Recurrence relation for the polygamma function of negative order?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite
1












I know the recurrence relation for the Polygamma function is



$$psi^(m)(x+1)=psi^(m)(x)+frac(-1)^mm!x^m+1$$



Does such a recurrence formula exist for negative integer $m$?



I am using the integral definition



$$psi^(-n)(x)=frac1(x-2)!int_0^x (x-t)^n-2ln(Gamma(t))dt$$ for $n$ a positive integer, which I assume is equal to the $(n-1)$th integral of $lnGamma(x)$.







share|cite|improve this question


















  • 1




    Well, what definition of "negapolygamma" are you using?
    – J. M. is not a mathematician
    Aug 17 '17 at 22:59










  • Note: my answer has been updated to provide a more explicit recursive relation of the polygamma function on negative orders, using the provided definition.
    – Simply Beautiful Art
    Aug 14 at 1:57















up vote
0
down vote

favorite
1












I know the recurrence relation for the Polygamma function is



$$psi^(m)(x+1)=psi^(m)(x)+frac(-1)^mm!x^m+1$$



Does such a recurrence formula exist for negative integer $m$?



I am using the integral definition



$$psi^(-n)(x)=frac1(x-2)!int_0^x (x-t)^n-2ln(Gamma(t))dt$$ for $n$ a positive integer, which I assume is equal to the $(n-1)$th integral of $lnGamma(x)$.







share|cite|improve this question


















  • 1




    Well, what definition of "negapolygamma" are you using?
    – J. M. is not a mathematician
    Aug 17 '17 at 22:59










  • Note: my answer has been updated to provide a more explicit recursive relation of the polygamma function on negative orders, using the provided definition.
    – Simply Beautiful Art
    Aug 14 at 1:57













up vote
0
down vote

favorite
1









up vote
0
down vote

favorite
1






1





I know the recurrence relation for the Polygamma function is



$$psi^(m)(x+1)=psi^(m)(x)+frac(-1)^mm!x^m+1$$



Does such a recurrence formula exist for negative integer $m$?



I am using the integral definition



$$psi^(-n)(x)=frac1(x-2)!int_0^x (x-t)^n-2ln(Gamma(t))dt$$ for $n$ a positive integer, which I assume is equal to the $(n-1)$th integral of $lnGamma(x)$.







share|cite|improve this question














I know the recurrence relation for the Polygamma function is



$$psi^(m)(x+1)=psi^(m)(x)+frac(-1)^mm!x^m+1$$



Does such a recurrence formula exist for negative integer $m$?



I am using the integral definition



$$psi^(-n)(x)=frac1(x-2)!int_0^x (x-t)^n-2ln(Gamma(t))dt$$ for $n$ a positive integer, which I assume is equal to the $(n-1)$th integral of $lnGamma(x)$.









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 18 '17 at 21:30

























asked Aug 17 '17 at 22:40









tyobrien

1,098412




1,098412







  • 1




    Well, what definition of "negapolygamma" are you using?
    – J. M. is not a mathematician
    Aug 17 '17 at 22:59










  • Note: my answer has been updated to provide a more explicit recursive relation of the polygamma function on negative orders, using the provided definition.
    – Simply Beautiful Art
    Aug 14 at 1:57













  • 1




    Well, what definition of "negapolygamma" are you using?
    – J. M. is not a mathematician
    Aug 17 '17 at 22:59










  • Note: my answer has been updated to provide a more explicit recursive relation of the polygamma function on negative orders, using the provided definition.
    – Simply Beautiful Art
    Aug 14 at 1:57








1




1




Well, what definition of "negapolygamma" are you using?
– J. M. is not a mathematician
Aug 17 '17 at 22:59




Well, what definition of "negapolygamma" are you using?
– J. M. is not a mathematician
Aug 17 '17 at 22:59












Note: my answer has been updated to provide a more explicit recursive relation of the polygamma function on negative orders, using the provided definition.
– Simply Beautiful Art
Aug 14 at 1:57





Note: my answer has been updated to provide a more explicit recursive relation of the polygamma function on negative orders, using the provided definition.
– Simply Beautiful Art
Aug 14 at 1:57











1 Answer
1






active

oldest

votes

















up vote
3
down vote



accepted










Using your definition, we hence have



beginalignpsi^(-n)(x+1)&=psi^(-n)(x)+frac1(n-2)!int_0^x(x-t)^n-2ln(t)~dt+sum_k=0^n-2fracpsi^(k-n)(1)k!x^k\&=psi^(-n)(x)+fracx^n-1[ln(x)-H_n-1](n-1)!+sum_k=0^n-2fracpsi^(k-n)(1)k!x^kendalign



where $H_n=sum_k=^nfrac1k$ is the harmonic number.






share|cite|improve this answer






















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2397454%2frecurrence-relation-for-the-polygamma-function-of-negative-order%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    3
    down vote



    accepted










    Using your definition, we hence have



    beginalignpsi^(-n)(x+1)&=psi^(-n)(x)+frac1(n-2)!int_0^x(x-t)^n-2ln(t)~dt+sum_k=0^n-2fracpsi^(k-n)(1)k!x^k\&=psi^(-n)(x)+fracx^n-1[ln(x)-H_n-1](n-1)!+sum_k=0^n-2fracpsi^(k-n)(1)k!x^kendalign



    where $H_n=sum_k=^nfrac1k$ is the harmonic number.






    share|cite|improve this answer


























      up vote
      3
      down vote



      accepted










      Using your definition, we hence have



      beginalignpsi^(-n)(x+1)&=psi^(-n)(x)+frac1(n-2)!int_0^x(x-t)^n-2ln(t)~dt+sum_k=0^n-2fracpsi^(k-n)(1)k!x^k\&=psi^(-n)(x)+fracx^n-1[ln(x)-H_n-1](n-1)!+sum_k=0^n-2fracpsi^(k-n)(1)k!x^kendalign



      where $H_n=sum_k=^nfrac1k$ is the harmonic number.






      share|cite|improve this answer
























        up vote
        3
        down vote



        accepted







        up vote
        3
        down vote



        accepted






        Using your definition, we hence have



        beginalignpsi^(-n)(x+1)&=psi^(-n)(x)+frac1(n-2)!int_0^x(x-t)^n-2ln(t)~dt+sum_k=0^n-2fracpsi^(k-n)(1)k!x^k\&=psi^(-n)(x)+fracx^n-1[ln(x)-H_n-1](n-1)!+sum_k=0^n-2fracpsi^(k-n)(1)k!x^kendalign



        where $H_n=sum_k=^nfrac1k$ is the harmonic number.






        share|cite|improve this answer














        Using your definition, we hence have



        beginalignpsi^(-n)(x+1)&=psi^(-n)(x)+frac1(n-2)!int_0^x(x-t)^n-2ln(t)~dt+sum_k=0^n-2fracpsi^(k-n)(1)k!x^k\&=psi^(-n)(x)+fracx^n-1[ln(x)-H_n-1](n-1)!+sum_k=0^n-2fracpsi^(k-n)(1)k!x^kendalign



        where $H_n=sum_k=^nfrac1k$ is the harmonic number.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Aug 14 at 1:55

























        answered Aug 17 '17 at 22:54









        Simply Beautiful Art

        49.4k572172




        49.4k572172






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2397454%2frecurrence-relation-for-the-polygamma-function-of-negative-order%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            How to combine Bézier curves to a surface?

            Carbon dioxide

            Why am i infinitely getting the same tweet with the Twitter Search API?