Sum of partition's product modulo 5 up to 41
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
If we define $S(n)$ as
$4=3+1=2+2=2+1+1=1+1+1+1$
$S(4)=3cdot1+2cdot2+2cdot1cdot1+1cdot1cdot1cdot1=3+4+2+1=10$
$5=4+1=3+2=2+2+1=2+1+1+1=1+1+1+1+1$
$S(5)=4cdot1+3cdot2+2cdot2cdot1+2cdot1cdot1cdot1+1cdot1cdot1cdot1cdot1=4+6+4+2+1=20$
$6=5+1=4+2=4+1+1=3+3=3+2+1=3+1+1+1=2+2+2=2+2+1+1=2+1+1+1+1=1+1+1+1+1+1$
$S(6)=5cdot1+4cdot2+4cdot1cdot1+3cdot3+3cdot2cdot1+ 3cdot1cdot1cdot1+2cdot2cdot2+2cdot2cdot1cdot1+2cdot1cdot1cdot1cdot1+1cdot1cdot1cdot1cdot1cdot1=5+8+4+9+6+3+8+4+2+1=50$
so what quantity of $n$ up to $41$ which $S(n)equiv0pmod5$?
summation modules products integer-partitions
add a comment |Â
up vote
1
down vote
favorite
If we define $S(n)$ as
$4=3+1=2+2=2+1+1=1+1+1+1$
$S(4)=3cdot1+2cdot2+2cdot1cdot1+1cdot1cdot1cdot1=3+4+2+1=10$
$5=4+1=3+2=2+2+1=2+1+1+1=1+1+1+1+1$
$S(5)=4cdot1+3cdot2+2cdot2cdot1+2cdot1cdot1cdot1+1cdot1cdot1cdot1cdot1=4+6+4+2+1=20$
$6=5+1=4+2=4+1+1=3+3=3+2+1=3+1+1+1=2+2+2=2+2+1+1=2+1+1+1+1=1+1+1+1+1+1$
$S(6)=5cdot1+4cdot2+4cdot1cdot1+3cdot3+3cdot2cdot1+ 3cdot1cdot1cdot1+2cdot2cdot2+2cdot2cdot1cdot1+2cdot1cdot1cdot1cdot1+1cdot1cdot1cdot1cdot1cdot1=5+8+4+9+6+3+8+4+2+1=50$
so what quantity of $n$ up to $41$ which $S(n)equiv0pmod5$?
summation modules products integer-partitions
See RamanujanâÂÂs congruences.
â sku
Sep 1 at 14:40
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
If we define $S(n)$ as
$4=3+1=2+2=2+1+1=1+1+1+1$
$S(4)=3cdot1+2cdot2+2cdot1cdot1+1cdot1cdot1cdot1=3+4+2+1=10$
$5=4+1=3+2=2+2+1=2+1+1+1=1+1+1+1+1$
$S(5)=4cdot1+3cdot2+2cdot2cdot1+2cdot1cdot1cdot1+1cdot1cdot1cdot1cdot1=4+6+4+2+1=20$
$6=5+1=4+2=4+1+1=3+3=3+2+1=3+1+1+1=2+2+2=2+2+1+1=2+1+1+1+1=1+1+1+1+1+1$
$S(6)=5cdot1+4cdot2+4cdot1cdot1+3cdot3+3cdot2cdot1+ 3cdot1cdot1cdot1+2cdot2cdot2+2cdot2cdot1cdot1+2cdot1cdot1cdot1cdot1+1cdot1cdot1cdot1cdot1cdot1=5+8+4+9+6+3+8+4+2+1=50$
so what quantity of $n$ up to $41$ which $S(n)equiv0pmod5$?
summation modules products integer-partitions
If we define $S(n)$ as
$4=3+1=2+2=2+1+1=1+1+1+1$
$S(4)=3cdot1+2cdot2+2cdot1cdot1+1cdot1cdot1cdot1=3+4+2+1=10$
$5=4+1=3+2=2+2+1=2+1+1+1=1+1+1+1+1$
$S(5)=4cdot1+3cdot2+2cdot2cdot1+2cdot1cdot1cdot1+1cdot1cdot1cdot1cdot1=4+6+4+2+1=20$
$6=5+1=4+2=4+1+1=3+3=3+2+1=3+1+1+1=2+2+2=2+2+1+1=2+1+1+1+1=1+1+1+1+1+1$
$S(6)=5cdot1+4cdot2+4cdot1cdot1+3cdot3+3cdot2cdot1+ 3cdot1cdot1cdot1+2cdot2cdot2+2cdot2cdot1cdot1+2cdot1cdot1cdot1cdot1+1cdot1cdot1cdot1cdot1cdot1=5+8+4+9+6+3+8+4+2+1=50$
so what quantity of $n$ up to $41$ which $S(n)equiv0pmod5$?
summation modules products integer-partitions
summation modules products integer-partitions
asked Sep 1 at 7:20
user514787
58410
58410
See RamanujanâÂÂs congruences.
â sku
Sep 1 at 14:40
add a comment |Â
See RamanujanâÂÂs congruences.
â sku
Sep 1 at 14:40
See RamanujanâÂÂs congruences.
â sku
Sep 1 at 14:40
See RamanujanâÂÂs congruences.
â sku
Sep 1 at 14:40
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
Rephrasing the question: let $S(n) = sum_lambda, vdash , n,, lambda_1 < n prod_i lambda_i$. Then what is $S(n) bmod 5$?
As a calculation strategy, define $S(n, k) = sum_lambda,vdash,n,, lambda_1 le k prod_i lambda_i$ to be the corresponding sum over partitions of $n$ into parts no greater than $k$, so that $S(n) = S(n, n-1)$. Then we can consider the largest part in each partition and find the recursion $S(n, k) = sum_j=1^min(k,n) j S(n - j, j)$ with base case $S(0, k) = 1$ as there is one partition of $0$ and it has an empty product.
Using this recursion it is easy to write a computer program to output a table of $S(n, k)$, but neither the table nor the values of $n$ for which $S(n, n-1) equiv 0 pmod 5$ are in OEIS, so this may not have been previously studied.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
Rephrasing the question: let $S(n) = sum_lambda, vdash , n,, lambda_1 < n prod_i lambda_i$. Then what is $S(n) bmod 5$?
As a calculation strategy, define $S(n, k) = sum_lambda,vdash,n,, lambda_1 le k prod_i lambda_i$ to be the corresponding sum over partitions of $n$ into parts no greater than $k$, so that $S(n) = S(n, n-1)$. Then we can consider the largest part in each partition and find the recursion $S(n, k) = sum_j=1^min(k,n) j S(n - j, j)$ with base case $S(0, k) = 1$ as there is one partition of $0$ and it has an empty product.
Using this recursion it is easy to write a computer program to output a table of $S(n, k)$, but neither the table nor the values of $n$ for which $S(n, n-1) equiv 0 pmod 5$ are in OEIS, so this may not have been previously studied.
add a comment |Â
up vote
1
down vote
Rephrasing the question: let $S(n) = sum_lambda, vdash , n,, lambda_1 < n prod_i lambda_i$. Then what is $S(n) bmod 5$?
As a calculation strategy, define $S(n, k) = sum_lambda,vdash,n,, lambda_1 le k prod_i lambda_i$ to be the corresponding sum over partitions of $n$ into parts no greater than $k$, so that $S(n) = S(n, n-1)$. Then we can consider the largest part in each partition and find the recursion $S(n, k) = sum_j=1^min(k,n) j S(n - j, j)$ with base case $S(0, k) = 1$ as there is one partition of $0$ and it has an empty product.
Using this recursion it is easy to write a computer program to output a table of $S(n, k)$, but neither the table nor the values of $n$ for which $S(n, n-1) equiv 0 pmod 5$ are in OEIS, so this may not have been previously studied.
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Rephrasing the question: let $S(n) = sum_lambda, vdash , n,, lambda_1 < n prod_i lambda_i$. Then what is $S(n) bmod 5$?
As a calculation strategy, define $S(n, k) = sum_lambda,vdash,n,, lambda_1 le k prod_i lambda_i$ to be the corresponding sum over partitions of $n$ into parts no greater than $k$, so that $S(n) = S(n, n-1)$. Then we can consider the largest part in each partition and find the recursion $S(n, k) = sum_j=1^min(k,n) j S(n - j, j)$ with base case $S(0, k) = 1$ as there is one partition of $0$ and it has an empty product.
Using this recursion it is easy to write a computer program to output a table of $S(n, k)$, but neither the table nor the values of $n$ for which $S(n, n-1) equiv 0 pmod 5$ are in OEIS, so this may not have been previously studied.
Rephrasing the question: let $S(n) = sum_lambda, vdash , n,, lambda_1 < n prod_i lambda_i$. Then what is $S(n) bmod 5$?
As a calculation strategy, define $S(n, k) = sum_lambda,vdash,n,, lambda_1 le k prod_i lambda_i$ to be the corresponding sum over partitions of $n$ into parts no greater than $k$, so that $S(n) = S(n, n-1)$. Then we can consider the largest part in each partition and find the recursion $S(n, k) = sum_j=1^min(k,n) j S(n - j, j)$ with base case $S(0, k) = 1$ as there is one partition of $0$ and it has an empty product.
Using this recursion it is easy to write a computer program to output a table of $S(n, k)$, but neither the table nor the values of $n$ for which $S(n, n-1) equiv 0 pmod 5$ are in OEIS, so this may not have been previously studied.
answered Sep 8 at 22:54
Peter Taylor
7,99712240
7,99712240
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2901458%2fsum-of-partitions-product-modulo-5-up-to-41%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
See RamanujanâÂÂs congruences.
â sku
Sep 1 at 14:40