Prove that $2A+A_0=A_1+A_2+A_3$,where $A$ is the area of the triangle $ABC.$
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
If $A_0$ denotes the area of the triangle formed by joining the points of contact of the inscribed circle of the triangle $ABC$ and the sides of the triangle;$A_1,A_2,A_3$ are the corresponding areas for the triangles thus formed with the escribed circles of the triangle $ABC.$Prove that $2A+A_0=A_1+A_2+A_3$,where $A$ is the area of the triangle $ABC.$
I found the area $A_0=A-frac12(s-a)^2-frac12(s-b)^2-frac12(s-c)^2$
Is my $A_0$ correct?
I am not able to find $A_1,A_2,A_3$.Please help.
geometry trigonometry
add a comment |Â
up vote
0
down vote
favorite
If $A_0$ denotes the area of the triangle formed by joining the points of contact of the inscribed circle of the triangle $ABC$ and the sides of the triangle;$A_1,A_2,A_3$ are the corresponding areas for the triangles thus formed with the escribed circles of the triangle $ABC.$Prove that $2A+A_0=A_1+A_2+A_3$,where $A$ is the area of the triangle $ABC.$
I found the area $A_0=A-frac12(s-a)^2-frac12(s-b)^2-frac12(s-c)^2$
Is my $A_0$ correct?
I am not able to find $A_1,A_2,A_3$.Please help.
geometry trigonometry
can you be more explicit on how you define the "triangles thus formed with the escribed circles...". Is not clear...
â Chip
Apr 21 '16 at 8:30
The escribed circle opposite vertex $A$ touches $AB$ produced,$AC$ produced and $BC$,so $A_1$ is the area of triangle formed by points of contact of escribed circle with $BC,AB$ produced,$AC$ produced.Same for escribed circles opposite $B$ and $C.$
â Vinod Kumar Punia
Apr 21 '16 at 8:34
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
If $A_0$ denotes the area of the triangle formed by joining the points of contact of the inscribed circle of the triangle $ABC$ and the sides of the triangle;$A_1,A_2,A_3$ are the corresponding areas for the triangles thus formed with the escribed circles of the triangle $ABC.$Prove that $2A+A_0=A_1+A_2+A_3$,where $A$ is the area of the triangle $ABC.$
I found the area $A_0=A-frac12(s-a)^2-frac12(s-b)^2-frac12(s-c)^2$
Is my $A_0$ correct?
I am not able to find $A_1,A_2,A_3$.Please help.
geometry trigonometry
If $A_0$ denotes the area of the triangle formed by joining the points of contact of the inscribed circle of the triangle $ABC$ and the sides of the triangle;$A_1,A_2,A_3$ are the corresponding areas for the triangles thus formed with the escribed circles of the triangle $ABC.$Prove that $2A+A_0=A_1+A_2+A_3$,where $A$ is the area of the triangle $ABC.$
I found the area $A_0=A-frac12(s-a)^2-frac12(s-b)^2-frac12(s-c)^2$
Is my $A_0$ correct?
I am not able to find $A_1,A_2,A_3$.Please help.
geometry trigonometry
asked Apr 21 '16 at 8:27
Vinod Kumar Punia
2,634831
2,634831
can you be more explicit on how you define the "triangles thus formed with the escribed circles...". Is not clear...
â Chip
Apr 21 '16 at 8:30
The escribed circle opposite vertex $A$ touches $AB$ produced,$AC$ produced and $BC$,so $A_1$ is the area of triangle formed by points of contact of escribed circle with $BC,AB$ produced,$AC$ produced.Same for escribed circles opposite $B$ and $C.$
â Vinod Kumar Punia
Apr 21 '16 at 8:34
add a comment |Â
can you be more explicit on how you define the "triangles thus formed with the escribed circles...". Is not clear...
â Chip
Apr 21 '16 at 8:30
The escribed circle opposite vertex $A$ touches $AB$ produced,$AC$ produced and $BC$,so $A_1$ is the area of triangle formed by points of contact of escribed circle with $BC,AB$ produced,$AC$ produced.Same for escribed circles opposite $B$ and $C.$
â Vinod Kumar Punia
Apr 21 '16 at 8:34
can you be more explicit on how you define the "triangles thus formed with the escribed circles...". Is not clear...
â Chip
Apr 21 '16 at 8:30
can you be more explicit on how you define the "triangles thus formed with the escribed circles...". Is not clear...
â Chip
Apr 21 '16 at 8:30
The escribed circle opposite vertex $A$ touches $AB$ produced,$AC$ produced and $BC$,so $A_1$ is the area of triangle formed by points of contact of escribed circle with $BC,AB$ produced,$AC$ produced.Same for escribed circles opposite $B$ and $C.$
â Vinod Kumar Punia
Apr 21 '16 at 8:34
The escribed circle opposite vertex $A$ touches $AB$ produced,$AC$ produced and $BC$,so $A_1$ is the area of triangle formed by points of contact of escribed circle with $BC,AB$ produced,$AC$ produced.Same for escribed circles opposite $B$ and $C.$
â Vinod Kumar Punia
Apr 21 '16 at 8:34
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
1
down vote
accepted
Is my $A_0$ correct?
No, it is not correct. Let $D,E,F$ be the tangent point of the inscribed circle with the side $BC,CA,AB$ respectively. Then, noting that
$$AE=AF=s-a,quad BD=BF=s-b,quad CE=CD=s-c$$
where $s=(a+b+c)/2$, we have
$$beginalignA_0&=[triangleABC]-([triangleAEF]+[triangleBDF]+[triangleCDE])\&=A-frac 12(s-a)^2sin A-frac 12(s-b)^2sin B-frac 12(s-c)^2sin Cendaligntag1$$
By the way, let $K,L,M$ be the tangent point of the escribed circle in $angle A$ with the side $BC,CA,AB$ respectively. Then, noting that
$$CK=CL=s-b,quad BK=BM=s-c,$$
we have
$$beginalign[triangleKLM]&=[triangleAML]-([triangleABC]+[triangleBKM]+[triangleCKL])\&=frac 12s^2sin A-A-frac 12(s-c)^2sin(pi-B)-frac 12(s-b)^2sin(pi-C)\&=frac 12s^2sin A-A-frac 12(s-c)^2sin B-frac 12(s-b)^2sin Cendalign$$
Similarly, the areas of the other triangles formed with escribed circles are given by
$$frac 12s^2sin B-A-frac 12(s-a)^2sin C-frac 12(s-c)^2sin A$$
$$frac 12s^2sin C-A-frac 12(s-a)^2sin B-frac 12(s-b)^2sin A$$
Hence, from $(1)$, we have
$$2A+A_0-A_1-A_2-A_3$$$$=2A+A-frac 12(s-a)^2sin A-frac 12(s-b)^2sin B-frac 12(s-c)^2sin C-(frac 12s^2sin A-A-frac 12(s-c)^2sin B-frac 12(s-b)^2sin C)-(frac 12s^2sin B-A-frac 12(s-a)^2sin C-frac 12(s-c)^2sin A)-(frac 12s^2sin C-A-frac 12(s-a)^2sin B-frac 12(s-b)^2sin A)$$$$=6A+frac 12sin A(-(s-a)^2-s^2+(s-c)^2+(s-b)^2)$$$$+frac 12sin B(-(s-b)^2+(s-c)^2-s^2+(s-a)^2)$$$$+frac 12sin C(-(s-c)^2+(s-b)^2+(s-a)^2-s^2)$$$$=6A+frac 12sin A(-2bc)+frac 12sin B(-2ca)+frac 12sin C(-2ab)=6A-2A-2A-2A=0$$
I do not understand how $CK=CL=s-b$ and $BK=BM=s-c$?@mathlove
â Vinod Kumar Punia
Apr 21 '16 at 10:52
1
@VinodKumarPunia: Since $a=BC=BK+KC=BM+CL$, we have $a+b+c=b+c+BM+CL=(b+CL)+(c+BM)=AL+AM$, and so we have $AL=AM=s$, from which $CK=CL=AL-AC=s-b$ and $BK=BM=AM-AB=s-c$ follow.
â mathlove
Apr 21 '16 at 11:11
How can we prove that $AE=AF=s-a,BD=BF=s-b,CD=CE=s-c$?@mathlove
â Vinod Kumar Punia
Apr 21 '16 at 11:18
1
@VinodKumarPunia: Let $AE=AF=x,BD=BF=y,CD=CE=z$. Solving $z+y=a,x+z=b,x+y=c$ will give you the answer.
â mathlove
Apr 21 '16 at 11:24
I got it,thank you very much.@mathlove
â Vinod Kumar Punia
Apr 21 '16 at 12:19
add a comment |Â
up vote
0
down vote
Hint:
$A_1=dfracA^22R(s-a)$ and $A_o=dfracA^22Rs$
Plug in the corresponding values in beginalign A_1+A_2+A_3-A_o&=dfracA^22Rcdotbigg[dfrac1s-a+dfrac1s-b+dfrac1s-c-dfrac1sbigg]\&=dfracA^22RcdotdfracabcA^2\&=dfrac2A^2cdot abc4Rcdot A^2\&=2A becauseA=fracabc4Rendalign
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Is my $A_0$ correct?
No, it is not correct. Let $D,E,F$ be the tangent point of the inscribed circle with the side $BC,CA,AB$ respectively. Then, noting that
$$AE=AF=s-a,quad BD=BF=s-b,quad CE=CD=s-c$$
where $s=(a+b+c)/2$, we have
$$beginalignA_0&=[triangleABC]-([triangleAEF]+[triangleBDF]+[triangleCDE])\&=A-frac 12(s-a)^2sin A-frac 12(s-b)^2sin B-frac 12(s-c)^2sin Cendaligntag1$$
By the way, let $K,L,M$ be the tangent point of the escribed circle in $angle A$ with the side $BC,CA,AB$ respectively. Then, noting that
$$CK=CL=s-b,quad BK=BM=s-c,$$
we have
$$beginalign[triangleKLM]&=[triangleAML]-([triangleABC]+[triangleBKM]+[triangleCKL])\&=frac 12s^2sin A-A-frac 12(s-c)^2sin(pi-B)-frac 12(s-b)^2sin(pi-C)\&=frac 12s^2sin A-A-frac 12(s-c)^2sin B-frac 12(s-b)^2sin Cendalign$$
Similarly, the areas of the other triangles formed with escribed circles are given by
$$frac 12s^2sin B-A-frac 12(s-a)^2sin C-frac 12(s-c)^2sin A$$
$$frac 12s^2sin C-A-frac 12(s-a)^2sin B-frac 12(s-b)^2sin A$$
Hence, from $(1)$, we have
$$2A+A_0-A_1-A_2-A_3$$$$=2A+A-frac 12(s-a)^2sin A-frac 12(s-b)^2sin B-frac 12(s-c)^2sin C-(frac 12s^2sin A-A-frac 12(s-c)^2sin B-frac 12(s-b)^2sin C)-(frac 12s^2sin B-A-frac 12(s-a)^2sin C-frac 12(s-c)^2sin A)-(frac 12s^2sin C-A-frac 12(s-a)^2sin B-frac 12(s-b)^2sin A)$$$$=6A+frac 12sin A(-(s-a)^2-s^2+(s-c)^2+(s-b)^2)$$$$+frac 12sin B(-(s-b)^2+(s-c)^2-s^2+(s-a)^2)$$$$+frac 12sin C(-(s-c)^2+(s-b)^2+(s-a)^2-s^2)$$$$=6A+frac 12sin A(-2bc)+frac 12sin B(-2ca)+frac 12sin C(-2ab)=6A-2A-2A-2A=0$$
I do not understand how $CK=CL=s-b$ and $BK=BM=s-c$?@mathlove
â Vinod Kumar Punia
Apr 21 '16 at 10:52
1
@VinodKumarPunia: Since $a=BC=BK+KC=BM+CL$, we have $a+b+c=b+c+BM+CL=(b+CL)+(c+BM)=AL+AM$, and so we have $AL=AM=s$, from which $CK=CL=AL-AC=s-b$ and $BK=BM=AM-AB=s-c$ follow.
â mathlove
Apr 21 '16 at 11:11
How can we prove that $AE=AF=s-a,BD=BF=s-b,CD=CE=s-c$?@mathlove
â Vinod Kumar Punia
Apr 21 '16 at 11:18
1
@VinodKumarPunia: Let $AE=AF=x,BD=BF=y,CD=CE=z$. Solving $z+y=a,x+z=b,x+y=c$ will give you the answer.
â mathlove
Apr 21 '16 at 11:24
I got it,thank you very much.@mathlove
â Vinod Kumar Punia
Apr 21 '16 at 12:19
add a comment |Â
up vote
1
down vote
accepted
Is my $A_0$ correct?
No, it is not correct. Let $D,E,F$ be the tangent point of the inscribed circle with the side $BC,CA,AB$ respectively. Then, noting that
$$AE=AF=s-a,quad BD=BF=s-b,quad CE=CD=s-c$$
where $s=(a+b+c)/2$, we have
$$beginalignA_0&=[triangleABC]-([triangleAEF]+[triangleBDF]+[triangleCDE])\&=A-frac 12(s-a)^2sin A-frac 12(s-b)^2sin B-frac 12(s-c)^2sin Cendaligntag1$$
By the way, let $K,L,M$ be the tangent point of the escribed circle in $angle A$ with the side $BC,CA,AB$ respectively. Then, noting that
$$CK=CL=s-b,quad BK=BM=s-c,$$
we have
$$beginalign[triangleKLM]&=[triangleAML]-([triangleABC]+[triangleBKM]+[triangleCKL])\&=frac 12s^2sin A-A-frac 12(s-c)^2sin(pi-B)-frac 12(s-b)^2sin(pi-C)\&=frac 12s^2sin A-A-frac 12(s-c)^2sin B-frac 12(s-b)^2sin Cendalign$$
Similarly, the areas of the other triangles formed with escribed circles are given by
$$frac 12s^2sin B-A-frac 12(s-a)^2sin C-frac 12(s-c)^2sin A$$
$$frac 12s^2sin C-A-frac 12(s-a)^2sin B-frac 12(s-b)^2sin A$$
Hence, from $(1)$, we have
$$2A+A_0-A_1-A_2-A_3$$$$=2A+A-frac 12(s-a)^2sin A-frac 12(s-b)^2sin B-frac 12(s-c)^2sin C-(frac 12s^2sin A-A-frac 12(s-c)^2sin B-frac 12(s-b)^2sin C)-(frac 12s^2sin B-A-frac 12(s-a)^2sin C-frac 12(s-c)^2sin A)-(frac 12s^2sin C-A-frac 12(s-a)^2sin B-frac 12(s-b)^2sin A)$$$$=6A+frac 12sin A(-(s-a)^2-s^2+(s-c)^2+(s-b)^2)$$$$+frac 12sin B(-(s-b)^2+(s-c)^2-s^2+(s-a)^2)$$$$+frac 12sin C(-(s-c)^2+(s-b)^2+(s-a)^2-s^2)$$$$=6A+frac 12sin A(-2bc)+frac 12sin B(-2ca)+frac 12sin C(-2ab)=6A-2A-2A-2A=0$$
I do not understand how $CK=CL=s-b$ and $BK=BM=s-c$?@mathlove
â Vinod Kumar Punia
Apr 21 '16 at 10:52
1
@VinodKumarPunia: Since $a=BC=BK+KC=BM+CL$, we have $a+b+c=b+c+BM+CL=(b+CL)+(c+BM)=AL+AM$, and so we have $AL=AM=s$, from which $CK=CL=AL-AC=s-b$ and $BK=BM=AM-AB=s-c$ follow.
â mathlove
Apr 21 '16 at 11:11
How can we prove that $AE=AF=s-a,BD=BF=s-b,CD=CE=s-c$?@mathlove
â Vinod Kumar Punia
Apr 21 '16 at 11:18
1
@VinodKumarPunia: Let $AE=AF=x,BD=BF=y,CD=CE=z$. Solving $z+y=a,x+z=b,x+y=c$ will give you the answer.
â mathlove
Apr 21 '16 at 11:24
I got it,thank you very much.@mathlove
â Vinod Kumar Punia
Apr 21 '16 at 12:19
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Is my $A_0$ correct?
No, it is not correct. Let $D,E,F$ be the tangent point of the inscribed circle with the side $BC,CA,AB$ respectively. Then, noting that
$$AE=AF=s-a,quad BD=BF=s-b,quad CE=CD=s-c$$
where $s=(a+b+c)/2$, we have
$$beginalignA_0&=[triangleABC]-([triangleAEF]+[triangleBDF]+[triangleCDE])\&=A-frac 12(s-a)^2sin A-frac 12(s-b)^2sin B-frac 12(s-c)^2sin Cendaligntag1$$
By the way, let $K,L,M$ be the tangent point of the escribed circle in $angle A$ with the side $BC,CA,AB$ respectively. Then, noting that
$$CK=CL=s-b,quad BK=BM=s-c,$$
we have
$$beginalign[triangleKLM]&=[triangleAML]-([triangleABC]+[triangleBKM]+[triangleCKL])\&=frac 12s^2sin A-A-frac 12(s-c)^2sin(pi-B)-frac 12(s-b)^2sin(pi-C)\&=frac 12s^2sin A-A-frac 12(s-c)^2sin B-frac 12(s-b)^2sin Cendalign$$
Similarly, the areas of the other triangles formed with escribed circles are given by
$$frac 12s^2sin B-A-frac 12(s-a)^2sin C-frac 12(s-c)^2sin A$$
$$frac 12s^2sin C-A-frac 12(s-a)^2sin B-frac 12(s-b)^2sin A$$
Hence, from $(1)$, we have
$$2A+A_0-A_1-A_2-A_3$$$$=2A+A-frac 12(s-a)^2sin A-frac 12(s-b)^2sin B-frac 12(s-c)^2sin C-(frac 12s^2sin A-A-frac 12(s-c)^2sin B-frac 12(s-b)^2sin C)-(frac 12s^2sin B-A-frac 12(s-a)^2sin C-frac 12(s-c)^2sin A)-(frac 12s^2sin C-A-frac 12(s-a)^2sin B-frac 12(s-b)^2sin A)$$$$=6A+frac 12sin A(-(s-a)^2-s^2+(s-c)^2+(s-b)^2)$$$$+frac 12sin B(-(s-b)^2+(s-c)^2-s^2+(s-a)^2)$$$$+frac 12sin C(-(s-c)^2+(s-b)^2+(s-a)^2-s^2)$$$$=6A+frac 12sin A(-2bc)+frac 12sin B(-2ca)+frac 12sin C(-2ab)=6A-2A-2A-2A=0$$
Is my $A_0$ correct?
No, it is not correct. Let $D,E,F$ be the tangent point of the inscribed circle with the side $BC,CA,AB$ respectively. Then, noting that
$$AE=AF=s-a,quad BD=BF=s-b,quad CE=CD=s-c$$
where $s=(a+b+c)/2$, we have
$$beginalignA_0&=[triangleABC]-([triangleAEF]+[triangleBDF]+[triangleCDE])\&=A-frac 12(s-a)^2sin A-frac 12(s-b)^2sin B-frac 12(s-c)^2sin Cendaligntag1$$
By the way, let $K,L,M$ be the tangent point of the escribed circle in $angle A$ with the side $BC,CA,AB$ respectively. Then, noting that
$$CK=CL=s-b,quad BK=BM=s-c,$$
we have
$$beginalign[triangleKLM]&=[triangleAML]-([triangleABC]+[triangleBKM]+[triangleCKL])\&=frac 12s^2sin A-A-frac 12(s-c)^2sin(pi-B)-frac 12(s-b)^2sin(pi-C)\&=frac 12s^2sin A-A-frac 12(s-c)^2sin B-frac 12(s-b)^2sin Cendalign$$
Similarly, the areas of the other triangles formed with escribed circles are given by
$$frac 12s^2sin B-A-frac 12(s-a)^2sin C-frac 12(s-c)^2sin A$$
$$frac 12s^2sin C-A-frac 12(s-a)^2sin B-frac 12(s-b)^2sin A$$
Hence, from $(1)$, we have
$$2A+A_0-A_1-A_2-A_3$$$$=2A+A-frac 12(s-a)^2sin A-frac 12(s-b)^2sin B-frac 12(s-c)^2sin C-(frac 12s^2sin A-A-frac 12(s-c)^2sin B-frac 12(s-b)^2sin C)-(frac 12s^2sin B-A-frac 12(s-a)^2sin C-frac 12(s-c)^2sin A)-(frac 12s^2sin C-A-frac 12(s-a)^2sin B-frac 12(s-b)^2sin A)$$$$=6A+frac 12sin A(-(s-a)^2-s^2+(s-c)^2+(s-b)^2)$$$$+frac 12sin B(-(s-b)^2+(s-c)^2-s^2+(s-a)^2)$$$$+frac 12sin C(-(s-c)^2+(s-b)^2+(s-a)^2-s^2)$$$$=6A+frac 12sin A(-2bc)+frac 12sin B(-2ca)+frac 12sin C(-2ab)=6A-2A-2A-2A=0$$
edited Apr 21 '16 at 10:45
answered Apr 21 '16 at 9:19
mathlove
87.1k877208
87.1k877208
I do not understand how $CK=CL=s-b$ and $BK=BM=s-c$?@mathlove
â Vinod Kumar Punia
Apr 21 '16 at 10:52
1
@VinodKumarPunia: Since $a=BC=BK+KC=BM+CL$, we have $a+b+c=b+c+BM+CL=(b+CL)+(c+BM)=AL+AM$, and so we have $AL=AM=s$, from which $CK=CL=AL-AC=s-b$ and $BK=BM=AM-AB=s-c$ follow.
â mathlove
Apr 21 '16 at 11:11
How can we prove that $AE=AF=s-a,BD=BF=s-b,CD=CE=s-c$?@mathlove
â Vinod Kumar Punia
Apr 21 '16 at 11:18
1
@VinodKumarPunia: Let $AE=AF=x,BD=BF=y,CD=CE=z$. Solving $z+y=a,x+z=b,x+y=c$ will give you the answer.
â mathlove
Apr 21 '16 at 11:24
I got it,thank you very much.@mathlove
â Vinod Kumar Punia
Apr 21 '16 at 12:19
add a comment |Â
I do not understand how $CK=CL=s-b$ and $BK=BM=s-c$?@mathlove
â Vinod Kumar Punia
Apr 21 '16 at 10:52
1
@VinodKumarPunia: Since $a=BC=BK+KC=BM+CL$, we have $a+b+c=b+c+BM+CL=(b+CL)+(c+BM)=AL+AM$, and so we have $AL=AM=s$, from which $CK=CL=AL-AC=s-b$ and $BK=BM=AM-AB=s-c$ follow.
â mathlove
Apr 21 '16 at 11:11
How can we prove that $AE=AF=s-a,BD=BF=s-b,CD=CE=s-c$?@mathlove
â Vinod Kumar Punia
Apr 21 '16 at 11:18
1
@VinodKumarPunia: Let $AE=AF=x,BD=BF=y,CD=CE=z$. Solving $z+y=a,x+z=b,x+y=c$ will give you the answer.
â mathlove
Apr 21 '16 at 11:24
I got it,thank you very much.@mathlove
â Vinod Kumar Punia
Apr 21 '16 at 12:19
I do not understand how $CK=CL=s-b$ and $BK=BM=s-c$?@mathlove
â Vinod Kumar Punia
Apr 21 '16 at 10:52
I do not understand how $CK=CL=s-b$ and $BK=BM=s-c$?@mathlove
â Vinod Kumar Punia
Apr 21 '16 at 10:52
1
1
@VinodKumarPunia: Since $a=BC=BK+KC=BM+CL$, we have $a+b+c=b+c+BM+CL=(b+CL)+(c+BM)=AL+AM$, and so we have $AL=AM=s$, from which $CK=CL=AL-AC=s-b$ and $BK=BM=AM-AB=s-c$ follow.
â mathlove
Apr 21 '16 at 11:11
@VinodKumarPunia: Since $a=BC=BK+KC=BM+CL$, we have $a+b+c=b+c+BM+CL=(b+CL)+(c+BM)=AL+AM$, and so we have $AL=AM=s$, from which $CK=CL=AL-AC=s-b$ and $BK=BM=AM-AB=s-c$ follow.
â mathlove
Apr 21 '16 at 11:11
How can we prove that $AE=AF=s-a,BD=BF=s-b,CD=CE=s-c$?@mathlove
â Vinod Kumar Punia
Apr 21 '16 at 11:18
How can we prove that $AE=AF=s-a,BD=BF=s-b,CD=CE=s-c$?@mathlove
â Vinod Kumar Punia
Apr 21 '16 at 11:18
1
1
@VinodKumarPunia: Let $AE=AF=x,BD=BF=y,CD=CE=z$. Solving $z+y=a,x+z=b,x+y=c$ will give you the answer.
â mathlove
Apr 21 '16 at 11:24
@VinodKumarPunia: Let $AE=AF=x,BD=BF=y,CD=CE=z$. Solving $z+y=a,x+z=b,x+y=c$ will give you the answer.
â mathlove
Apr 21 '16 at 11:24
I got it,thank you very much.@mathlove
â Vinod Kumar Punia
Apr 21 '16 at 12:19
I got it,thank you very much.@mathlove
â Vinod Kumar Punia
Apr 21 '16 at 12:19
add a comment |Â
up vote
0
down vote
Hint:
$A_1=dfracA^22R(s-a)$ and $A_o=dfracA^22Rs$
Plug in the corresponding values in beginalign A_1+A_2+A_3-A_o&=dfracA^22Rcdotbigg[dfrac1s-a+dfrac1s-b+dfrac1s-c-dfrac1sbigg]\&=dfracA^22RcdotdfracabcA^2\&=dfrac2A^2cdot abc4Rcdot A^2\&=2A becauseA=fracabc4Rendalign
add a comment |Â
up vote
0
down vote
Hint:
$A_1=dfracA^22R(s-a)$ and $A_o=dfracA^22Rs$
Plug in the corresponding values in beginalign A_1+A_2+A_3-A_o&=dfracA^22Rcdotbigg[dfrac1s-a+dfrac1s-b+dfrac1s-c-dfrac1sbigg]\&=dfracA^22RcdotdfracabcA^2\&=dfrac2A^2cdot abc4Rcdot A^2\&=2A becauseA=fracabc4Rendalign
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Hint:
$A_1=dfracA^22R(s-a)$ and $A_o=dfracA^22Rs$
Plug in the corresponding values in beginalign A_1+A_2+A_3-A_o&=dfracA^22Rcdotbigg[dfrac1s-a+dfrac1s-b+dfrac1s-c-dfrac1sbigg]\&=dfracA^22RcdotdfracabcA^2\&=dfrac2A^2cdot abc4Rcdot A^2\&=2A becauseA=fracabc4Rendalign
Hint:
$A_1=dfracA^22R(s-a)$ and $A_o=dfracA^22Rs$
Plug in the corresponding values in beginalign A_1+A_2+A_3-A_o&=dfracA^22Rcdotbigg[dfrac1s-a+dfrac1s-b+dfrac1s-c-dfrac1sbigg]\&=dfracA^22RcdotdfracabcA^2\&=dfrac2A^2cdot abc4Rcdot A^2\&=2A becauseA=fracabc4Rendalign
edited Aug 17 at 4:39
answered Aug 17 at 4:24
mnulb
1,325620
1,325620
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1752445%2fprove-that-2aa-0-a-1a-2a-3-where-a-is-the-area-of-the-triangle-abc%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
can you be more explicit on how you define the "triangles thus formed with the escribed circles...". Is not clear...
â Chip
Apr 21 '16 at 8:30
The escribed circle opposite vertex $A$ touches $AB$ produced,$AC$ produced and $BC$,so $A_1$ is the area of triangle formed by points of contact of escribed circle with $BC,AB$ produced,$AC$ produced.Same for escribed circles opposite $B$ and $C.$
â Vinod Kumar Punia
Apr 21 '16 at 8:34