Integral for multiple indicator functions over a space

Multi tool use
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
I have this bunch of integrals I'm trying to solve.
$$int_X^4f_12f_13f_14f_23f_24f_34;dx_1dx_2dx_3dx_4$$
where $f_ij=mathbb1(|x_i-x_j|leq r)|x_i-x_j|^a$ for $i,j=1,2,3,4$, and $XsubsetmathbbR^d$, $ainmathbbR^d$.
I know that solving $int_Xmathbb1(|x-y|leq r)|x-y|^a,dx$ using spherical coordinates gives $$int_B^d(0,r)1(|z|leq r)|z|^a dz=fracdkappa_da+dr^a+d, mbox where $kappa_d$ is the volume of the $d$-dimensional unit ball.$$
I have tried to regroup the first integral thus:
$$int_Xbigg[int_Xf_12f_14dx_1int_Xf_23f_24dx_2int_Xf_13f_34;dx_3bigg]dx_4.$$
Does anyone have a clue to solving
$$int_Xf_12f_14dx_1=int_Xmathbb1(|x_1-x_2|leq r)mathbb1(|x_1-x_4|leq r)|x_1-x_2|^a|x_1-x_4|^adx_1?$$
probability integration
add a comment |Â
up vote
3
down vote
favorite
I have this bunch of integrals I'm trying to solve.
$$int_X^4f_12f_13f_14f_23f_24f_34;dx_1dx_2dx_3dx_4$$
where $f_ij=mathbb1(|x_i-x_j|leq r)|x_i-x_j|^a$ for $i,j=1,2,3,4$, and $XsubsetmathbbR^d$, $ainmathbbR^d$.
I know that solving $int_Xmathbb1(|x-y|leq r)|x-y|^a,dx$ using spherical coordinates gives $$int_B^d(0,r)1(|z|leq r)|z|^a dz=fracdkappa_da+dr^a+d, mbox where $kappa_d$ is the volume of the $d$-dimensional unit ball.$$
I have tried to regroup the first integral thus:
$$int_Xbigg[int_Xf_12f_14dx_1int_Xf_23f_24dx_2int_Xf_13f_34;dx_3bigg]dx_4.$$
Does anyone have a clue to solving
$$int_Xf_12f_14dx_1=int_Xmathbb1(|x_1-x_2|leq r)mathbb1(|x_1-x_4|leq r)|x_1-x_2|^a|x_1-x_4|^adx_1?$$
probability integration
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
I have this bunch of integrals I'm trying to solve.
$$int_X^4f_12f_13f_14f_23f_24f_34;dx_1dx_2dx_3dx_4$$
where $f_ij=mathbb1(|x_i-x_j|leq r)|x_i-x_j|^a$ for $i,j=1,2,3,4$, and $XsubsetmathbbR^d$, $ainmathbbR^d$.
I know that solving $int_Xmathbb1(|x-y|leq r)|x-y|^a,dx$ using spherical coordinates gives $$int_B^d(0,r)1(|z|leq r)|z|^a dz=fracdkappa_da+dr^a+d, mbox where $kappa_d$ is the volume of the $d$-dimensional unit ball.$$
I have tried to regroup the first integral thus:
$$int_Xbigg[int_Xf_12f_14dx_1int_Xf_23f_24dx_2int_Xf_13f_34;dx_3bigg]dx_4.$$
Does anyone have a clue to solving
$$int_Xf_12f_14dx_1=int_Xmathbb1(|x_1-x_2|leq r)mathbb1(|x_1-x_4|leq r)|x_1-x_2|^a|x_1-x_4|^adx_1?$$
probability integration
I have this bunch of integrals I'm trying to solve.
$$int_X^4f_12f_13f_14f_23f_24f_34;dx_1dx_2dx_3dx_4$$
where $f_ij=mathbb1(|x_i-x_j|leq r)|x_i-x_j|^a$ for $i,j=1,2,3,4$, and $XsubsetmathbbR^d$, $ainmathbbR^d$.
I know that solving $int_Xmathbb1(|x-y|leq r)|x-y|^a,dx$ using spherical coordinates gives $$int_B^d(0,r)1(|z|leq r)|z|^a dz=fracdkappa_da+dr^a+d, mbox where $kappa_d$ is the volume of the $d$-dimensional unit ball.$$
I have tried to regroup the first integral thus:
$$int_Xbigg[int_Xf_12f_14dx_1int_Xf_23f_24dx_2int_Xf_13f_34;dx_3bigg]dx_4.$$
Does anyone have a clue to solving
$$int_Xf_12f_14dx_1=int_Xmathbb1(|x_1-x_2|leq r)mathbb1(|x_1-x_4|leq r)|x_1-x_2|^a|x_1-x_4|^adx_1?$$
probability integration
probability integration
edited Sep 11 at 7:50
asked Sep 10 at 11:38
Gracy
163
163
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2911833%2fintegral-for-multiple-indicator-functions-over-a-space%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password