$ int e^-sin t cos t~ dt - int e^-sin t cos t sin t~ dt $
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
$ int e^-sin t cos t~ dt - int e^-sin t cos t sin t~ dt $
According to the answer,
It substituted $x=sin t$
$ int e^-x~ dx- int e^-x(x)~ dx $
Why did the answer remove $cos t$ ?
integration indefinite-integrals
add a comment |Â
up vote
0
down vote
favorite
$ int e^-sin t cos t~ dt - int e^-sin t cos t sin t~ dt $
According to the answer,
It substituted $x=sin t$
$ int e^-x~ dx- int e^-x(x)~ dx $
Why did the answer remove $cos t$ ?
integration indefinite-integrals
SImply because $dx=cos(t),dt$
â Claude Leibovici
Aug 30 at 3:58
@ClaudeLeibovici is there a way to prove this ?
â user185692
Aug 30 at 4:06
It is $int e^-sin t cos t dt - int e^-sin t cos t sin t dt=int e^-sin t dsin t - int e^-sin t sin t d sin t$
â farruhota
Aug 30 at 4:30
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
$ int e^-sin t cos t~ dt - int e^-sin t cos t sin t~ dt $
According to the answer,
It substituted $x=sin t$
$ int e^-x~ dx- int e^-x(x)~ dx $
Why did the answer remove $cos t$ ?
integration indefinite-integrals
$ int e^-sin t cos t~ dt - int e^-sin t cos t sin t~ dt $
According to the answer,
It substituted $x=sin t$
$ int e^-x~ dx- int e^-x(x)~ dx $
Why did the answer remove $cos t$ ?
integration indefinite-integrals
integration indefinite-integrals
edited Aug 30 at 5:34
tarit goswami
1,156219
1,156219
asked Aug 30 at 3:37
user185692
1536
1536
SImply because $dx=cos(t),dt$
â Claude Leibovici
Aug 30 at 3:58
@ClaudeLeibovici is there a way to prove this ?
â user185692
Aug 30 at 4:06
It is $int e^-sin t cos t dt - int e^-sin t cos t sin t dt=int e^-sin t dsin t - int e^-sin t sin t d sin t$
â farruhota
Aug 30 at 4:30
add a comment |Â
SImply because $dx=cos(t),dt$
â Claude Leibovici
Aug 30 at 3:58
@ClaudeLeibovici is there a way to prove this ?
â user185692
Aug 30 at 4:06
It is $int e^-sin t cos t dt - int e^-sin t cos t sin t dt=int e^-sin t dsin t - int e^-sin t sin t d sin t$
â farruhota
Aug 30 at 4:30
SImply because $dx=cos(t),dt$
â Claude Leibovici
Aug 30 at 3:58
SImply because $dx=cos(t),dt$
â Claude Leibovici
Aug 30 at 3:58
@ClaudeLeibovici is there a way to prove this ?
â user185692
Aug 30 at 4:06
@ClaudeLeibovici is there a way to prove this ?
â user185692
Aug 30 at 4:06
It is $int e^-sin t cos t dt - int e^-sin t cos t sin t dt=int e^-sin t dsin t - int e^-sin t sin t d sin t$
â farruhota
Aug 30 at 4:30
It is $int e^-sin t cos t dt - int e^-sin t cos t sin t dt=int e^-sin t dsin t - int e^-sin t sin t d sin t$
â farruhota
Aug 30 at 4:30
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
3
down vote
accepted
$$I=int e^-sin t cos t dt - int e^-sin t cos t sin t dt$$
You are substituting $x=sin t$
Differentiate both sides w.r.t $t$
Thus $$fracdxdt=cos t$$
$$dx=cos(t) dt$$
Thus $$I=int e^-sin t cdot dx - int e^-sin t sin t cdot dx$$
$$I=int e^-x cdot dx - int e^-x cdot x cdot dx$$
add a comment |Â
up vote
1
down vote
[beginarraylint e^ - sin t cos tdt - int e^ - sin t sin tcos tdt\There,are,two,parts,of,this,question.\Use,the,formulaint U^n du = fracu^n + 1n + 1 + c,to,solve,the,sec ond,part.\You,donot,need,to,solve,the,first,part,it,will,cancel,when,you,mathoprm int egrate,the,sec ond,part.endarray]
Hello Cipher, welcome to MathStackExchange! I have edited your post to included the mathjax syntax we use here. Please take a look and familiarise yourself with the usage of the typesetting language, and also check my edits to make sure I did not make a mistake in your intentions!
â Kevin
Aug 30 at 14:39
1
Thanks, it is perfect.
â Cipher
Aug 30 at 23:06
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
$$I=int e^-sin t cos t dt - int e^-sin t cos t sin t dt$$
You are substituting $x=sin t$
Differentiate both sides w.r.t $t$
Thus $$fracdxdt=cos t$$
$$dx=cos(t) dt$$
Thus $$I=int e^-sin t cdot dx - int e^-sin t sin t cdot dx$$
$$I=int e^-x cdot dx - int e^-x cdot x cdot dx$$
add a comment |Â
up vote
3
down vote
accepted
$$I=int e^-sin t cos t dt - int e^-sin t cos t sin t dt$$
You are substituting $x=sin t$
Differentiate both sides w.r.t $t$
Thus $$fracdxdt=cos t$$
$$dx=cos(t) dt$$
Thus $$I=int e^-sin t cdot dx - int e^-sin t sin t cdot dx$$
$$I=int e^-x cdot dx - int e^-x cdot x cdot dx$$
add a comment |Â
up vote
3
down vote
accepted
up vote
3
down vote
accepted
$$I=int e^-sin t cos t dt - int e^-sin t cos t sin t dt$$
You are substituting $x=sin t$
Differentiate both sides w.r.t $t$
Thus $$fracdxdt=cos t$$
$$dx=cos(t) dt$$
Thus $$I=int e^-sin t cdot dx - int e^-sin t sin t cdot dx$$
$$I=int e^-x cdot dx - int e^-x cdot x cdot dx$$
$$I=int e^-sin t cos t dt - int e^-sin t cos t sin t dt$$
You are substituting $x=sin t$
Differentiate both sides w.r.t $t$
Thus $$fracdxdt=cos t$$
$$dx=cos(t) dt$$
Thus $$I=int e^-sin t cdot dx - int e^-sin t sin t cdot dx$$
$$I=int e^-x cdot dx - int e^-x cdot x cdot dx$$
answered Aug 30 at 4:22
Deepesh Meena
3,2492824
3,2492824
add a comment |Â
add a comment |Â
up vote
1
down vote
[beginarraylint e^ - sin t cos tdt - int e^ - sin t sin tcos tdt\There,are,two,parts,of,this,question.\Use,the,formulaint U^n du = fracu^n + 1n + 1 + c,to,solve,the,sec ond,part.\You,donot,need,to,solve,the,first,part,it,will,cancel,when,you,mathoprm int egrate,the,sec ond,part.endarray]
Hello Cipher, welcome to MathStackExchange! I have edited your post to included the mathjax syntax we use here. Please take a look and familiarise yourself with the usage of the typesetting language, and also check my edits to make sure I did not make a mistake in your intentions!
â Kevin
Aug 30 at 14:39
1
Thanks, it is perfect.
â Cipher
Aug 30 at 23:06
add a comment |Â
up vote
1
down vote
[beginarraylint e^ - sin t cos tdt - int e^ - sin t sin tcos tdt\There,are,two,parts,of,this,question.\Use,the,formulaint U^n du = fracu^n + 1n + 1 + c,to,solve,the,sec ond,part.\You,donot,need,to,solve,the,first,part,it,will,cancel,when,you,mathoprm int egrate,the,sec ond,part.endarray]
Hello Cipher, welcome to MathStackExchange! I have edited your post to included the mathjax syntax we use here. Please take a look and familiarise yourself with the usage of the typesetting language, and also check my edits to make sure I did not make a mistake in your intentions!
â Kevin
Aug 30 at 14:39
1
Thanks, it is perfect.
â Cipher
Aug 30 at 23:06
add a comment |Â
up vote
1
down vote
up vote
1
down vote
[beginarraylint e^ - sin t cos tdt - int e^ - sin t sin tcos tdt\There,are,two,parts,of,this,question.\Use,the,formulaint U^n du = fracu^n + 1n + 1 + c,to,solve,the,sec ond,part.\You,donot,need,to,solve,the,first,part,it,will,cancel,when,you,mathoprm int egrate,the,sec ond,part.endarray]
[beginarraylint e^ - sin t cos tdt - int e^ - sin t sin tcos tdt\There,are,two,parts,of,this,question.\Use,the,formulaint U^n du = fracu^n + 1n + 1 + c,to,solve,the,sec ond,part.\You,donot,need,to,solve,the,first,part,it,will,cancel,when,you,mathoprm int egrate,the,sec ond,part.endarray]
edited Sep 4 at 22:29
answered Aug 30 at 14:28
Cipher
113
113
Hello Cipher, welcome to MathStackExchange! I have edited your post to included the mathjax syntax we use here. Please take a look and familiarise yourself with the usage of the typesetting language, and also check my edits to make sure I did not make a mistake in your intentions!
â Kevin
Aug 30 at 14:39
1
Thanks, it is perfect.
â Cipher
Aug 30 at 23:06
add a comment |Â
Hello Cipher, welcome to MathStackExchange! I have edited your post to included the mathjax syntax we use here. Please take a look and familiarise yourself with the usage of the typesetting language, and also check my edits to make sure I did not make a mistake in your intentions!
â Kevin
Aug 30 at 14:39
1
Thanks, it is perfect.
â Cipher
Aug 30 at 23:06
Hello Cipher, welcome to MathStackExchange! I have edited your post to included the mathjax syntax we use here. Please take a look and familiarise yourself with the usage of the typesetting language, and also check my edits to make sure I did not make a mistake in your intentions!
â Kevin
Aug 30 at 14:39
Hello Cipher, welcome to MathStackExchange! I have edited your post to included the mathjax syntax we use here. Please take a look and familiarise yourself with the usage of the typesetting language, and also check my edits to make sure I did not make a mistake in your intentions!
â Kevin
Aug 30 at 14:39
1
1
Thanks, it is perfect.
â Cipher
Aug 30 at 23:06
Thanks, it is perfect.
â Cipher
Aug 30 at 23:06
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2899085%2fint-e-sin-t-cos-t-dt-int-e-sin-t-cos-t-sin-t-dt%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
SImply because $dx=cos(t),dt$
â Claude Leibovici
Aug 30 at 3:58
@ClaudeLeibovici is there a way to prove this ?
â user185692
Aug 30 at 4:06
It is $int e^-sin t cos t dt - int e^-sin t cos t sin t dt=int e^-sin t dsin t - int e^-sin t sin t d sin t$
â farruhota
Aug 30 at 4:30