Recurrence relation for the polygamma function of negative order?
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
I know the recurrence relation for the Polygamma function is
$$psi^(m)(x+1)=psi^(m)(x)+frac(-1)^mm!x^m+1$$
Does such a recurrence formula exist for negative integer $m$?
I am using the integral definition
$$psi^(-n)(x)=frac1(x-2)!int_0^x (x-t)^n-2ln(Gamma(t))dt$$ for $n$ a positive integer, which I assume is equal to the $(n-1)$th integral of $lnGamma(x)$.
recurrence-relations special-functions polygamma
add a comment |Â
up vote
0
down vote
favorite
I know the recurrence relation for the Polygamma function is
$$psi^(m)(x+1)=psi^(m)(x)+frac(-1)^mm!x^m+1$$
Does such a recurrence formula exist for negative integer $m$?
I am using the integral definition
$$psi^(-n)(x)=frac1(x-2)!int_0^x (x-t)^n-2ln(Gamma(t))dt$$ for $n$ a positive integer, which I assume is equal to the $(n-1)$th integral of $lnGamma(x)$.
recurrence-relations special-functions polygamma
1
Well, what definition of "negapolygamma" are you using?
â J. M. is not a mathematician
Aug 17 '17 at 22:59
Note: my answer has been updated to provide a more explicit recursive relation of the polygamma function on negative orders, using the provided definition.
â Simply Beautiful Art
Aug 14 at 1:57
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I know the recurrence relation for the Polygamma function is
$$psi^(m)(x+1)=psi^(m)(x)+frac(-1)^mm!x^m+1$$
Does such a recurrence formula exist for negative integer $m$?
I am using the integral definition
$$psi^(-n)(x)=frac1(x-2)!int_0^x (x-t)^n-2ln(Gamma(t))dt$$ for $n$ a positive integer, which I assume is equal to the $(n-1)$th integral of $lnGamma(x)$.
recurrence-relations special-functions polygamma
I know the recurrence relation for the Polygamma function is
$$psi^(m)(x+1)=psi^(m)(x)+frac(-1)^mm!x^m+1$$
Does such a recurrence formula exist for negative integer $m$?
I am using the integral definition
$$psi^(-n)(x)=frac1(x-2)!int_0^x (x-t)^n-2ln(Gamma(t))dt$$ for $n$ a positive integer, which I assume is equal to the $(n-1)$th integral of $lnGamma(x)$.
recurrence-relations special-functions polygamma
edited Aug 18 '17 at 21:30
asked Aug 17 '17 at 22:40
tyobrien
1,098412
1,098412
1
Well, what definition of "negapolygamma" are you using?
â J. M. is not a mathematician
Aug 17 '17 at 22:59
Note: my answer has been updated to provide a more explicit recursive relation of the polygamma function on negative orders, using the provided definition.
â Simply Beautiful Art
Aug 14 at 1:57
add a comment |Â
1
Well, what definition of "negapolygamma" are you using?
â J. M. is not a mathematician
Aug 17 '17 at 22:59
Note: my answer has been updated to provide a more explicit recursive relation of the polygamma function on negative orders, using the provided definition.
â Simply Beautiful Art
Aug 14 at 1:57
1
1
Well, what definition of "negapolygamma" are you using?
â J. M. is not a mathematician
Aug 17 '17 at 22:59
Well, what definition of "negapolygamma" are you using?
â J. M. is not a mathematician
Aug 17 '17 at 22:59
Note: my answer has been updated to provide a more explicit recursive relation of the polygamma function on negative orders, using the provided definition.
â Simply Beautiful Art
Aug 14 at 1:57
Note: my answer has been updated to provide a more explicit recursive relation of the polygamma function on negative orders, using the provided definition.
â Simply Beautiful Art
Aug 14 at 1:57
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
3
down vote
accepted
Using your definition, we hence have
beginalignpsi^(-n)(x+1)&=psi^(-n)(x)+frac1(n-2)!int_0^x(x-t)^n-2ln(t)~dt+sum_k=0^n-2fracpsi^(k-n)(1)k!x^k\&=psi^(-n)(x)+fracx^n-1[ln(x)-H_n-1](n-1)!+sum_k=0^n-2fracpsi^(k-n)(1)k!x^kendalign
where $H_n=sum_k=^nfrac1k$ is the harmonic number.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
Using your definition, we hence have
beginalignpsi^(-n)(x+1)&=psi^(-n)(x)+frac1(n-2)!int_0^x(x-t)^n-2ln(t)~dt+sum_k=0^n-2fracpsi^(k-n)(1)k!x^k\&=psi^(-n)(x)+fracx^n-1[ln(x)-H_n-1](n-1)!+sum_k=0^n-2fracpsi^(k-n)(1)k!x^kendalign
where $H_n=sum_k=^nfrac1k$ is the harmonic number.
add a comment |Â
up vote
3
down vote
accepted
Using your definition, we hence have
beginalignpsi^(-n)(x+1)&=psi^(-n)(x)+frac1(n-2)!int_0^x(x-t)^n-2ln(t)~dt+sum_k=0^n-2fracpsi^(k-n)(1)k!x^k\&=psi^(-n)(x)+fracx^n-1[ln(x)-H_n-1](n-1)!+sum_k=0^n-2fracpsi^(k-n)(1)k!x^kendalign
where $H_n=sum_k=^nfrac1k$ is the harmonic number.
add a comment |Â
up vote
3
down vote
accepted
up vote
3
down vote
accepted
Using your definition, we hence have
beginalignpsi^(-n)(x+1)&=psi^(-n)(x)+frac1(n-2)!int_0^x(x-t)^n-2ln(t)~dt+sum_k=0^n-2fracpsi^(k-n)(1)k!x^k\&=psi^(-n)(x)+fracx^n-1[ln(x)-H_n-1](n-1)!+sum_k=0^n-2fracpsi^(k-n)(1)k!x^kendalign
where $H_n=sum_k=^nfrac1k$ is the harmonic number.
Using your definition, we hence have
beginalignpsi^(-n)(x+1)&=psi^(-n)(x)+frac1(n-2)!int_0^x(x-t)^n-2ln(t)~dt+sum_k=0^n-2fracpsi^(k-n)(1)k!x^k\&=psi^(-n)(x)+fracx^n-1[ln(x)-H_n-1](n-1)!+sum_k=0^n-2fracpsi^(k-n)(1)k!x^kendalign
where $H_n=sum_k=^nfrac1k$ is the harmonic number.
edited Aug 14 at 1:55
answered Aug 17 '17 at 22:54
Simply Beautiful Art
49.4k572172
49.4k572172
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2397454%2frecurrence-relation-for-the-polygamma-function-of-negative-order%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
Well, what definition of "negapolygamma" are you using?
â J. M. is not a mathematician
Aug 17 '17 at 22:59
Note: my answer has been updated to provide a more explicit recursive relation of the polygamma function on negative orders, using the provided definition.
â Simply Beautiful Art
Aug 14 at 1:57