Example of not quasi-regular mapping

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












Example : (1) If $f : mathbbR^2rightarrow mathbbR^2,
f(x)=Ccdot x$ is dilation, then it is bi-Lipschitz map.



(2) More generally, we consider an inversion
$f:mathbbR^2-orightarrow mathbbR^2-o,
(x)=fracxx$. By a direct computation, we have $$ 0<|
Df|^2leq 2cdot J ast $$ at any point where $|A|=sqrtsum_i,j
A_ij^2$ and $J=|rm det Df|$.



If $g: mathbbR^2times
0rightarrow mathbbS^2, g(x,y) = frac11+r^2
(x,y,frac-1+r^22)$, i.e. stereographic projection, then $g$
satisfies $ast$.



(3) If $f=id: (M^n,g) rightarrow (M^n,kg)$ where $k>0$, then $J=k^n=n^-n/2|Df|^n$.



Definition : $f:Xrightarrow Y$ between $n$-dimensional manifolds is a quasi-regular map if $ 0<| Df|^nleq Ccdot J$ for global constant $C$.




Question : In the definition, any smooth map $f: Xrightarrow Y$ with $Jneq 0 $ is a quasi-regular map ?











share|cite|improve this question























  • Interesting. This question might contain some ideas, maybe.
    – Giuseppe Negro
    Sep 1 at 12:40














up vote
1
down vote

favorite












Example : (1) If $f : mathbbR^2rightarrow mathbbR^2,
f(x)=Ccdot x$ is dilation, then it is bi-Lipschitz map.



(2) More generally, we consider an inversion
$f:mathbbR^2-orightarrow mathbbR^2-o,
(x)=fracxx$. By a direct computation, we have $$ 0<|
Df|^2leq 2cdot J ast $$ at any point where $|A|=sqrtsum_i,j
A_ij^2$ and $J=|rm det Df|$.



If $g: mathbbR^2times
0rightarrow mathbbS^2, g(x,y) = frac11+r^2
(x,y,frac-1+r^22)$, i.e. stereographic projection, then $g$
satisfies $ast$.



(3) If $f=id: (M^n,g) rightarrow (M^n,kg)$ where $k>0$, then $J=k^n=n^-n/2|Df|^n$.



Definition : $f:Xrightarrow Y$ between $n$-dimensional manifolds is a quasi-regular map if $ 0<| Df|^nleq Ccdot J$ for global constant $C$.




Question : In the definition, any smooth map $f: Xrightarrow Y$ with $Jneq 0 $ is a quasi-regular map ?











share|cite|improve this question























  • Interesting. This question might contain some ideas, maybe.
    – Giuseppe Negro
    Sep 1 at 12:40












up vote
1
down vote

favorite









up vote
1
down vote

favorite











Example : (1) If $f : mathbbR^2rightarrow mathbbR^2,
f(x)=Ccdot x$ is dilation, then it is bi-Lipschitz map.



(2) More generally, we consider an inversion
$f:mathbbR^2-orightarrow mathbbR^2-o,
(x)=fracxx$. By a direct computation, we have $$ 0<|
Df|^2leq 2cdot J ast $$ at any point where $|A|=sqrtsum_i,j
A_ij^2$ and $J=|rm det Df|$.



If $g: mathbbR^2times
0rightarrow mathbbS^2, g(x,y) = frac11+r^2
(x,y,frac-1+r^22)$, i.e. stereographic projection, then $g$
satisfies $ast$.



(3) If $f=id: (M^n,g) rightarrow (M^n,kg)$ where $k>0$, then $J=k^n=n^-n/2|Df|^n$.



Definition : $f:Xrightarrow Y$ between $n$-dimensional manifolds is a quasi-regular map if $ 0<| Df|^nleq Ccdot J$ for global constant $C$.




Question : In the definition, any smooth map $f: Xrightarrow Y$ with $Jneq 0 $ is a quasi-regular map ?











share|cite|improve this question















Example : (1) If $f : mathbbR^2rightarrow mathbbR^2,
f(x)=Ccdot x$ is dilation, then it is bi-Lipschitz map.



(2) More generally, we consider an inversion
$f:mathbbR^2-orightarrow mathbbR^2-o,
(x)=fracxx$. By a direct computation, we have $$ 0<|
Df|^2leq 2cdot J ast $$ at any point where $|A|=sqrtsum_i,j
A_ij^2$ and $J=|rm det Df|$.



If $g: mathbbR^2times
0rightarrow mathbbS^2, g(x,y) = frac11+r^2
(x,y,frac-1+r^22)$, i.e. stereographic projection, then $g$
satisfies $ast$.



(3) If $f=id: (M^n,g) rightarrow (M^n,kg)$ where $k>0$, then $J=k^n=n^-n/2|Df|^n$.



Definition : $f:Xrightarrow Y$ between $n$-dimensional manifolds is a quasi-regular map if $ 0<| Df|^nleq Ccdot J$ for global constant $C$.




Question : In the definition, any smooth map $f: Xrightarrow Y$ with $Jneq 0 $ is a quasi-regular map ?








differential-geometry isometry smooth-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Sep 1 at 12:58









Giuseppe Negro

16.1k328117




16.1k328117










asked Sep 1 at 4:54









HK Lee

13.5k41856




13.5k41856











  • Interesting. This question might contain some ideas, maybe.
    – Giuseppe Negro
    Sep 1 at 12:40
















  • Interesting. This question might contain some ideas, maybe.
    – Giuseppe Negro
    Sep 1 at 12:40















Interesting. This question might contain some ideas, maybe.
– Giuseppe Negro
Sep 1 at 12:40




Interesting. This question might contain some ideas, maybe.
– Giuseppe Negro
Sep 1 at 12:40










1 Answer
1






active

oldest

votes

















up vote
1
down vote



accepted










SHORT ANSWER. The answer is negative. The mapping $fcolon (0, infty)^2to (0, infty)^2$ defined as $f(x, y)=(x, sqrt y)$ is smooth and not quasi-regular.




LONG ANSWER (Prior to edit).



If I understand it correctly, the answer is negative. Let $fcolon mathbb R^nto mathbb R^n$ be a smooth function, let $xin mathbb R^n$ be fixed and denote
$$
A:=Df(x).$$
Now $A$ is an $ntimes n$ matrix, and the question asks whether
$$tag1|A|^nle C|det A|$$
holds for an absolute constant $C>0$, where
$$
|A|:=max |Ax|_mathbb R^n / |x|_mathbb R^n.$$
But (1) cannot hold, for the matrix
$$
A_epsilon:=beginbmatrix 1 & 0 \ 0 & epsilonendbmatrix$$
is such that $|A_epsilon|=1$ and $det A_epsilon=epsilon$, and $epsilon$ can be made as small as we wish.






share|cite|improve this answer


















  • 1




    $x, y>0$ Then define $f(x,y)=(x,sqrty)$
    – HK Lee
    Sep 1 at 12:56










  • @HKLee: Yes, agreed. For that function, $Df(x, y)$ is close to singular as $yto infty$ but $|Df(x, y)|=1$ for all $(x, y)$.
    – Giuseppe Negro
    Sep 1 at 12:57










Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2901377%2fexample-of-not-quasi-regular-mapping%23new-answer', 'question_page');

);

Post as a guest






























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
1
down vote



accepted










SHORT ANSWER. The answer is negative. The mapping $fcolon (0, infty)^2to (0, infty)^2$ defined as $f(x, y)=(x, sqrt y)$ is smooth and not quasi-regular.




LONG ANSWER (Prior to edit).



If I understand it correctly, the answer is negative. Let $fcolon mathbb R^nto mathbb R^n$ be a smooth function, let $xin mathbb R^n$ be fixed and denote
$$
A:=Df(x).$$
Now $A$ is an $ntimes n$ matrix, and the question asks whether
$$tag1|A|^nle C|det A|$$
holds for an absolute constant $C>0$, where
$$
|A|:=max |Ax|_mathbb R^n / |x|_mathbb R^n.$$
But (1) cannot hold, for the matrix
$$
A_epsilon:=beginbmatrix 1 & 0 \ 0 & epsilonendbmatrix$$
is such that $|A_epsilon|=1$ and $det A_epsilon=epsilon$, and $epsilon$ can be made as small as we wish.






share|cite|improve this answer


















  • 1




    $x, y>0$ Then define $f(x,y)=(x,sqrty)$
    – HK Lee
    Sep 1 at 12:56










  • @HKLee: Yes, agreed. For that function, $Df(x, y)$ is close to singular as $yto infty$ but $|Df(x, y)|=1$ for all $(x, y)$.
    – Giuseppe Negro
    Sep 1 at 12:57














up vote
1
down vote



accepted










SHORT ANSWER. The answer is negative. The mapping $fcolon (0, infty)^2to (0, infty)^2$ defined as $f(x, y)=(x, sqrt y)$ is smooth and not quasi-regular.




LONG ANSWER (Prior to edit).



If I understand it correctly, the answer is negative. Let $fcolon mathbb R^nto mathbb R^n$ be a smooth function, let $xin mathbb R^n$ be fixed and denote
$$
A:=Df(x).$$
Now $A$ is an $ntimes n$ matrix, and the question asks whether
$$tag1|A|^nle C|det A|$$
holds for an absolute constant $C>0$, where
$$
|A|:=max |Ax|_mathbb R^n / |x|_mathbb R^n.$$
But (1) cannot hold, for the matrix
$$
A_epsilon:=beginbmatrix 1 & 0 \ 0 & epsilonendbmatrix$$
is such that $|A_epsilon|=1$ and $det A_epsilon=epsilon$, and $epsilon$ can be made as small as we wish.






share|cite|improve this answer


















  • 1




    $x, y>0$ Then define $f(x,y)=(x,sqrty)$
    – HK Lee
    Sep 1 at 12:56










  • @HKLee: Yes, agreed. For that function, $Df(x, y)$ is close to singular as $yto infty$ but $|Df(x, y)|=1$ for all $(x, y)$.
    – Giuseppe Negro
    Sep 1 at 12:57












up vote
1
down vote



accepted







up vote
1
down vote



accepted






SHORT ANSWER. The answer is negative. The mapping $fcolon (0, infty)^2to (0, infty)^2$ defined as $f(x, y)=(x, sqrt y)$ is smooth and not quasi-regular.




LONG ANSWER (Prior to edit).



If I understand it correctly, the answer is negative. Let $fcolon mathbb R^nto mathbb R^n$ be a smooth function, let $xin mathbb R^n$ be fixed and denote
$$
A:=Df(x).$$
Now $A$ is an $ntimes n$ matrix, and the question asks whether
$$tag1|A|^nle C|det A|$$
holds for an absolute constant $C>0$, where
$$
|A|:=max |Ax|_mathbb R^n / |x|_mathbb R^n.$$
But (1) cannot hold, for the matrix
$$
A_epsilon:=beginbmatrix 1 & 0 \ 0 & epsilonendbmatrix$$
is such that $|A_epsilon|=1$ and $det A_epsilon=epsilon$, and $epsilon$ can be made as small as we wish.






share|cite|improve this answer














SHORT ANSWER. The answer is negative. The mapping $fcolon (0, infty)^2to (0, infty)^2$ defined as $f(x, y)=(x, sqrt y)$ is smooth and not quasi-regular.




LONG ANSWER (Prior to edit).



If I understand it correctly, the answer is negative. Let $fcolon mathbb R^nto mathbb R^n$ be a smooth function, let $xin mathbb R^n$ be fixed and denote
$$
A:=Df(x).$$
Now $A$ is an $ntimes n$ matrix, and the question asks whether
$$tag1|A|^nle C|det A|$$
holds for an absolute constant $C>0$, where
$$
|A|:=max |Ax|_mathbb R^n / |x|_mathbb R^n.$$
But (1) cannot hold, for the matrix
$$
A_epsilon:=beginbmatrix 1 & 0 \ 0 & epsilonendbmatrix$$
is such that $|A_epsilon|=1$ and $det A_epsilon=epsilon$, and $epsilon$ can be made as small as we wish.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Sep 1 at 13:00

























answered Sep 1 at 12:49









Giuseppe Negro

16.1k328117




16.1k328117







  • 1




    $x, y>0$ Then define $f(x,y)=(x,sqrty)$
    – HK Lee
    Sep 1 at 12:56










  • @HKLee: Yes, agreed. For that function, $Df(x, y)$ is close to singular as $yto infty$ but $|Df(x, y)|=1$ for all $(x, y)$.
    – Giuseppe Negro
    Sep 1 at 12:57












  • 1




    $x, y>0$ Then define $f(x,y)=(x,sqrty)$
    – HK Lee
    Sep 1 at 12:56










  • @HKLee: Yes, agreed. For that function, $Df(x, y)$ is close to singular as $yto infty$ but $|Df(x, y)|=1$ for all $(x, y)$.
    – Giuseppe Negro
    Sep 1 at 12:57







1




1




$x, y>0$ Then define $f(x,y)=(x,sqrty)$
– HK Lee
Sep 1 at 12:56




$x, y>0$ Then define $f(x,y)=(x,sqrty)$
– HK Lee
Sep 1 at 12:56












@HKLee: Yes, agreed. For that function, $Df(x, y)$ is close to singular as $yto infty$ but $|Df(x, y)|=1$ for all $(x, y)$.
– Giuseppe Negro
Sep 1 at 12:57




@HKLee: Yes, agreed. For that function, $Df(x, y)$ is close to singular as $yto infty$ but $|Df(x, y)|=1$ for all $(x, y)$.
– Giuseppe Negro
Sep 1 at 12:57

















 

draft saved


draft discarded















































 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2901377%2fexample-of-not-quasi-regular-mapping%23new-answer', 'question_page');

);

Post as a guest













































































這個網誌中的熱門文章

How to combine Bézier curves to a surface?

Mutual Information Always Non-negative

Why am i infinitely getting the same tweet with the Twitter Search API?