General formula for $arctan$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite
3












The question is to express
$$
arctan a_1+ arctan a_2 + dots + arctan a_n
$$
as $arctan(cdot)$ I tried using the formula for the corresponding $tan$ series but couldn't generalise to all cases.The principal branch is taken as $(-pi/2,pi/2)$.



Any ideas?







share|cite|improve this question






















  • You want to generalize math.stackexchange.com/questions/1837410/…
    – lab bhattacharjee
    Dec 23 '17 at 15:21










  • Have you looked at Wikipedia on tangents of sums?
    – Ross Millikan
    Dec 23 '17 at 15:23










  • @labbhattacharjee yes
    – user471651
    Dec 23 '17 at 15:23










  • @RossMillikan thanks for the reference
    – user471651
    Dec 23 '17 at 15:55














up vote
2
down vote

favorite
3












The question is to express
$$
arctan a_1+ arctan a_2 + dots + arctan a_n
$$
as $arctan(cdot)$ I tried using the formula for the corresponding $tan$ series but couldn't generalise to all cases.The principal branch is taken as $(-pi/2,pi/2)$.



Any ideas?







share|cite|improve this question






















  • You want to generalize math.stackexchange.com/questions/1837410/…
    – lab bhattacharjee
    Dec 23 '17 at 15:21










  • Have you looked at Wikipedia on tangents of sums?
    – Ross Millikan
    Dec 23 '17 at 15:23










  • @labbhattacharjee yes
    – user471651
    Dec 23 '17 at 15:23










  • @RossMillikan thanks for the reference
    – user471651
    Dec 23 '17 at 15:55












up vote
2
down vote

favorite
3









up vote
2
down vote

favorite
3






3





The question is to express
$$
arctan a_1+ arctan a_2 + dots + arctan a_n
$$
as $arctan(cdot)$ I tried using the formula for the corresponding $tan$ series but couldn't generalise to all cases.The principal branch is taken as $(-pi/2,pi/2)$.



Any ideas?







share|cite|improve this question














The question is to express
$$
arctan a_1+ arctan a_2 + dots + arctan a_n
$$
as $arctan(cdot)$ I tried using the formula for the corresponding $tan$ series but couldn't generalise to all cases.The principal branch is taken as $(-pi/2,pi/2)$.



Any ideas?









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 14 at 6:47









TheSimpliFire

10.1k61953




10.1k61953










asked Dec 23 '17 at 15:14









user471651

547215




547215











  • You want to generalize math.stackexchange.com/questions/1837410/…
    – lab bhattacharjee
    Dec 23 '17 at 15:21










  • Have you looked at Wikipedia on tangents of sums?
    – Ross Millikan
    Dec 23 '17 at 15:23










  • @labbhattacharjee yes
    – user471651
    Dec 23 '17 at 15:23










  • @RossMillikan thanks for the reference
    – user471651
    Dec 23 '17 at 15:55
















  • You want to generalize math.stackexchange.com/questions/1837410/…
    – lab bhattacharjee
    Dec 23 '17 at 15:21










  • Have you looked at Wikipedia on tangents of sums?
    – Ross Millikan
    Dec 23 '17 at 15:23










  • @labbhattacharjee yes
    – user471651
    Dec 23 '17 at 15:23










  • @RossMillikan thanks for the reference
    – user471651
    Dec 23 '17 at 15:55















You want to generalize math.stackexchange.com/questions/1837410/…
– lab bhattacharjee
Dec 23 '17 at 15:21




You want to generalize math.stackexchange.com/questions/1837410/…
– lab bhattacharjee
Dec 23 '17 at 15:21












Have you looked at Wikipedia on tangents of sums?
– Ross Millikan
Dec 23 '17 at 15:23




Have you looked at Wikipedia on tangents of sums?
– Ross Millikan
Dec 23 '17 at 15:23












@labbhattacharjee yes
– user471651
Dec 23 '17 at 15:23




@labbhattacharjee yes
– user471651
Dec 23 '17 at 15:23












@RossMillikan thanks for the reference
– user471651
Dec 23 '17 at 15:55




@RossMillikan thanks for the reference
– user471651
Dec 23 '17 at 15:55










3 Answers
3






active

oldest

votes

















up vote
2
down vote



accepted










Hint: Let $z_n=1+ia_n$ then $arctan a_n=arg z_n$ and
$$arctan a_1+ arctan a_2 + dots + arctan a_n=arg(prod_k=1^n z_k)=arctan dfracbf Im wbf Re w$$
where $displaystyle w=prod_k=1^n z_k$.






share|cite|improve this answer






















  • The final result should be $arctandfracIm aRe a$.
    – Yves Daoust
    Aug 14 at 7:37











  • Yes, a good point! thanks.
    – Nosrati
    Aug 14 at 7:39


















up vote
4
down vote













Use the addition formula $$arctan a_1 + arctan a_2=arctanleft(fraca_1+a_21-a_1a_2right)quad (textmod,pi)$$ In general, working in modulo $pi$:



If $n=2k, kinmathbbN$: $$sum_n=1^2karctan a_n=arctanleft(sum_j=1^kleft[(-1)^j-1left(sum_textcycprod_i=1^2j-1a_iright)right]over1-sum_j=1^kleft[(-1)^j-1left(sum_textcycprod_i=1^2ja_iright)right]right)$$



If $n=2k+1, kinmathbbN$: $$sum_n=1^2k+1arctan a_n=arctanleft(fracsum_j=0^kleft[(-1)^jleft(sum_textcycprod_i=1^2j+1a_iright)right]1-sum_j=1^kleft[(-1)^jleft(sum_textcycprod_i=1^2ja_iright)right]right)$$






share|cite|improve this answer






















  • $arctansqrt3+arctansqrt3=2pi/3$; on the other hand $arctanbigl((sqrt3+sqrt3)/(1-sqrt3sqrt3)bigr)=-arctansqrt3=-pi/3$.
    – egreg
    Dec 23 '17 at 16:39











  • @egreg Please see edit
    – TheSimpliFire
    Dec 23 '17 at 16:50

















up vote
1
down vote













Hint:



From the addition formula,



$$tan(arctan a+arctan b+arctan c)=fracdfraca+b1-ab+c1-dfraca+b1-abc
=dfraca+b+c-abc1-ab-bc-ca$$



and



$$tan(arctan a+arctan b+arctan c+arctan d)
\=fracdfraca+b+c-abc1-ab-bc-ca+d1-dfraca+b+c-abc1-ab-bc-cad
\=dfraca+b+c+d-abc-bcd-cda-dab1-ab-bc-cd-da-ac-bd-ca+abcd.$$



A regular pattern seems to emerge. We can write a recurrent form



$$tanleft(arctanfracp_n-1q_n-1+arctan a_nright)=fracdfracp_n-1q_n-1+a_n1-dfracp_n-1q_n-1a_n=fracp_n-1+q_n-1a_nq_n-1-p_n-1a_n$$



and



$$begincasesp_n=p_n-1+q_n-1a_n,\q_n=q_n-1-p_n-1a_n.endcases$$



From an operational point of view, this is equivalent to Nosrati's formula, where the product will be computed incrementally. The fully expanded formulas are complicated and computationally inefficient.






share|cite|improve this answer






















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2577850%2fgeneral-formula-for-arctan%23new-answer', 'question_page');

    );

    Post as a guest






























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    2
    down vote



    accepted










    Hint: Let $z_n=1+ia_n$ then $arctan a_n=arg z_n$ and
    $$arctan a_1+ arctan a_2 + dots + arctan a_n=arg(prod_k=1^n z_k)=arctan dfracbf Im wbf Re w$$
    where $displaystyle w=prod_k=1^n z_k$.






    share|cite|improve this answer






















    • The final result should be $arctandfracIm aRe a$.
      – Yves Daoust
      Aug 14 at 7:37











    • Yes, a good point! thanks.
      – Nosrati
      Aug 14 at 7:39















    up vote
    2
    down vote



    accepted










    Hint: Let $z_n=1+ia_n$ then $arctan a_n=arg z_n$ and
    $$arctan a_1+ arctan a_2 + dots + arctan a_n=arg(prod_k=1^n z_k)=arctan dfracbf Im wbf Re w$$
    where $displaystyle w=prod_k=1^n z_k$.






    share|cite|improve this answer






















    • The final result should be $arctandfracIm aRe a$.
      – Yves Daoust
      Aug 14 at 7:37











    • Yes, a good point! thanks.
      – Nosrati
      Aug 14 at 7:39













    up vote
    2
    down vote



    accepted







    up vote
    2
    down vote



    accepted






    Hint: Let $z_n=1+ia_n$ then $arctan a_n=arg z_n$ and
    $$arctan a_1+ arctan a_2 + dots + arctan a_n=arg(prod_k=1^n z_k)=arctan dfracbf Im wbf Re w$$
    where $displaystyle w=prod_k=1^n z_k$.






    share|cite|improve this answer














    Hint: Let $z_n=1+ia_n$ then $arctan a_n=arg z_n$ and
    $$arctan a_1+ arctan a_2 + dots + arctan a_n=arg(prod_k=1^n z_k)=arctan dfracbf Im wbf Re w$$
    where $displaystyle w=prod_k=1^n z_k$.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Aug 14 at 7:42

























    answered Aug 14 at 7:32









    Nosrati

    20.4k41644




    20.4k41644











    • The final result should be $arctandfracIm aRe a$.
      – Yves Daoust
      Aug 14 at 7:37











    • Yes, a good point! thanks.
      – Nosrati
      Aug 14 at 7:39

















    • The final result should be $arctandfracIm aRe a$.
      – Yves Daoust
      Aug 14 at 7:37











    • Yes, a good point! thanks.
      – Nosrati
      Aug 14 at 7:39
















    The final result should be $arctandfracIm aRe a$.
    – Yves Daoust
    Aug 14 at 7:37





    The final result should be $arctandfracIm aRe a$.
    – Yves Daoust
    Aug 14 at 7:37













    Yes, a good point! thanks.
    – Nosrati
    Aug 14 at 7:39





    Yes, a good point! thanks.
    – Nosrati
    Aug 14 at 7:39











    up vote
    4
    down vote













    Use the addition formula $$arctan a_1 + arctan a_2=arctanleft(fraca_1+a_21-a_1a_2right)quad (textmod,pi)$$ In general, working in modulo $pi$:



    If $n=2k, kinmathbbN$: $$sum_n=1^2karctan a_n=arctanleft(sum_j=1^kleft[(-1)^j-1left(sum_textcycprod_i=1^2j-1a_iright)right]over1-sum_j=1^kleft[(-1)^j-1left(sum_textcycprod_i=1^2ja_iright)right]right)$$



    If $n=2k+1, kinmathbbN$: $$sum_n=1^2k+1arctan a_n=arctanleft(fracsum_j=0^kleft[(-1)^jleft(sum_textcycprod_i=1^2j+1a_iright)right]1-sum_j=1^kleft[(-1)^jleft(sum_textcycprod_i=1^2ja_iright)right]right)$$






    share|cite|improve this answer






















    • $arctansqrt3+arctansqrt3=2pi/3$; on the other hand $arctanbigl((sqrt3+sqrt3)/(1-sqrt3sqrt3)bigr)=-arctansqrt3=-pi/3$.
      – egreg
      Dec 23 '17 at 16:39











    • @egreg Please see edit
      – TheSimpliFire
      Dec 23 '17 at 16:50














    up vote
    4
    down vote













    Use the addition formula $$arctan a_1 + arctan a_2=arctanleft(fraca_1+a_21-a_1a_2right)quad (textmod,pi)$$ In general, working in modulo $pi$:



    If $n=2k, kinmathbbN$: $$sum_n=1^2karctan a_n=arctanleft(sum_j=1^kleft[(-1)^j-1left(sum_textcycprod_i=1^2j-1a_iright)right]over1-sum_j=1^kleft[(-1)^j-1left(sum_textcycprod_i=1^2ja_iright)right]right)$$



    If $n=2k+1, kinmathbbN$: $$sum_n=1^2k+1arctan a_n=arctanleft(fracsum_j=0^kleft[(-1)^jleft(sum_textcycprod_i=1^2j+1a_iright)right]1-sum_j=1^kleft[(-1)^jleft(sum_textcycprod_i=1^2ja_iright)right]right)$$






    share|cite|improve this answer






















    • $arctansqrt3+arctansqrt3=2pi/3$; on the other hand $arctanbigl((sqrt3+sqrt3)/(1-sqrt3sqrt3)bigr)=-arctansqrt3=-pi/3$.
      – egreg
      Dec 23 '17 at 16:39











    • @egreg Please see edit
      – TheSimpliFire
      Dec 23 '17 at 16:50












    up vote
    4
    down vote










    up vote
    4
    down vote









    Use the addition formula $$arctan a_1 + arctan a_2=arctanleft(fraca_1+a_21-a_1a_2right)quad (textmod,pi)$$ In general, working in modulo $pi$:



    If $n=2k, kinmathbbN$: $$sum_n=1^2karctan a_n=arctanleft(sum_j=1^kleft[(-1)^j-1left(sum_textcycprod_i=1^2j-1a_iright)right]over1-sum_j=1^kleft[(-1)^j-1left(sum_textcycprod_i=1^2ja_iright)right]right)$$



    If $n=2k+1, kinmathbbN$: $$sum_n=1^2k+1arctan a_n=arctanleft(fracsum_j=0^kleft[(-1)^jleft(sum_textcycprod_i=1^2j+1a_iright)right]1-sum_j=1^kleft[(-1)^jleft(sum_textcycprod_i=1^2ja_iright)right]right)$$






    share|cite|improve this answer














    Use the addition formula $$arctan a_1 + arctan a_2=arctanleft(fraca_1+a_21-a_1a_2right)quad (textmod,pi)$$ In general, working in modulo $pi$:



    If $n=2k, kinmathbbN$: $$sum_n=1^2karctan a_n=arctanleft(sum_j=1^kleft[(-1)^j-1left(sum_textcycprod_i=1^2j-1a_iright)right]over1-sum_j=1^kleft[(-1)^j-1left(sum_textcycprod_i=1^2ja_iright)right]right)$$



    If $n=2k+1, kinmathbbN$: $$sum_n=1^2k+1arctan a_n=arctanleft(fracsum_j=0^kleft[(-1)^jleft(sum_textcycprod_i=1^2j+1a_iright)right]1-sum_j=1^kleft[(-1)^jleft(sum_textcycprod_i=1^2ja_iright)right]right)$$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Aug 14 at 6:45

























    answered Dec 23 '17 at 16:15









    TheSimpliFire

    10.1k61953




    10.1k61953











    • $arctansqrt3+arctansqrt3=2pi/3$; on the other hand $arctanbigl((sqrt3+sqrt3)/(1-sqrt3sqrt3)bigr)=-arctansqrt3=-pi/3$.
      – egreg
      Dec 23 '17 at 16:39











    • @egreg Please see edit
      – TheSimpliFire
      Dec 23 '17 at 16:50
















    • $arctansqrt3+arctansqrt3=2pi/3$; on the other hand $arctanbigl((sqrt3+sqrt3)/(1-sqrt3sqrt3)bigr)=-arctansqrt3=-pi/3$.
      – egreg
      Dec 23 '17 at 16:39











    • @egreg Please see edit
      – TheSimpliFire
      Dec 23 '17 at 16:50















    $arctansqrt3+arctansqrt3=2pi/3$; on the other hand $arctanbigl((sqrt3+sqrt3)/(1-sqrt3sqrt3)bigr)=-arctansqrt3=-pi/3$.
    – egreg
    Dec 23 '17 at 16:39





    $arctansqrt3+arctansqrt3=2pi/3$; on the other hand $arctanbigl((sqrt3+sqrt3)/(1-sqrt3sqrt3)bigr)=-arctansqrt3=-pi/3$.
    – egreg
    Dec 23 '17 at 16:39













    @egreg Please see edit
    – TheSimpliFire
    Dec 23 '17 at 16:50




    @egreg Please see edit
    – TheSimpliFire
    Dec 23 '17 at 16:50










    up vote
    1
    down vote













    Hint:



    From the addition formula,



    $$tan(arctan a+arctan b+arctan c)=fracdfraca+b1-ab+c1-dfraca+b1-abc
    =dfraca+b+c-abc1-ab-bc-ca$$



    and



    $$tan(arctan a+arctan b+arctan c+arctan d)
    \=fracdfraca+b+c-abc1-ab-bc-ca+d1-dfraca+b+c-abc1-ab-bc-cad
    \=dfraca+b+c+d-abc-bcd-cda-dab1-ab-bc-cd-da-ac-bd-ca+abcd.$$



    A regular pattern seems to emerge. We can write a recurrent form



    $$tanleft(arctanfracp_n-1q_n-1+arctan a_nright)=fracdfracp_n-1q_n-1+a_n1-dfracp_n-1q_n-1a_n=fracp_n-1+q_n-1a_nq_n-1-p_n-1a_n$$



    and



    $$begincasesp_n=p_n-1+q_n-1a_n,\q_n=q_n-1-p_n-1a_n.endcases$$



    From an operational point of view, this is equivalent to Nosrati's formula, where the product will be computed incrementally. The fully expanded formulas are complicated and computationally inefficient.






    share|cite|improve this answer


























      up vote
      1
      down vote













      Hint:



      From the addition formula,



      $$tan(arctan a+arctan b+arctan c)=fracdfraca+b1-ab+c1-dfraca+b1-abc
      =dfraca+b+c-abc1-ab-bc-ca$$



      and



      $$tan(arctan a+arctan b+arctan c+arctan d)
      \=fracdfraca+b+c-abc1-ab-bc-ca+d1-dfraca+b+c-abc1-ab-bc-cad
      \=dfraca+b+c+d-abc-bcd-cda-dab1-ab-bc-cd-da-ac-bd-ca+abcd.$$



      A regular pattern seems to emerge. We can write a recurrent form



      $$tanleft(arctanfracp_n-1q_n-1+arctan a_nright)=fracdfracp_n-1q_n-1+a_n1-dfracp_n-1q_n-1a_n=fracp_n-1+q_n-1a_nq_n-1-p_n-1a_n$$



      and



      $$begincasesp_n=p_n-1+q_n-1a_n,\q_n=q_n-1-p_n-1a_n.endcases$$



      From an operational point of view, this is equivalent to Nosrati's formula, where the product will be computed incrementally. The fully expanded formulas are complicated and computationally inefficient.






      share|cite|improve this answer
























        up vote
        1
        down vote










        up vote
        1
        down vote









        Hint:



        From the addition formula,



        $$tan(arctan a+arctan b+arctan c)=fracdfraca+b1-ab+c1-dfraca+b1-abc
        =dfraca+b+c-abc1-ab-bc-ca$$



        and



        $$tan(arctan a+arctan b+arctan c+arctan d)
        \=fracdfraca+b+c-abc1-ab-bc-ca+d1-dfraca+b+c-abc1-ab-bc-cad
        \=dfraca+b+c+d-abc-bcd-cda-dab1-ab-bc-cd-da-ac-bd-ca+abcd.$$



        A regular pattern seems to emerge. We can write a recurrent form



        $$tanleft(arctanfracp_n-1q_n-1+arctan a_nright)=fracdfracp_n-1q_n-1+a_n1-dfracp_n-1q_n-1a_n=fracp_n-1+q_n-1a_nq_n-1-p_n-1a_n$$



        and



        $$begincasesp_n=p_n-1+q_n-1a_n,\q_n=q_n-1-p_n-1a_n.endcases$$



        From an operational point of view, this is equivalent to Nosrati's formula, where the product will be computed incrementally. The fully expanded formulas are complicated and computationally inefficient.






        share|cite|improve this answer














        Hint:



        From the addition formula,



        $$tan(arctan a+arctan b+arctan c)=fracdfraca+b1-ab+c1-dfraca+b1-abc
        =dfraca+b+c-abc1-ab-bc-ca$$



        and



        $$tan(arctan a+arctan b+arctan c+arctan d)
        \=fracdfraca+b+c-abc1-ab-bc-ca+d1-dfraca+b+c-abc1-ab-bc-cad
        \=dfraca+b+c+d-abc-bcd-cda-dab1-ab-bc-cd-da-ac-bd-ca+abcd.$$



        A regular pattern seems to emerge. We can write a recurrent form



        $$tanleft(arctanfracp_n-1q_n-1+arctan a_nright)=fracdfracp_n-1q_n-1+a_n1-dfracp_n-1q_n-1a_n=fracp_n-1+q_n-1a_nq_n-1-p_n-1a_n$$



        and



        $$begincasesp_n=p_n-1+q_n-1a_n,\q_n=q_n-1-p_n-1a_n.endcases$$



        From an operational point of view, this is equivalent to Nosrati's formula, where the product will be computed incrementally. The fully expanded formulas are complicated and computationally inefficient.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Aug 14 at 7:42

























        answered Aug 14 at 6:59









        Yves Daoust

        112k665205




        112k665205






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2577850%2fgeneral-formula-for-arctan%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            How to combine Bézier curves to a surface?

            Mutual Information Always Non-negative

            Why am i infinitely getting the same tweet with the Twitter Search API?