Sum of partition's product modulo 5 up to 41

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite
1












If we define $S(n)$ as



$4=3+1=2+2=2+1+1=1+1+1+1$



$S(4)=3cdot1+2cdot2+2cdot1cdot1+1cdot1cdot1cdot1=3+4+2+1=10$



$5=4+1=3+2=2+2+1=2+1+1+1=1+1+1+1+1$



$S(5)=4cdot1+3cdot2+2cdot2cdot1+2cdot1cdot1cdot1+1cdot1cdot1cdot1cdot1=4+6+4+2+1=20$



$6=5+1=4+2=4+1+1=3+3=3+2+1=3+1+1+1=2+2+2=2+2+1+1=2+1+1+1+1=1+1+1+1+1+1$



$S(6)=5cdot1+4cdot2+4cdot1cdot1+3cdot3+3cdot2cdot1+ 3cdot1cdot1cdot1+2cdot2cdot2+2cdot2cdot1cdot1+2cdot1cdot1cdot1cdot1+1cdot1cdot1cdot1cdot1cdot1=5+8+4+9+6+3+8+4+2+1=50$



so what quantity of $n$ up to $41$ which $S(n)equiv0pmod5$?










share|cite|improve this question





















  • See Ramanujan’s congruences.
    – sku
    Sep 1 at 14:40














up vote
1
down vote

favorite
1












If we define $S(n)$ as



$4=3+1=2+2=2+1+1=1+1+1+1$



$S(4)=3cdot1+2cdot2+2cdot1cdot1+1cdot1cdot1cdot1=3+4+2+1=10$



$5=4+1=3+2=2+2+1=2+1+1+1=1+1+1+1+1$



$S(5)=4cdot1+3cdot2+2cdot2cdot1+2cdot1cdot1cdot1+1cdot1cdot1cdot1cdot1=4+6+4+2+1=20$



$6=5+1=4+2=4+1+1=3+3=3+2+1=3+1+1+1=2+2+2=2+2+1+1=2+1+1+1+1=1+1+1+1+1+1$



$S(6)=5cdot1+4cdot2+4cdot1cdot1+3cdot3+3cdot2cdot1+ 3cdot1cdot1cdot1+2cdot2cdot2+2cdot2cdot1cdot1+2cdot1cdot1cdot1cdot1+1cdot1cdot1cdot1cdot1cdot1=5+8+4+9+6+3+8+4+2+1=50$



so what quantity of $n$ up to $41$ which $S(n)equiv0pmod5$?










share|cite|improve this question





















  • See Ramanujan’s congruences.
    – sku
    Sep 1 at 14:40












up vote
1
down vote

favorite
1









up vote
1
down vote

favorite
1






1





If we define $S(n)$ as



$4=3+1=2+2=2+1+1=1+1+1+1$



$S(4)=3cdot1+2cdot2+2cdot1cdot1+1cdot1cdot1cdot1=3+4+2+1=10$



$5=4+1=3+2=2+2+1=2+1+1+1=1+1+1+1+1$



$S(5)=4cdot1+3cdot2+2cdot2cdot1+2cdot1cdot1cdot1+1cdot1cdot1cdot1cdot1=4+6+4+2+1=20$



$6=5+1=4+2=4+1+1=3+3=3+2+1=3+1+1+1=2+2+2=2+2+1+1=2+1+1+1+1=1+1+1+1+1+1$



$S(6)=5cdot1+4cdot2+4cdot1cdot1+3cdot3+3cdot2cdot1+ 3cdot1cdot1cdot1+2cdot2cdot2+2cdot2cdot1cdot1+2cdot1cdot1cdot1cdot1+1cdot1cdot1cdot1cdot1cdot1=5+8+4+9+6+3+8+4+2+1=50$



so what quantity of $n$ up to $41$ which $S(n)equiv0pmod5$?










share|cite|improve this question













If we define $S(n)$ as



$4=3+1=2+2=2+1+1=1+1+1+1$



$S(4)=3cdot1+2cdot2+2cdot1cdot1+1cdot1cdot1cdot1=3+4+2+1=10$



$5=4+1=3+2=2+2+1=2+1+1+1=1+1+1+1+1$



$S(5)=4cdot1+3cdot2+2cdot2cdot1+2cdot1cdot1cdot1+1cdot1cdot1cdot1cdot1=4+6+4+2+1=20$



$6=5+1=4+2=4+1+1=3+3=3+2+1=3+1+1+1=2+2+2=2+2+1+1=2+1+1+1+1=1+1+1+1+1+1$



$S(6)=5cdot1+4cdot2+4cdot1cdot1+3cdot3+3cdot2cdot1+ 3cdot1cdot1cdot1+2cdot2cdot2+2cdot2cdot1cdot1+2cdot1cdot1cdot1cdot1+1cdot1cdot1cdot1cdot1cdot1=5+8+4+9+6+3+8+4+2+1=50$



so what quantity of $n$ up to $41$ which $S(n)equiv0pmod5$?







summation modules products integer-partitions






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Sep 1 at 7:20









user514787

58410




58410











  • See Ramanujan’s congruences.
    – sku
    Sep 1 at 14:40
















  • See Ramanujan’s congruences.
    – sku
    Sep 1 at 14:40















See Ramanujan’s congruences.
– sku
Sep 1 at 14:40




See Ramanujan’s congruences.
– sku
Sep 1 at 14:40










1 Answer
1






active

oldest

votes

















up vote
1
down vote













Rephrasing the question: let $S(n) = sum_lambda, vdash , n,, lambda_1 < n prod_i lambda_i$. Then what is $S(n) bmod 5$?



As a calculation strategy, define $S(n, k) = sum_lambda,vdash,n,, lambda_1 le k prod_i lambda_i$ to be the corresponding sum over partitions of $n$ into parts no greater than $k$, so that $S(n) = S(n, n-1)$. Then we can consider the largest part in each partition and find the recursion $S(n, k) = sum_j=1^min(k,n) j S(n - j, j)$ with base case $S(0, k) = 1$ as there is one partition of $0$ and it has an empty product.



Using this recursion it is easy to write a computer program to output a table of $S(n, k)$, but neither the table nor the values of $n$ for which $S(n, n-1) equiv 0 pmod 5$ are in OEIS, so this may not have been previously studied.






share|cite|improve this answer




















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2901458%2fsum-of-partitions-product-modulo-5-up-to-41%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote













    Rephrasing the question: let $S(n) = sum_lambda, vdash , n,, lambda_1 < n prod_i lambda_i$. Then what is $S(n) bmod 5$?



    As a calculation strategy, define $S(n, k) = sum_lambda,vdash,n,, lambda_1 le k prod_i lambda_i$ to be the corresponding sum over partitions of $n$ into parts no greater than $k$, so that $S(n) = S(n, n-1)$. Then we can consider the largest part in each partition and find the recursion $S(n, k) = sum_j=1^min(k,n) j S(n - j, j)$ with base case $S(0, k) = 1$ as there is one partition of $0$ and it has an empty product.



    Using this recursion it is easy to write a computer program to output a table of $S(n, k)$, but neither the table nor the values of $n$ for which $S(n, n-1) equiv 0 pmod 5$ are in OEIS, so this may not have been previously studied.






    share|cite|improve this answer
























      up vote
      1
      down vote













      Rephrasing the question: let $S(n) = sum_lambda, vdash , n,, lambda_1 < n prod_i lambda_i$. Then what is $S(n) bmod 5$?



      As a calculation strategy, define $S(n, k) = sum_lambda,vdash,n,, lambda_1 le k prod_i lambda_i$ to be the corresponding sum over partitions of $n$ into parts no greater than $k$, so that $S(n) = S(n, n-1)$. Then we can consider the largest part in each partition and find the recursion $S(n, k) = sum_j=1^min(k,n) j S(n - j, j)$ with base case $S(0, k) = 1$ as there is one partition of $0$ and it has an empty product.



      Using this recursion it is easy to write a computer program to output a table of $S(n, k)$, but neither the table nor the values of $n$ for which $S(n, n-1) equiv 0 pmod 5$ are in OEIS, so this may not have been previously studied.






      share|cite|improve this answer






















        up vote
        1
        down vote










        up vote
        1
        down vote









        Rephrasing the question: let $S(n) = sum_lambda, vdash , n,, lambda_1 < n prod_i lambda_i$. Then what is $S(n) bmod 5$?



        As a calculation strategy, define $S(n, k) = sum_lambda,vdash,n,, lambda_1 le k prod_i lambda_i$ to be the corresponding sum over partitions of $n$ into parts no greater than $k$, so that $S(n) = S(n, n-1)$. Then we can consider the largest part in each partition and find the recursion $S(n, k) = sum_j=1^min(k,n) j S(n - j, j)$ with base case $S(0, k) = 1$ as there is one partition of $0$ and it has an empty product.



        Using this recursion it is easy to write a computer program to output a table of $S(n, k)$, but neither the table nor the values of $n$ for which $S(n, n-1) equiv 0 pmod 5$ are in OEIS, so this may not have been previously studied.






        share|cite|improve this answer












        Rephrasing the question: let $S(n) = sum_lambda, vdash , n,, lambda_1 < n prod_i lambda_i$. Then what is $S(n) bmod 5$?



        As a calculation strategy, define $S(n, k) = sum_lambda,vdash,n,, lambda_1 le k prod_i lambda_i$ to be the corresponding sum over partitions of $n$ into parts no greater than $k$, so that $S(n) = S(n, n-1)$. Then we can consider the largest part in each partition and find the recursion $S(n, k) = sum_j=1^min(k,n) j S(n - j, j)$ with base case $S(0, k) = 1$ as there is one partition of $0$ and it has an empty product.



        Using this recursion it is easy to write a computer program to output a table of $S(n, k)$, but neither the table nor the values of $n$ for which $S(n, n-1) equiv 0 pmod 5$ are in OEIS, so this may not have been previously studied.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Sep 8 at 22:54









        Peter Taylor

        7,99712240




        7,99712240



























             

            draft saved


            draft discarded















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2901458%2fsum-of-partitions-product-modulo-5-up-to-41%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            How to combine Bézier curves to a surface?

            Mutual Information Always Non-negative

            Why am i infinitely getting the same tweet with the Twitter Search API?