Borel-Cantelli-like inequality

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












I’m wondering if the following is true:



If $A_n subseteq [0,1]$ satisfies $m(A_n) geq epsilon > 0$, then $m(limsup A_n) > 0$.



Here $m$ is the Lebesgue measure.







share|cite|improve this question
























    up vote
    0
    down vote

    favorite












    I’m wondering if the following is true:



    If $A_n subseteq [0,1]$ satisfies $m(A_n) geq epsilon > 0$, then $m(limsup A_n) > 0$.



    Here $m$ is the Lebesgue measure.







    share|cite|improve this question






















      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      I’m wondering if the following is true:



      If $A_n subseteq [0,1]$ satisfies $m(A_n) geq epsilon > 0$, then $m(limsup A_n) > 0$.



      Here $m$ is the Lebesgue measure.







      share|cite|improve this question












      I’m wondering if the following is true:



      If $A_n subseteq [0,1]$ satisfies $m(A_n) geq epsilon > 0$, then $m(limsup A_n) > 0$.



      Here $m$ is the Lebesgue measure.









      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Aug 17 at 2:28









      Seh-kai

      1027




      1027




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          3
          down vote



          accepted










          Yes. Let $B_n = bigcup_kge n A_k.$ Then we have $B_1 supseteq B_2supseteqldots$ and $$m(B_n)ge m(A_n)ge epsilon$$ for all $n.$ Thus, using the downward measure continuity for finite measures, $$ mleft(limsup_j A_j right)=mleft(bigcap_nge 1 B_nright) = lim_n m(B_n)ge epsilon$$






          share|cite|improve this answer




















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );








             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2885338%2fborel-cantelli-like-inequality%23new-answer', 'question_page');

            );

            Post as a guest






























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            3
            down vote



            accepted










            Yes. Let $B_n = bigcup_kge n A_k.$ Then we have $B_1 supseteq B_2supseteqldots$ and $$m(B_n)ge m(A_n)ge epsilon$$ for all $n.$ Thus, using the downward measure continuity for finite measures, $$ mleft(limsup_j A_j right)=mleft(bigcap_nge 1 B_nright) = lim_n m(B_n)ge epsilon$$






            share|cite|improve this answer
























              up vote
              3
              down vote



              accepted










              Yes. Let $B_n = bigcup_kge n A_k.$ Then we have $B_1 supseteq B_2supseteqldots$ and $$m(B_n)ge m(A_n)ge epsilon$$ for all $n.$ Thus, using the downward measure continuity for finite measures, $$ mleft(limsup_j A_j right)=mleft(bigcap_nge 1 B_nright) = lim_n m(B_n)ge epsilon$$






              share|cite|improve this answer






















                up vote
                3
                down vote



                accepted







                up vote
                3
                down vote



                accepted






                Yes. Let $B_n = bigcup_kge n A_k.$ Then we have $B_1 supseteq B_2supseteqldots$ and $$m(B_n)ge m(A_n)ge epsilon$$ for all $n.$ Thus, using the downward measure continuity for finite measures, $$ mleft(limsup_j A_j right)=mleft(bigcap_nge 1 B_nright) = lim_n m(B_n)ge epsilon$$






                share|cite|improve this answer












                Yes. Let $B_n = bigcup_kge n A_k.$ Then we have $B_1 supseteq B_2supseteqldots$ and $$m(B_n)ge m(A_n)ge epsilon$$ for all $n.$ Thus, using the downward measure continuity for finite measures, $$ mleft(limsup_j A_j right)=mleft(bigcap_nge 1 B_nright) = lim_n m(B_n)ge epsilon$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Aug 17 at 3:51









                spaceisdarkgreen

                28k21548




                28k21548






















                     

                    draft saved


                    draft discarded


























                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2885338%2fborel-cantelli-like-inequality%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    這個網誌中的熱門文章

                    How to combine Bézier curves to a surface?

                    Mutual Information Always Non-negative

                    Why am i infinitely getting the same tweet with the Twitter Search API?