General formula for $arctan$
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
The question is to express
$$
arctan a_1+ arctan a_2 + dots + arctan a_n
$$
as $arctan(cdot)$ I tried using the formula for the corresponding $tan$ series but couldn't generalise to all cases.The principal branch is taken as $(-pi/2,pi/2)$.
Any ideas?
algebra-precalculus trigonometry
add a comment |Â
up vote
2
down vote
favorite
The question is to express
$$
arctan a_1+ arctan a_2 + dots + arctan a_n
$$
as $arctan(cdot)$ I tried using the formula for the corresponding $tan$ series but couldn't generalise to all cases.The principal branch is taken as $(-pi/2,pi/2)$.
Any ideas?
algebra-precalculus trigonometry
You want to generalize math.stackexchange.com/questions/1837410/â¦
â lab bhattacharjee
Dec 23 '17 at 15:21
Have you looked at Wikipedia on tangents of sums?
â Ross Millikan
Dec 23 '17 at 15:23
@labbhattacharjee yes
â user471651
Dec 23 '17 at 15:23
@RossMillikan thanks for the reference
â user471651
Dec 23 '17 at 15:55
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
The question is to express
$$
arctan a_1+ arctan a_2 + dots + arctan a_n
$$
as $arctan(cdot)$ I tried using the formula for the corresponding $tan$ series but couldn't generalise to all cases.The principal branch is taken as $(-pi/2,pi/2)$.
Any ideas?
algebra-precalculus trigonometry
The question is to express
$$
arctan a_1+ arctan a_2 + dots + arctan a_n
$$
as $arctan(cdot)$ I tried using the formula for the corresponding $tan$ series but couldn't generalise to all cases.The principal branch is taken as $(-pi/2,pi/2)$.
Any ideas?
algebra-precalculus trigonometry
edited Aug 14 at 6:47
TheSimpliFire
10.1k61953
10.1k61953
asked Dec 23 '17 at 15:14
user471651
547215
547215
You want to generalize math.stackexchange.com/questions/1837410/â¦
â lab bhattacharjee
Dec 23 '17 at 15:21
Have you looked at Wikipedia on tangents of sums?
â Ross Millikan
Dec 23 '17 at 15:23
@labbhattacharjee yes
â user471651
Dec 23 '17 at 15:23
@RossMillikan thanks for the reference
â user471651
Dec 23 '17 at 15:55
add a comment |Â
You want to generalize math.stackexchange.com/questions/1837410/â¦
â lab bhattacharjee
Dec 23 '17 at 15:21
Have you looked at Wikipedia on tangents of sums?
â Ross Millikan
Dec 23 '17 at 15:23
@labbhattacharjee yes
â user471651
Dec 23 '17 at 15:23
@RossMillikan thanks for the reference
â user471651
Dec 23 '17 at 15:55
You want to generalize math.stackexchange.com/questions/1837410/â¦
â lab bhattacharjee
Dec 23 '17 at 15:21
You want to generalize math.stackexchange.com/questions/1837410/â¦
â lab bhattacharjee
Dec 23 '17 at 15:21
Have you looked at Wikipedia on tangents of sums?
â Ross Millikan
Dec 23 '17 at 15:23
Have you looked at Wikipedia on tangents of sums?
â Ross Millikan
Dec 23 '17 at 15:23
@labbhattacharjee yes
â user471651
Dec 23 '17 at 15:23
@labbhattacharjee yes
â user471651
Dec 23 '17 at 15:23
@RossMillikan thanks for the reference
â user471651
Dec 23 '17 at 15:55
@RossMillikan thanks for the reference
â user471651
Dec 23 '17 at 15:55
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
2
down vote
accepted
Hint: Let $z_n=1+ia_n$ then $arctan a_n=arg z_n$ and
$$arctan a_1+ arctan a_2 + dots + arctan a_n=arg(prod_k=1^n z_k)=arctan dfracbf Im wbf Re w$$
where $displaystyle w=prod_k=1^n z_k$.
The final result should be $arctandfracIm aRe a$.
â Yves Daoust
Aug 14 at 7:37
Yes, a good point! thanks.
â Nosrati
Aug 14 at 7:39
add a comment |Â
up vote
4
down vote
Use the addition formula $$arctan a_1 + arctan a_2=arctanleft(fraca_1+a_21-a_1a_2right)quad (textmod,pi)$$ In general, working in modulo $pi$:
If $n=2k, kinmathbbN$: $$sum_n=1^2karctan a_n=arctanleft(sum_j=1^kleft[(-1)^j-1left(sum_textcycprod_i=1^2j-1a_iright)right]over1-sum_j=1^kleft[(-1)^j-1left(sum_textcycprod_i=1^2ja_iright)right]right)$$
If $n=2k+1, kinmathbbN$: $$sum_n=1^2k+1arctan a_n=arctanleft(fracsum_j=0^kleft[(-1)^jleft(sum_textcycprod_i=1^2j+1a_iright)right]1-sum_j=1^kleft[(-1)^jleft(sum_textcycprod_i=1^2ja_iright)right]right)$$
$arctansqrt3+arctansqrt3=2pi/3$; on the other hand $arctanbigl((sqrt3+sqrt3)/(1-sqrt3sqrt3)bigr)=-arctansqrt3=-pi/3$.
â egreg
Dec 23 '17 at 16:39
@egreg Please see edit
â TheSimpliFire
Dec 23 '17 at 16:50
add a comment |Â
up vote
1
down vote
Hint:
From the addition formula,
$$tan(arctan a+arctan b+arctan c)=fracdfraca+b1-ab+c1-dfraca+b1-abc
=dfraca+b+c-abc1-ab-bc-ca$$
and
$$tan(arctan a+arctan b+arctan c+arctan d)
\=fracdfraca+b+c-abc1-ab-bc-ca+d1-dfraca+b+c-abc1-ab-bc-cad
\=dfraca+b+c+d-abc-bcd-cda-dab1-ab-bc-cd-da-ac-bd-ca+abcd.$$
A regular pattern seems to emerge. We can write a recurrent form
$$tanleft(arctanfracp_n-1q_n-1+arctan a_nright)=fracdfracp_n-1q_n-1+a_n1-dfracp_n-1q_n-1a_n=fracp_n-1+q_n-1a_nq_n-1-p_n-1a_n$$
and
$$begincasesp_n=p_n-1+q_n-1a_n,\q_n=q_n-1-p_n-1a_n.endcases$$
From an operational point of view, this is equivalent to Nosrati's formula, where the product will be computed incrementally. The fully expanded formulas are complicated and computationally inefficient.
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
Hint: Let $z_n=1+ia_n$ then $arctan a_n=arg z_n$ and
$$arctan a_1+ arctan a_2 + dots + arctan a_n=arg(prod_k=1^n z_k)=arctan dfracbf Im wbf Re w$$
where $displaystyle w=prod_k=1^n z_k$.
The final result should be $arctandfracIm aRe a$.
â Yves Daoust
Aug 14 at 7:37
Yes, a good point! thanks.
â Nosrati
Aug 14 at 7:39
add a comment |Â
up vote
2
down vote
accepted
Hint: Let $z_n=1+ia_n$ then $arctan a_n=arg z_n$ and
$$arctan a_1+ arctan a_2 + dots + arctan a_n=arg(prod_k=1^n z_k)=arctan dfracbf Im wbf Re w$$
where $displaystyle w=prod_k=1^n z_k$.
The final result should be $arctandfracIm aRe a$.
â Yves Daoust
Aug 14 at 7:37
Yes, a good point! thanks.
â Nosrati
Aug 14 at 7:39
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
Hint: Let $z_n=1+ia_n$ then $arctan a_n=arg z_n$ and
$$arctan a_1+ arctan a_2 + dots + arctan a_n=arg(prod_k=1^n z_k)=arctan dfracbf Im wbf Re w$$
where $displaystyle w=prod_k=1^n z_k$.
Hint: Let $z_n=1+ia_n$ then $arctan a_n=arg z_n$ and
$$arctan a_1+ arctan a_2 + dots + arctan a_n=arg(prod_k=1^n z_k)=arctan dfracbf Im wbf Re w$$
where $displaystyle w=prod_k=1^n z_k$.
edited Aug 14 at 7:42
answered Aug 14 at 7:32
Nosrati
20.4k41644
20.4k41644
The final result should be $arctandfracIm aRe a$.
â Yves Daoust
Aug 14 at 7:37
Yes, a good point! thanks.
â Nosrati
Aug 14 at 7:39
add a comment |Â
The final result should be $arctandfracIm aRe a$.
â Yves Daoust
Aug 14 at 7:37
Yes, a good point! thanks.
â Nosrati
Aug 14 at 7:39
The final result should be $arctandfracIm aRe a$.
â Yves Daoust
Aug 14 at 7:37
The final result should be $arctandfracIm aRe a$.
â Yves Daoust
Aug 14 at 7:37
Yes, a good point! thanks.
â Nosrati
Aug 14 at 7:39
Yes, a good point! thanks.
â Nosrati
Aug 14 at 7:39
add a comment |Â
up vote
4
down vote
Use the addition formula $$arctan a_1 + arctan a_2=arctanleft(fraca_1+a_21-a_1a_2right)quad (textmod,pi)$$ In general, working in modulo $pi$:
If $n=2k, kinmathbbN$: $$sum_n=1^2karctan a_n=arctanleft(sum_j=1^kleft[(-1)^j-1left(sum_textcycprod_i=1^2j-1a_iright)right]over1-sum_j=1^kleft[(-1)^j-1left(sum_textcycprod_i=1^2ja_iright)right]right)$$
If $n=2k+1, kinmathbbN$: $$sum_n=1^2k+1arctan a_n=arctanleft(fracsum_j=0^kleft[(-1)^jleft(sum_textcycprod_i=1^2j+1a_iright)right]1-sum_j=1^kleft[(-1)^jleft(sum_textcycprod_i=1^2ja_iright)right]right)$$
$arctansqrt3+arctansqrt3=2pi/3$; on the other hand $arctanbigl((sqrt3+sqrt3)/(1-sqrt3sqrt3)bigr)=-arctansqrt3=-pi/3$.
â egreg
Dec 23 '17 at 16:39
@egreg Please see edit
â TheSimpliFire
Dec 23 '17 at 16:50
add a comment |Â
up vote
4
down vote
Use the addition formula $$arctan a_1 + arctan a_2=arctanleft(fraca_1+a_21-a_1a_2right)quad (textmod,pi)$$ In general, working in modulo $pi$:
If $n=2k, kinmathbbN$: $$sum_n=1^2karctan a_n=arctanleft(sum_j=1^kleft[(-1)^j-1left(sum_textcycprod_i=1^2j-1a_iright)right]over1-sum_j=1^kleft[(-1)^j-1left(sum_textcycprod_i=1^2ja_iright)right]right)$$
If $n=2k+1, kinmathbbN$: $$sum_n=1^2k+1arctan a_n=arctanleft(fracsum_j=0^kleft[(-1)^jleft(sum_textcycprod_i=1^2j+1a_iright)right]1-sum_j=1^kleft[(-1)^jleft(sum_textcycprod_i=1^2ja_iright)right]right)$$
$arctansqrt3+arctansqrt3=2pi/3$; on the other hand $arctanbigl((sqrt3+sqrt3)/(1-sqrt3sqrt3)bigr)=-arctansqrt3=-pi/3$.
â egreg
Dec 23 '17 at 16:39
@egreg Please see edit
â TheSimpliFire
Dec 23 '17 at 16:50
add a comment |Â
up vote
4
down vote
up vote
4
down vote
Use the addition formula $$arctan a_1 + arctan a_2=arctanleft(fraca_1+a_21-a_1a_2right)quad (textmod,pi)$$ In general, working in modulo $pi$:
If $n=2k, kinmathbbN$: $$sum_n=1^2karctan a_n=arctanleft(sum_j=1^kleft[(-1)^j-1left(sum_textcycprod_i=1^2j-1a_iright)right]over1-sum_j=1^kleft[(-1)^j-1left(sum_textcycprod_i=1^2ja_iright)right]right)$$
If $n=2k+1, kinmathbbN$: $$sum_n=1^2k+1arctan a_n=arctanleft(fracsum_j=0^kleft[(-1)^jleft(sum_textcycprod_i=1^2j+1a_iright)right]1-sum_j=1^kleft[(-1)^jleft(sum_textcycprod_i=1^2ja_iright)right]right)$$
Use the addition formula $$arctan a_1 + arctan a_2=arctanleft(fraca_1+a_21-a_1a_2right)quad (textmod,pi)$$ In general, working in modulo $pi$:
If $n=2k, kinmathbbN$: $$sum_n=1^2karctan a_n=arctanleft(sum_j=1^kleft[(-1)^j-1left(sum_textcycprod_i=1^2j-1a_iright)right]over1-sum_j=1^kleft[(-1)^j-1left(sum_textcycprod_i=1^2ja_iright)right]right)$$
If $n=2k+1, kinmathbbN$: $$sum_n=1^2k+1arctan a_n=arctanleft(fracsum_j=0^kleft[(-1)^jleft(sum_textcycprod_i=1^2j+1a_iright)right]1-sum_j=1^kleft[(-1)^jleft(sum_textcycprod_i=1^2ja_iright)right]right)$$
edited Aug 14 at 6:45
answered Dec 23 '17 at 16:15
TheSimpliFire
10.1k61953
10.1k61953
$arctansqrt3+arctansqrt3=2pi/3$; on the other hand $arctanbigl((sqrt3+sqrt3)/(1-sqrt3sqrt3)bigr)=-arctansqrt3=-pi/3$.
â egreg
Dec 23 '17 at 16:39
@egreg Please see edit
â TheSimpliFire
Dec 23 '17 at 16:50
add a comment |Â
$arctansqrt3+arctansqrt3=2pi/3$; on the other hand $arctanbigl((sqrt3+sqrt3)/(1-sqrt3sqrt3)bigr)=-arctansqrt3=-pi/3$.
â egreg
Dec 23 '17 at 16:39
@egreg Please see edit
â TheSimpliFire
Dec 23 '17 at 16:50
$arctansqrt3+arctansqrt3=2pi/3$; on the other hand $arctanbigl((sqrt3+sqrt3)/(1-sqrt3sqrt3)bigr)=-arctansqrt3=-pi/3$.
â egreg
Dec 23 '17 at 16:39
$arctansqrt3+arctansqrt3=2pi/3$; on the other hand $arctanbigl((sqrt3+sqrt3)/(1-sqrt3sqrt3)bigr)=-arctansqrt3=-pi/3$.
â egreg
Dec 23 '17 at 16:39
@egreg Please see edit
â TheSimpliFire
Dec 23 '17 at 16:50
@egreg Please see edit
â TheSimpliFire
Dec 23 '17 at 16:50
add a comment |Â
up vote
1
down vote
Hint:
From the addition formula,
$$tan(arctan a+arctan b+arctan c)=fracdfraca+b1-ab+c1-dfraca+b1-abc
=dfraca+b+c-abc1-ab-bc-ca$$
and
$$tan(arctan a+arctan b+arctan c+arctan d)
\=fracdfraca+b+c-abc1-ab-bc-ca+d1-dfraca+b+c-abc1-ab-bc-cad
\=dfraca+b+c+d-abc-bcd-cda-dab1-ab-bc-cd-da-ac-bd-ca+abcd.$$
A regular pattern seems to emerge. We can write a recurrent form
$$tanleft(arctanfracp_n-1q_n-1+arctan a_nright)=fracdfracp_n-1q_n-1+a_n1-dfracp_n-1q_n-1a_n=fracp_n-1+q_n-1a_nq_n-1-p_n-1a_n$$
and
$$begincasesp_n=p_n-1+q_n-1a_n,\q_n=q_n-1-p_n-1a_n.endcases$$
From an operational point of view, this is equivalent to Nosrati's formula, where the product will be computed incrementally. The fully expanded formulas are complicated and computationally inefficient.
add a comment |Â
up vote
1
down vote
Hint:
From the addition formula,
$$tan(arctan a+arctan b+arctan c)=fracdfraca+b1-ab+c1-dfraca+b1-abc
=dfraca+b+c-abc1-ab-bc-ca$$
and
$$tan(arctan a+arctan b+arctan c+arctan d)
\=fracdfraca+b+c-abc1-ab-bc-ca+d1-dfraca+b+c-abc1-ab-bc-cad
\=dfraca+b+c+d-abc-bcd-cda-dab1-ab-bc-cd-da-ac-bd-ca+abcd.$$
A regular pattern seems to emerge. We can write a recurrent form
$$tanleft(arctanfracp_n-1q_n-1+arctan a_nright)=fracdfracp_n-1q_n-1+a_n1-dfracp_n-1q_n-1a_n=fracp_n-1+q_n-1a_nq_n-1-p_n-1a_n$$
and
$$begincasesp_n=p_n-1+q_n-1a_n,\q_n=q_n-1-p_n-1a_n.endcases$$
From an operational point of view, this is equivalent to Nosrati's formula, where the product will be computed incrementally. The fully expanded formulas are complicated and computationally inefficient.
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Hint:
From the addition formula,
$$tan(arctan a+arctan b+arctan c)=fracdfraca+b1-ab+c1-dfraca+b1-abc
=dfraca+b+c-abc1-ab-bc-ca$$
and
$$tan(arctan a+arctan b+arctan c+arctan d)
\=fracdfraca+b+c-abc1-ab-bc-ca+d1-dfraca+b+c-abc1-ab-bc-cad
\=dfraca+b+c+d-abc-bcd-cda-dab1-ab-bc-cd-da-ac-bd-ca+abcd.$$
A regular pattern seems to emerge. We can write a recurrent form
$$tanleft(arctanfracp_n-1q_n-1+arctan a_nright)=fracdfracp_n-1q_n-1+a_n1-dfracp_n-1q_n-1a_n=fracp_n-1+q_n-1a_nq_n-1-p_n-1a_n$$
and
$$begincasesp_n=p_n-1+q_n-1a_n,\q_n=q_n-1-p_n-1a_n.endcases$$
From an operational point of view, this is equivalent to Nosrati's formula, where the product will be computed incrementally. The fully expanded formulas are complicated and computationally inefficient.
Hint:
From the addition formula,
$$tan(arctan a+arctan b+arctan c)=fracdfraca+b1-ab+c1-dfraca+b1-abc
=dfraca+b+c-abc1-ab-bc-ca$$
and
$$tan(arctan a+arctan b+arctan c+arctan d)
\=fracdfraca+b+c-abc1-ab-bc-ca+d1-dfraca+b+c-abc1-ab-bc-cad
\=dfraca+b+c+d-abc-bcd-cda-dab1-ab-bc-cd-da-ac-bd-ca+abcd.$$
A regular pattern seems to emerge. We can write a recurrent form
$$tanleft(arctanfracp_n-1q_n-1+arctan a_nright)=fracdfracp_n-1q_n-1+a_n1-dfracp_n-1q_n-1a_n=fracp_n-1+q_n-1a_nq_n-1-p_n-1a_n$$
and
$$begincasesp_n=p_n-1+q_n-1a_n,\q_n=q_n-1-p_n-1a_n.endcases$$
From an operational point of view, this is equivalent to Nosrati's formula, where the product will be computed incrementally. The fully expanded formulas are complicated and computationally inefficient.
edited Aug 14 at 7:42
answered Aug 14 at 6:59
Yves Daoust
112k665205
112k665205
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2577850%2fgeneral-formula-for-arctan%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
You want to generalize math.stackexchange.com/questions/1837410/â¦
â lab bhattacharjee
Dec 23 '17 at 15:21
Have you looked at Wikipedia on tangents of sums?
â Ross Millikan
Dec 23 '17 at 15:23
@labbhattacharjee yes
â user471651
Dec 23 '17 at 15:23
@RossMillikan thanks for the reference
â user471651
Dec 23 '17 at 15:55