Example of not quasi-regular mapping
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Example : (1) If $f : mathbbR^2rightarrow mathbbR^2,
f(x)=Ccdot x$ is dilation, then it is bi-Lipschitz map.
(2) More generally, we consider an inversion
$f:mathbbR^2-orightarrow mathbbR^2-o,
(x)=fracxx$. By a direct computation, we have $$ 0<|
Df|^2leq 2cdot J ast $$ at any point where $|A|=sqrtsum_i,j
A_ij^2$ and $J=|rm det Df|$.
If $g: mathbbR^2times
0rightarrow mathbbS^2, g(x,y) = frac11+r^2
(x,y,frac-1+r^22)$, i.e. stereographic projection, then $g$
satisfies $ast$.
(3) If $f=id: (M^n,g) rightarrow (M^n,kg)$ where $k>0$, then $J=k^n=n^-n/2|Df|^n$.
Definition : $f:Xrightarrow Y$ between $n$-dimensional manifolds is a quasi-regular map if $ 0<| Df|^nleq Ccdot J$ for global constant $C$.
Question : In the definition, any smooth map $f: Xrightarrow Y$ with $Jneq 0 $ is a quasi-regular map ?
differential-geometry isometry smooth-functions
add a comment |Â
up vote
1
down vote
favorite
Example : (1) If $f : mathbbR^2rightarrow mathbbR^2,
f(x)=Ccdot x$ is dilation, then it is bi-Lipschitz map.
(2) More generally, we consider an inversion
$f:mathbbR^2-orightarrow mathbbR^2-o,
(x)=fracxx$. By a direct computation, we have $$ 0<|
Df|^2leq 2cdot J ast $$ at any point where $|A|=sqrtsum_i,j
A_ij^2$ and $J=|rm det Df|$.
If $g: mathbbR^2times
0rightarrow mathbbS^2, g(x,y) = frac11+r^2
(x,y,frac-1+r^22)$, i.e. stereographic projection, then $g$
satisfies $ast$.
(3) If $f=id: (M^n,g) rightarrow (M^n,kg)$ where $k>0$, then $J=k^n=n^-n/2|Df|^n$.
Definition : $f:Xrightarrow Y$ between $n$-dimensional manifolds is a quasi-regular map if $ 0<| Df|^nleq Ccdot J$ for global constant $C$.
Question : In the definition, any smooth map $f: Xrightarrow Y$ with $Jneq 0 $ is a quasi-regular map ?
differential-geometry isometry smooth-functions
Interesting. This question might contain some ideas, maybe.
â Giuseppe Negro
Sep 1 at 12:40
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Example : (1) If $f : mathbbR^2rightarrow mathbbR^2,
f(x)=Ccdot x$ is dilation, then it is bi-Lipschitz map.
(2) More generally, we consider an inversion
$f:mathbbR^2-orightarrow mathbbR^2-o,
(x)=fracxx$. By a direct computation, we have $$ 0<|
Df|^2leq 2cdot J ast $$ at any point where $|A|=sqrtsum_i,j
A_ij^2$ and $J=|rm det Df|$.
If $g: mathbbR^2times
0rightarrow mathbbS^2, g(x,y) = frac11+r^2
(x,y,frac-1+r^22)$, i.e. stereographic projection, then $g$
satisfies $ast$.
(3) If $f=id: (M^n,g) rightarrow (M^n,kg)$ where $k>0$, then $J=k^n=n^-n/2|Df|^n$.
Definition : $f:Xrightarrow Y$ between $n$-dimensional manifolds is a quasi-regular map if $ 0<| Df|^nleq Ccdot J$ for global constant $C$.
Question : In the definition, any smooth map $f: Xrightarrow Y$ with $Jneq 0 $ is a quasi-regular map ?
differential-geometry isometry smooth-functions
Example : (1) If $f : mathbbR^2rightarrow mathbbR^2,
f(x)=Ccdot x$ is dilation, then it is bi-Lipschitz map.
(2) More generally, we consider an inversion
$f:mathbbR^2-orightarrow mathbbR^2-o,
(x)=fracxx$. By a direct computation, we have $$ 0<|
Df|^2leq 2cdot J ast $$ at any point where $|A|=sqrtsum_i,j
A_ij^2$ and $J=|rm det Df|$.
If $g: mathbbR^2times
0rightarrow mathbbS^2, g(x,y) = frac11+r^2
(x,y,frac-1+r^22)$, i.e. stereographic projection, then $g$
satisfies $ast$.
(3) If $f=id: (M^n,g) rightarrow (M^n,kg)$ where $k>0$, then $J=k^n=n^-n/2|Df|^n$.
Definition : $f:Xrightarrow Y$ between $n$-dimensional manifolds is a quasi-regular map if $ 0<| Df|^nleq Ccdot J$ for global constant $C$.
Question : In the definition, any smooth map $f: Xrightarrow Y$ with $Jneq 0 $ is a quasi-regular map ?
differential-geometry isometry smooth-functions
differential-geometry isometry smooth-functions
edited Sep 1 at 12:58
Giuseppe Negro
16.1k328117
16.1k328117
asked Sep 1 at 4:54
HK Lee
13.5k41856
13.5k41856
Interesting. This question might contain some ideas, maybe.
â Giuseppe Negro
Sep 1 at 12:40
add a comment |Â
Interesting. This question might contain some ideas, maybe.
â Giuseppe Negro
Sep 1 at 12:40
Interesting. This question might contain some ideas, maybe.
â Giuseppe Negro
Sep 1 at 12:40
Interesting. This question might contain some ideas, maybe.
â Giuseppe Negro
Sep 1 at 12:40
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
SHORT ANSWER. The answer is negative. The mapping $fcolon (0, infty)^2to (0, infty)^2$ defined as $f(x, y)=(x, sqrt y)$ is smooth and not quasi-regular.
LONG ANSWER (Prior to edit).
If I understand it correctly, the answer is negative. Let $fcolon mathbb R^nto mathbb R^n$ be a smooth function, let $xin mathbb R^n$ be fixed and denote
$$
A:=Df(x).$$
Now $A$ is an $ntimes n$ matrix, and the question asks whether
$$tag1|A|^nle C|det A|$$
holds for an absolute constant $C>0$, where
$$
|A|:=max |Ax|_mathbb R^n / |x|_mathbb R^n.$$
But (1) cannot hold, for the matrix
$$
A_epsilon:=beginbmatrix 1 & 0 \ 0 & epsilonendbmatrix$$
is such that $|A_epsilon|=1$ and $det A_epsilon=epsilon$, and $epsilon$ can be made as small as we wish.
1
$x, y>0$ Then define $f(x,y)=(x,sqrty)$
â HK Lee
Sep 1 at 12:56
@HKLee: Yes, agreed. For that function, $Df(x, y)$ is close to singular as $yto infty$ but $|Df(x, y)|=1$ for all $(x, y)$.
â Giuseppe Negro
Sep 1 at 12:57
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
SHORT ANSWER. The answer is negative. The mapping $fcolon (0, infty)^2to (0, infty)^2$ defined as $f(x, y)=(x, sqrt y)$ is smooth and not quasi-regular.
LONG ANSWER (Prior to edit).
If I understand it correctly, the answer is negative. Let $fcolon mathbb R^nto mathbb R^n$ be a smooth function, let $xin mathbb R^n$ be fixed and denote
$$
A:=Df(x).$$
Now $A$ is an $ntimes n$ matrix, and the question asks whether
$$tag1|A|^nle C|det A|$$
holds for an absolute constant $C>0$, where
$$
|A|:=max |Ax|_mathbb R^n / |x|_mathbb R^n.$$
But (1) cannot hold, for the matrix
$$
A_epsilon:=beginbmatrix 1 & 0 \ 0 & epsilonendbmatrix$$
is such that $|A_epsilon|=1$ and $det A_epsilon=epsilon$, and $epsilon$ can be made as small as we wish.
1
$x, y>0$ Then define $f(x,y)=(x,sqrty)$
â HK Lee
Sep 1 at 12:56
@HKLee: Yes, agreed. For that function, $Df(x, y)$ is close to singular as $yto infty$ but $|Df(x, y)|=1$ for all $(x, y)$.
â Giuseppe Negro
Sep 1 at 12:57
add a comment |Â
up vote
1
down vote
accepted
SHORT ANSWER. The answer is negative. The mapping $fcolon (0, infty)^2to (0, infty)^2$ defined as $f(x, y)=(x, sqrt y)$ is smooth and not quasi-regular.
LONG ANSWER (Prior to edit).
If I understand it correctly, the answer is negative. Let $fcolon mathbb R^nto mathbb R^n$ be a smooth function, let $xin mathbb R^n$ be fixed and denote
$$
A:=Df(x).$$
Now $A$ is an $ntimes n$ matrix, and the question asks whether
$$tag1|A|^nle C|det A|$$
holds for an absolute constant $C>0$, where
$$
|A|:=max |Ax|_mathbb R^n / |x|_mathbb R^n.$$
But (1) cannot hold, for the matrix
$$
A_epsilon:=beginbmatrix 1 & 0 \ 0 & epsilonendbmatrix$$
is such that $|A_epsilon|=1$ and $det A_epsilon=epsilon$, and $epsilon$ can be made as small as we wish.
1
$x, y>0$ Then define $f(x,y)=(x,sqrty)$
â HK Lee
Sep 1 at 12:56
@HKLee: Yes, agreed. For that function, $Df(x, y)$ is close to singular as $yto infty$ but $|Df(x, y)|=1$ for all $(x, y)$.
â Giuseppe Negro
Sep 1 at 12:57
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
SHORT ANSWER. The answer is negative. The mapping $fcolon (0, infty)^2to (0, infty)^2$ defined as $f(x, y)=(x, sqrt y)$ is smooth and not quasi-regular.
LONG ANSWER (Prior to edit).
If I understand it correctly, the answer is negative. Let $fcolon mathbb R^nto mathbb R^n$ be a smooth function, let $xin mathbb R^n$ be fixed and denote
$$
A:=Df(x).$$
Now $A$ is an $ntimes n$ matrix, and the question asks whether
$$tag1|A|^nle C|det A|$$
holds for an absolute constant $C>0$, where
$$
|A|:=max |Ax|_mathbb R^n / |x|_mathbb R^n.$$
But (1) cannot hold, for the matrix
$$
A_epsilon:=beginbmatrix 1 & 0 \ 0 & epsilonendbmatrix$$
is such that $|A_epsilon|=1$ and $det A_epsilon=epsilon$, and $epsilon$ can be made as small as we wish.
SHORT ANSWER. The answer is negative. The mapping $fcolon (0, infty)^2to (0, infty)^2$ defined as $f(x, y)=(x, sqrt y)$ is smooth and not quasi-regular.
LONG ANSWER (Prior to edit).
If I understand it correctly, the answer is negative. Let $fcolon mathbb R^nto mathbb R^n$ be a smooth function, let $xin mathbb R^n$ be fixed and denote
$$
A:=Df(x).$$
Now $A$ is an $ntimes n$ matrix, and the question asks whether
$$tag1|A|^nle C|det A|$$
holds for an absolute constant $C>0$, where
$$
|A|:=max |Ax|_mathbb R^n / |x|_mathbb R^n.$$
But (1) cannot hold, for the matrix
$$
A_epsilon:=beginbmatrix 1 & 0 \ 0 & epsilonendbmatrix$$
is such that $|A_epsilon|=1$ and $det A_epsilon=epsilon$, and $epsilon$ can be made as small as we wish.
edited Sep 1 at 13:00
answered Sep 1 at 12:49
Giuseppe Negro
16.1k328117
16.1k328117
1
$x, y>0$ Then define $f(x,y)=(x,sqrty)$
â HK Lee
Sep 1 at 12:56
@HKLee: Yes, agreed. For that function, $Df(x, y)$ is close to singular as $yto infty$ but $|Df(x, y)|=1$ for all $(x, y)$.
â Giuseppe Negro
Sep 1 at 12:57
add a comment |Â
1
$x, y>0$ Then define $f(x,y)=(x,sqrty)$
â HK Lee
Sep 1 at 12:56
@HKLee: Yes, agreed. For that function, $Df(x, y)$ is close to singular as $yto infty$ but $|Df(x, y)|=1$ for all $(x, y)$.
â Giuseppe Negro
Sep 1 at 12:57
1
1
$x, y>0$ Then define $f(x,y)=(x,sqrty)$
â HK Lee
Sep 1 at 12:56
$x, y>0$ Then define $f(x,y)=(x,sqrty)$
â HK Lee
Sep 1 at 12:56
@HKLee: Yes, agreed. For that function, $Df(x, y)$ is close to singular as $yto infty$ but $|Df(x, y)|=1$ for all $(x, y)$.
â Giuseppe Negro
Sep 1 at 12:57
@HKLee: Yes, agreed. For that function, $Df(x, y)$ is close to singular as $yto infty$ but $|Df(x, y)|=1$ for all $(x, y)$.
â Giuseppe Negro
Sep 1 at 12:57
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2901377%2fexample-of-not-quasi-regular-mapping%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Interesting. This question might contain some ideas, maybe.
â Giuseppe Negro
Sep 1 at 12:40