leq d(x,y)+d(y,z)$ for every $x,y,z$ in $H$.




          Proof. Indeed, we consider $E=Htimes mathbbC$, equipped with the inner product
          $$
          langle (x,a),(y,b)rangle_E=langle x,yrangle_H+barab
          $$
          Applying the Lemma to the nonzero elements $X=(x,1)$ and $Y=(y,1)$ we see that
          $$
          d(x,y)=leftVert fracXVert XVert^2-fracYVert YVert^2rightVert_E
          $$
          Thus, for $x,y,z$ from $H$, then, (with notation $X=(x,1)$, $Y=(y,1)$ and $Z=(z,1)$,) we have
          $$eqalign
          d(x,z)&=leftVert fracXVert XVert^2-fracZVert ZVert^2rightVert_Ecr
          &leqleftVert fracXVert XVert^2-fracYVert YVert^2rightVert_E
          +leftVert fracYVert YVert^2-fracZVert ZVert^2rightVert_Ecr
          &leq d(x,y)+d(y,z),

          $$
          and the corollary follows.



          Finally, the considered question corresponds to the particular case $H=mathbbC$. because the factor $2$ is superfluous.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jun 23 '14 at 17:47









          Omran Kouba

          23.7k13579




          23.7k13579











          • A beautiful approach! Well done
            – Omnomnomnom
            Jun 23 '14 at 18:53
















          • A beautiful approach! Well done
            – Omnomnomnom
            Jun 23 '14 at 18:53















          A beautiful approach! Well done
          – Omnomnomnom
          Jun 23 '14 at 18:53




          A beautiful approach! Well done
          – Omnomnomnom
          Jun 23 '14 at 18:53










          up vote
          -1
          down vote













          We need to prove that:
          $$|u-v|sqrt^2le |u-w|sqrtv+|v-w|sqrtu.$$
          Indeed, by C-S and the triangle inequality we obtain:
          $$left(|u-w|sqrtv+|v-w|sqrturight)^2=$$
          $$=|u-w|^2left(1+|v|^2right)+|v-w|^2left(1+|u|^2right)+2|(u-w)(v-w)|sqrtvgeq$$
          $$geq|u-w|^2left(1+|v|^2right)+|v-w|^2(1+|u|^2)+2|(u-w)(v-w)|left(1+|uv|right)=$$
          $$=left(|u-w|+|w-v|right)^2+left(|(u-w)v|+|(w-v)u|right)^2geq$$
          $$geqleft(|u-w+w-v|right)^2+left(|uv-wv+wu-vu|right)^2=|u-v|^2left(1+|w|^2right).$$






          share|cite|improve this answer




















          • Can someone explain the down voting?
            – Michael Rozenberg
            Sep 12 at 2:37














          up vote
          -1
          down vote













          We need to prove that:
          $$|u-v|sqrt^2le |u-w|sqrtv+|v-w|sqrtu.$$
          Indeed, by C-S and the triangle inequality we obtain:
          $$left(|u-w|sqrtv+|v-w|sqrturight)^2=$$
          $$=|u-w|^2left(1+|v|^2right)+|v-w|^2left(1+|u|^2right)+2|(u-w)(v-w)|sqrtvgeq$$
          $$geq|u-w|^2left(1+|v|^2right)+|v-w|^2(1+|u|^2)+2|(u-w)(v-w)|left(1+|uv|right)=$$
          $$=left(|u-w|+|w-v|right)^2+left(|(u-w)v|+|(w-v)u|right)^2geq$$
          $$geqleft(|u-w+w-v|right)^2+left(|uv-wv+wu-vu|right)^2=|u-v|^2left(1+|w|^2right).$$






          share|cite|improve this answer




















          • Can someone explain the down voting?
            – Michael Rozenberg
            Sep 12 at 2:37












          up vote
          -1
          down vote










          up vote
          -1
          down vote









          We need to prove that:
          $$|u-v|sqrt^2le |u-w|sqrtv+|v-w|sqrtu.$$
          Indeed, by C-S and the triangle inequality we obtain:
          $$left(|u-w|sqrtv+|v-w|sqrturight)^2=$$
          $$=|u-w|^2left(1+|v|^2right)+|v-w|^2left(1+|u|^2right)+2|(u-w)(v-w)|sqrtvgeq$$
          $$geq|u-w|^2left(1+|v|^2right)+|v-w|^2(1+|u|^2)+2|(u-w)(v-w)|left(1+|uv|right)=$$
          $$=left(|u-w|+|w-v|right)^2+left(|(u-w)v|+|(w-v)u|right)^2geq$$
          $$geqleft(|u-w+w-v|right)^2+left(|uv-wv+wu-vu|right)^2=|u-v|^2left(1+|w|^2right).$$






          share|cite|improve this answer












          We need to prove that:
          $$|u-v|sqrt^2le |u-w|sqrtv+|v-w|sqrtu.$$
          Indeed, by C-S and the triangle inequality we obtain:
          $$left(|u-w|sqrtv+|v-w|sqrturight)^2=$$
          $$=|u-w|^2left(1+|v|^2right)+|v-w|^2left(1+|u|^2right)+2|(u-w)(v-w)|sqrtvgeq$$
          $$geq|u-w|^2left(1+|v|^2right)+|v-w|^2(1+|u|^2)+2|(u-w)(v-w)|left(1+|uv|right)=$$
          $$=left(|u-w|+|w-v|right)^2+left(|(u-w)v|+|(w-v)u|right)^2geq$$
          $$geqleft(|u-w+w-v|right)^2+left(|uv-wv+wu-vu|right)^2=|u-v|^2left(1+|w|^2right).$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Sep 10 at 7:02









          Michael Rozenberg

          89.3k1583179




          89.3k1583179











          • Can someone explain the down voting?
            – Michael Rozenberg
            Sep 12 at 2:37
















          • Can someone explain the down voting?
            – Michael Rozenberg
            Sep 12 at 2:37















          Can someone explain the down voting?
          – Michael Rozenberg
          Sep 12 at 2:37




          Can someone explain the down voting?
          – Michael Rozenberg
          Sep 12 at 2:37

















           

          draft saved


          draft discarded















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f844759%2fprove-that-this-is-a-metric%23new-answer', 'question_page');

          );

          Post as a guest













































































          pXpKv69JFqCHLr8HK HYQodc,9k6 xZid Y fyMbJI,q34tRBkxEJ
          2mk,cTclxk2iBa9YK,PbIXTJI kwNXeVJZ3I,c21Xpne5

          這個網誌中的熱門文章

          How to combine Bézier curves to a surface?

          Propositional logic and tautologies

          Distribution of Stopped Wiener Process with Stochastic Volatility