Integral for multiple indicator functions over a space

Multi tool use
Multi tool use

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite
2












I have this bunch of integrals I'm trying to solve.
$$int_X^4f_12f_13f_14f_23f_24f_34;dx_1dx_2dx_3dx_4$$
where $f_ij=mathbb1(|x_i-x_j|leq r)|x_i-x_j|^a$ for $i,j=1,2,3,4$, and $XsubsetmathbbR^d$, $ainmathbbR^d$.



I know that solving $int_Xmathbb1(|x-y|leq r)|x-y|^a,dx$ using spherical coordinates gives $$int_B^d(0,r)1(|z|leq r)|z|^a dz=fracdkappa_da+dr^a+d, mbox where $kappa_d$ is the volume of the $d$-dimensional unit ball.$$
I have tried to regroup the first integral thus:
$$int_Xbigg[int_Xf_12f_14dx_1int_Xf_23f_24dx_2int_Xf_13f_34;dx_3bigg]dx_4.$$
Does anyone have a clue to solving
$$int_Xf_12f_14dx_1=int_Xmathbb1(|x_1-x_2|leq r)mathbb1(|x_1-x_4|leq r)|x_1-x_2|^a|x_1-x_4|^adx_1?$$










share|cite|improve this question



























    up vote
    3
    down vote

    favorite
    2












    I have this bunch of integrals I'm trying to solve.
    $$int_X^4f_12f_13f_14f_23f_24f_34;dx_1dx_2dx_3dx_4$$
    where $f_ij=mathbb1(|x_i-x_j|leq r)|x_i-x_j|^a$ for $i,j=1,2,3,4$, and $XsubsetmathbbR^d$, $ainmathbbR^d$.



    I know that solving $int_Xmathbb1(|x-y|leq r)|x-y|^a,dx$ using spherical coordinates gives $$int_B^d(0,r)1(|z|leq r)|z|^a dz=fracdkappa_da+dr^a+d, mbox where $kappa_d$ is the volume of the $d$-dimensional unit ball.$$
    I have tried to regroup the first integral thus:
    $$int_Xbigg[int_Xf_12f_14dx_1int_Xf_23f_24dx_2int_Xf_13f_34;dx_3bigg]dx_4.$$
    Does anyone have a clue to solving
    $$int_Xf_12f_14dx_1=int_Xmathbb1(|x_1-x_2|leq r)mathbb1(|x_1-x_4|leq r)|x_1-x_2|^a|x_1-x_4|^adx_1?$$










    share|cite|improve this question

























      up vote
      3
      down vote

      favorite
      2









      up vote
      3
      down vote

      favorite
      2






      2





      I have this bunch of integrals I'm trying to solve.
      $$int_X^4f_12f_13f_14f_23f_24f_34;dx_1dx_2dx_3dx_4$$
      where $f_ij=mathbb1(|x_i-x_j|leq r)|x_i-x_j|^a$ for $i,j=1,2,3,4$, and $XsubsetmathbbR^d$, $ainmathbbR^d$.



      I know that solving $int_Xmathbb1(|x-y|leq r)|x-y|^a,dx$ using spherical coordinates gives $$int_B^d(0,r)1(|z|leq r)|z|^a dz=fracdkappa_da+dr^a+d, mbox where $kappa_d$ is the volume of the $d$-dimensional unit ball.$$
      I have tried to regroup the first integral thus:
      $$int_Xbigg[int_Xf_12f_14dx_1int_Xf_23f_24dx_2int_Xf_13f_34;dx_3bigg]dx_4.$$
      Does anyone have a clue to solving
      $$int_Xf_12f_14dx_1=int_Xmathbb1(|x_1-x_2|leq r)mathbb1(|x_1-x_4|leq r)|x_1-x_2|^a|x_1-x_4|^adx_1?$$










      share|cite|improve this question















      I have this bunch of integrals I'm trying to solve.
      $$int_X^4f_12f_13f_14f_23f_24f_34;dx_1dx_2dx_3dx_4$$
      where $f_ij=mathbb1(|x_i-x_j|leq r)|x_i-x_j|^a$ for $i,j=1,2,3,4$, and $XsubsetmathbbR^d$, $ainmathbbR^d$.



      I know that solving $int_Xmathbb1(|x-y|leq r)|x-y|^a,dx$ using spherical coordinates gives $$int_B^d(0,r)1(|z|leq r)|z|^a dz=fracdkappa_da+dr^a+d, mbox where $kappa_d$ is the volume of the $d$-dimensional unit ball.$$
      I have tried to regroup the first integral thus:
      $$int_Xbigg[int_Xf_12f_14dx_1int_Xf_23f_24dx_2int_Xf_13f_34;dx_3bigg]dx_4.$$
      Does anyone have a clue to solving
      $$int_Xf_12f_14dx_1=int_Xmathbb1(|x_1-x_2|leq r)mathbb1(|x_1-x_4|leq r)|x_1-x_2|^a|x_1-x_4|^adx_1?$$







      probability integration






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Sep 11 at 7:50

























      asked Sep 10 at 11:38









      Gracy

      163




      163

























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2911833%2fintegral-for-multiple-indicator-functions-over-a-space%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















           

          draft saved


          draft discarded















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2911833%2fintegral-for-multiple-indicator-functions-over-a-space%23new-answer', 'question_page');

          );

          Post as a guest













































































          BOQbuB,RdgsmmFlA,g W MdN5dg74sCApnfohv8ubx
          RQVLjyJMnDXvMs4,rT4pB6EVFN6 C85HZ

          這個網誌中的熱門文章

          How to combine Bézier curves to a surface?

          Propositional logic and tautologies

          Distribution of Stopped Wiener Process with Stochastic Volatility