$f_n(x) = frac1n$ if $x=n$ and $f_n(x) = 0$ if $xneq n$. Is $sum f_n(x)$ uniformly convergent?
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
For each $n in mathbbN$ and $x in mathbbR$ define
$$f_n(x) = frac1n;mathrmif;x=nquadmathrmandquad f_n(x) = 0;mathrmif;xneq n.$$
The series $sum f_n(x)$ is uniformly convergent in $mathbbR$?
For each $x in mathbbR$, $f_n(x) = frac1x$ or $f_n(x) = 0$ for every $n in mathbbN$. So, the series converges (pointwise). Now, about uniformly convergence, I'm confuse. I don't see the criterion to apply in this series. I appreciate any hints.
real-analysis sequences-and-series uniform-convergence
add a comment |Â
up vote
3
down vote
favorite
For each $n in mathbbN$ and $x in mathbbR$ define
$$f_n(x) = frac1n;mathrmif;x=nquadmathrmandquad f_n(x) = 0;mathrmif;xneq n.$$
The series $sum f_n(x)$ is uniformly convergent in $mathbbR$?
For each $x in mathbbR$, $f_n(x) = frac1x$ or $f_n(x) = 0$ for every $n in mathbbN$. So, the series converges (pointwise). Now, about uniformly convergence, I'm confuse. I don't see the criterion to apply in this series. I appreciate any hints.
real-analysis sequences-and-series uniform-convergence
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
For each $n in mathbbN$ and $x in mathbbR$ define
$$f_n(x) = frac1n;mathrmif;x=nquadmathrmandquad f_n(x) = 0;mathrmif;xneq n.$$
The series $sum f_n(x)$ is uniformly convergent in $mathbbR$?
For each $x in mathbbR$, $f_n(x) = frac1x$ or $f_n(x) = 0$ for every $n in mathbbN$. So, the series converges (pointwise). Now, about uniformly convergence, I'm confuse. I don't see the criterion to apply in this series. I appreciate any hints.
real-analysis sequences-and-series uniform-convergence
For each $n in mathbbN$ and $x in mathbbR$ define
$$f_n(x) = frac1n;mathrmif;x=nquadmathrmandquad f_n(x) = 0;mathrmif;xneq n.$$
The series $sum f_n(x)$ is uniformly convergent in $mathbbR$?
For each $x in mathbbR$, $f_n(x) = frac1x$ or $f_n(x) = 0$ for every $n in mathbbN$. So, the series converges (pointwise). Now, about uniformly convergence, I'm confuse. I don't see the criterion to apply in this series. I appreciate any hints.
real-analysis sequences-and-series uniform-convergence
edited Aug 14 at 8:05
José Carlos Santos
116k1699178
116k1699178
asked Aug 14 at 7:58
Lucas Corrêa
1,173319
1,173319
add a comment |Â
add a comment |Â
5 Answers
5
active
oldest
votes
up vote
4
down vote
accepted
By definition of uniform convergence, You need:
$$forall epsilon >0exists NinmathbbNspace s.t. space forall n>N.forall xin mathbbR : |f_n(x)-f(x)|<epsilon $$
Meaning, $N$ is uniform ,depending only on $epsilon$ and not on $x$.
You can also use Cauchy criterion for uniform convergence:
$$forall epsilon >0exists NinmathbbNspace s.t. space forall n,m>N.forall xin mathbbR : |f_n(x)-f_m(x)|<epsilon $$
Note that both of these criterions are equivalent to proving: $sup_xin mathbbR|f_n(x)-f(x)|to0.$
A way to disprove uniform convergence is to find a series of points $x_nto omegainmathbbRcup+infty,-infty $ such that $|f_n(x_n)-f(x_n)|to aneq0$
Similar rules apply when dealing with series , only this time you should look at $S_n=sum_k=1^nf_k(x)$
add a comment |Â
up vote
3
down vote
For $x in mathbb R$ and $n in mathbb N$ you have
$$leftvert sumlimits_k=n+1^infty f_k(x)rightvert le dfrac1n+1$$
Therefore $sum f_n$ converges uniformly on $mathbb R$: the supremum of the reminder $R_n(x)$ is uniformly bounded by a quantity which vanishes as $n to infty$.
add a comment |Â
up vote
2
down vote
Claim: $|sum_k=j^m f_n (x)|leq frac 1 j$ for all $x in mathbb R$whenever $1leq j leq m$. Once we show this uniform convergnc e follows. Fxi $x$. If $x$ is not in $j,j+1,...,m$ then $sum_k=j^m f_n (x)=0$. If $x=k$ for some $k$ in this range then the sum is exactly $frac 1 k$ which does not exceed$frac 1 j$. This proves teh claim.
add a comment |Â
up vote
1
down vote
Yes, it converges uniformly to the function$$beginarrayrcccfcolon&mathbb R&longrightarrow&mathbb R\&x&mapsto&begincasesfrac1n&text if $x=n$ for some ninmathbb N\0&text otherwise.endcasesendarray$$Just use the definition of uniform convergence and the fact that, for each $varepsilon>0$, $frac1n<varepsilon$ if $ngg1$.
add a comment |Â
up vote
1
down vote
$f_n (x) rightarrow f(x)=0$ $space asspace n rightarrow space infty$
$Nowspace M_n =Sup|f_n| space forall xin R $.
Then $M_n =0 space forall nin N$
add a comment |Â
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
By definition of uniform convergence, You need:
$$forall epsilon >0exists NinmathbbNspace s.t. space forall n>N.forall xin mathbbR : |f_n(x)-f(x)|<epsilon $$
Meaning, $N$ is uniform ,depending only on $epsilon$ and not on $x$.
You can also use Cauchy criterion for uniform convergence:
$$forall epsilon >0exists NinmathbbNspace s.t. space forall n,m>N.forall xin mathbbR : |f_n(x)-f_m(x)|<epsilon $$
Note that both of these criterions are equivalent to proving: $sup_xin mathbbR|f_n(x)-f(x)|to0.$
A way to disprove uniform convergence is to find a series of points $x_nto omegainmathbbRcup+infty,-infty $ such that $|f_n(x_n)-f(x_n)|to aneq0$
Similar rules apply when dealing with series , only this time you should look at $S_n=sum_k=1^nf_k(x)$
add a comment |Â
up vote
4
down vote
accepted
By definition of uniform convergence, You need:
$$forall epsilon >0exists NinmathbbNspace s.t. space forall n>N.forall xin mathbbR : |f_n(x)-f(x)|<epsilon $$
Meaning, $N$ is uniform ,depending only on $epsilon$ and not on $x$.
You can also use Cauchy criterion for uniform convergence:
$$forall epsilon >0exists NinmathbbNspace s.t. space forall n,m>N.forall xin mathbbR : |f_n(x)-f_m(x)|<epsilon $$
Note that both of these criterions are equivalent to proving: $sup_xin mathbbR|f_n(x)-f(x)|to0.$
A way to disprove uniform convergence is to find a series of points $x_nto omegainmathbbRcup+infty,-infty $ such that $|f_n(x_n)-f(x_n)|to aneq0$
Similar rules apply when dealing with series , only this time you should look at $S_n=sum_k=1^nf_k(x)$
add a comment |Â
up vote
4
down vote
accepted
up vote
4
down vote
accepted
By definition of uniform convergence, You need:
$$forall epsilon >0exists NinmathbbNspace s.t. space forall n>N.forall xin mathbbR : |f_n(x)-f(x)|<epsilon $$
Meaning, $N$ is uniform ,depending only on $epsilon$ and not on $x$.
You can also use Cauchy criterion for uniform convergence:
$$forall epsilon >0exists NinmathbbNspace s.t. space forall n,m>N.forall xin mathbbR : |f_n(x)-f_m(x)|<epsilon $$
Note that both of these criterions are equivalent to proving: $sup_xin mathbbR|f_n(x)-f(x)|to0.$
A way to disprove uniform convergence is to find a series of points $x_nto omegainmathbbRcup+infty,-infty $ such that $|f_n(x_n)-f(x_n)|to aneq0$
Similar rules apply when dealing with series , only this time you should look at $S_n=sum_k=1^nf_k(x)$
By definition of uniform convergence, You need:
$$forall epsilon >0exists NinmathbbNspace s.t. space forall n>N.forall xin mathbbR : |f_n(x)-f(x)|<epsilon $$
Meaning, $N$ is uniform ,depending only on $epsilon$ and not on $x$.
You can also use Cauchy criterion for uniform convergence:
$$forall epsilon >0exists NinmathbbNspace s.t. space forall n,m>N.forall xin mathbbR : |f_n(x)-f_m(x)|<epsilon $$
Note that both of these criterions are equivalent to proving: $sup_xin mathbbR|f_n(x)-f(x)|to0.$
A way to disprove uniform convergence is to find a series of points $x_nto omegainmathbbRcup+infty,-infty $ such that $|f_n(x_n)-f(x_n)|to aneq0$
Similar rules apply when dealing with series , only this time you should look at $S_n=sum_k=1^nf_k(x)$
answered Aug 14 at 8:15
Sar
45910
45910
add a comment |Â
add a comment |Â
up vote
3
down vote
For $x in mathbb R$ and $n in mathbb N$ you have
$$leftvert sumlimits_k=n+1^infty f_k(x)rightvert le dfrac1n+1$$
Therefore $sum f_n$ converges uniformly on $mathbb R$: the supremum of the reminder $R_n(x)$ is uniformly bounded by a quantity which vanishes as $n to infty$.
add a comment |Â
up vote
3
down vote
For $x in mathbb R$ and $n in mathbb N$ you have
$$leftvert sumlimits_k=n+1^infty f_k(x)rightvert le dfrac1n+1$$
Therefore $sum f_n$ converges uniformly on $mathbb R$: the supremum of the reminder $R_n(x)$ is uniformly bounded by a quantity which vanishes as $n to infty$.
add a comment |Â
up vote
3
down vote
up vote
3
down vote
For $x in mathbb R$ and $n in mathbb N$ you have
$$leftvert sumlimits_k=n+1^infty f_k(x)rightvert le dfrac1n+1$$
Therefore $sum f_n$ converges uniformly on $mathbb R$: the supremum of the reminder $R_n(x)$ is uniformly bounded by a quantity which vanishes as $n to infty$.
For $x in mathbb R$ and $n in mathbb N$ you have
$$leftvert sumlimits_k=n+1^infty f_k(x)rightvert le dfrac1n+1$$
Therefore $sum f_n$ converges uniformly on $mathbb R$: the supremum of the reminder $R_n(x)$ is uniformly bounded by a quantity which vanishes as $n to infty$.
edited Aug 14 at 8:15
answered Aug 14 at 8:07
mathcounterexamples.net
25k21754
25k21754
add a comment |Â
add a comment |Â
up vote
2
down vote
Claim: $|sum_k=j^m f_n (x)|leq frac 1 j$ for all $x in mathbb R$whenever $1leq j leq m$. Once we show this uniform convergnc e follows. Fxi $x$. If $x$ is not in $j,j+1,...,m$ then $sum_k=j^m f_n (x)=0$. If $x=k$ for some $k$ in this range then the sum is exactly $frac 1 k$ which does not exceed$frac 1 j$. This proves teh claim.
add a comment |Â
up vote
2
down vote
Claim: $|sum_k=j^m f_n (x)|leq frac 1 j$ for all $x in mathbb R$whenever $1leq j leq m$. Once we show this uniform convergnc e follows. Fxi $x$. If $x$ is not in $j,j+1,...,m$ then $sum_k=j^m f_n (x)=0$. If $x=k$ for some $k$ in this range then the sum is exactly $frac 1 k$ which does not exceed$frac 1 j$. This proves teh claim.
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Claim: $|sum_k=j^m f_n (x)|leq frac 1 j$ for all $x in mathbb R$whenever $1leq j leq m$. Once we show this uniform convergnc e follows. Fxi $x$. If $x$ is not in $j,j+1,...,m$ then $sum_k=j^m f_n (x)=0$. If $x=k$ for some $k$ in this range then the sum is exactly $frac 1 k$ which does not exceed$frac 1 j$. This proves teh claim.
Claim: $|sum_k=j^m f_n (x)|leq frac 1 j$ for all $x in mathbb R$whenever $1leq j leq m$. Once we show this uniform convergnc e follows. Fxi $x$. If $x$ is not in $j,j+1,...,m$ then $sum_k=j^m f_n (x)=0$. If $x=k$ for some $k$ in this range then the sum is exactly $frac 1 k$ which does not exceed$frac 1 j$. This proves teh claim.
answered Aug 14 at 8:07
Kavi Rama Murthy
22.2k2933
22.2k2933
add a comment |Â
add a comment |Â
up vote
1
down vote
Yes, it converges uniformly to the function$$beginarrayrcccfcolon&mathbb R&longrightarrow&mathbb R\&x&mapsto&begincasesfrac1n&text if $x=n$ for some ninmathbb N\0&text otherwise.endcasesendarray$$Just use the definition of uniform convergence and the fact that, for each $varepsilon>0$, $frac1n<varepsilon$ if $ngg1$.
add a comment |Â
up vote
1
down vote
Yes, it converges uniformly to the function$$beginarrayrcccfcolon&mathbb R&longrightarrow&mathbb R\&x&mapsto&begincasesfrac1n&text if $x=n$ for some ninmathbb N\0&text otherwise.endcasesendarray$$Just use the definition of uniform convergence and the fact that, for each $varepsilon>0$, $frac1n<varepsilon$ if $ngg1$.
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Yes, it converges uniformly to the function$$beginarrayrcccfcolon&mathbb R&longrightarrow&mathbb R\&x&mapsto&begincasesfrac1n&text if $x=n$ for some ninmathbb N\0&text otherwise.endcasesendarray$$Just use the definition of uniform convergence and the fact that, for each $varepsilon>0$, $frac1n<varepsilon$ if $ngg1$.
Yes, it converges uniformly to the function$$beginarrayrcccfcolon&mathbb R&longrightarrow&mathbb R\&x&mapsto&begincasesfrac1n&text if $x=n$ for some ninmathbb N\0&text otherwise.endcasesendarray$$Just use the definition of uniform convergence and the fact that, for each $varepsilon>0$, $frac1n<varepsilon$ if $ngg1$.
answered Aug 14 at 8:04
José Carlos Santos
116k1699178
116k1699178
add a comment |Â
add a comment |Â
up vote
1
down vote
$f_n (x) rightarrow f(x)=0$ $space asspace n rightarrow space infty$
$Nowspace M_n =Sup|f_n| space forall xin R $.
Then $M_n =0 space forall nin N$
add a comment |Â
up vote
1
down vote
$f_n (x) rightarrow f(x)=0$ $space asspace n rightarrow space infty$
$Nowspace M_n =Sup|f_n| space forall xin R $.
Then $M_n =0 space forall nin N$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
$f_n (x) rightarrow f(x)=0$ $space asspace n rightarrow space infty$
$Nowspace M_n =Sup|f_n| space forall xin R $.
Then $M_n =0 space forall nin N$
$f_n (x) rightarrow f(x)=0$ $space asspace n rightarrow space infty$
$Nowspace M_n =Sup|f_n| space forall xin R $.
Then $M_n =0 space forall nin N$
edited Aug 14 at 8:18
answered Aug 14 at 8:13
Sadil Khan
3297
3297
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2882179%2ff-nx-frac1n-if-x-n-and-f-nx-0-if-x-neq-n-is-sum-f-n%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password