$ int e^-sin t cos t~ dt - int e^-sin t cos t sin t~ dt $

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












$ int e^-sin t cos t~ dt - int e^-sin t cos t sin t~ dt $



According to the answer,



It substituted $x=sin t$



$ int e^-x~ dx- int e^-x(x)~ dx $



Why did the answer remove $cos t$ ?










share|cite|improve this question























  • SImply because $dx=cos(t),dt$
    – Claude Leibovici
    Aug 30 at 3:58










  • @ClaudeLeibovici is there a way to prove this ?
    – user185692
    Aug 30 at 4:06










  • It is $int e^-sin t cos t dt - int e^-sin t cos t sin t dt=int e^-sin t dsin t - int e^-sin t sin t d sin t$
    – farruhota
    Aug 30 at 4:30














up vote
0
down vote

favorite












$ int e^-sin t cos t~ dt - int e^-sin t cos t sin t~ dt $



According to the answer,



It substituted $x=sin t$



$ int e^-x~ dx- int e^-x(x)~ dx $



Why did the answer remove $cos t$ ?










share|cite|improve this question























  • SImply because $dx=cos(t),dt$
    – Claude Leibovici
    Aug 30 at 3:58










  • @ClaudeLeibovici is there a way to prove this ?
    – user185692
    Aug 30 at 4:06










  • It is $int e^-sin t cos t dt - int e^-sin t cos t sin t dt=int e^-sin t dsin t - int e^-sin t sin t d sin t$
    – farruhota
    Aug 30 at 4:30












up vote
0
down vote

favorite









up vote
0
down vote

favorite











$ int e^-sin t cos t~ dt - int e^-sin t cos t sin t~ dt $



According to the answer,



It substituted $x=sin t$



$ int e^-x~ dx- int e^-x(x)~ dx $



Why did the answer remove $cos t$ ?










share|cite|improve this question















$ int e^-sin t cos t~ dt - int e^-sin t cos t sin t~ dt $



According to the answer,



It substituted $x=sin t$



$ int e^-x~ dx- int e^-x(x)~ dx $



Why did the answer remove $cos t$ ?







integration indefinite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 30 at 5:34









tarit goswami

1,156219




1,156219










asked Aug 30 at 3:37









user185692

1536




1536











  • SImply because $dx=cos(t),dt$
    – Claude Leibovici
    Aug 30 at 3:58










  • @ClaudeLeibovici is there a way to prove this ?
    – user185692
    Aug 30 at 4:06










  • It is $int e^-sin t cos t dt - int e^-sin t cos t sin t dt=int e^-sin t dsin t - int e^-sin t sin t d sin t$
    – farruhota
    Aug 30 at 4:30
















  • SImply because $dx=cos(t),dt$
    – Claude Leibovici
    Aug 30 at 3:58










  • @ClaudeLeibovici is there a way to prove this ?
    – user185692
    Aug 30 at 4:06










  • It is $int e^-sin t cos t dt - int e^-sin t cos t sin t dt=int e^-sin t dsin t - int e^-sin t sin t d sin t$
    – farruhota
    Aug 30 at 4:30















SImply because $dx=cos(t),dt$
– Claude Leibovici
Aug 30 at 3:58




SImply because $dx=cos(t),dt$
– Claude Leibovici
Aug 30 at 3:58












@ClaudeLeibovici is there a way to prove this ?
– user185692
Aug 30 at 4:06




@ClaudeLeibovici is there a way to prove this ?
– user185692
Aug 30 at 4:06












It is $int e^-sin t cos t dt - int e^-sin t cos t sin t dt=int e^-sin t dsin t - int e^-sin t sin t d sin t$
– farruhota
Aug 30 at 4:30




It is $int e^-sin t cos t dt - int e^-sin t cos t sin t dt=int e^-sin t dsin t - int e^-sin t sin t d sin t$
– farruhota
Aug 30 at 4:30










2 Answers
2






active

oldest

votes

















up vote
3
down vote



accepted










$$I=int e^-sin t cos t dt - int e^-sin t cos t sin t dt$$



You are substituting $x=sin t$
Differentiate both sides w.r.t $t$



Thus $$fracdxdt=cos t$$
$$dx=cos(t) dt$$
Thus $$I=int e^-sin t cdot dx - int e^-sin t sin t cdot dx$$
$$I=int e^-x cdot dx - int e^-x cdot x cdot dx$$






share|cite|improve this answer



























    up vote
    1
    down vote













    [beginarraylint e^ - sin t cos tdt - int e^ - sin t sin tcos tdt\There,are,two,parts,of,this,question.\Use,the,formulaint U^n du = fracu^n + 1n + 1 + c,to,solve,the,sec ond,part.\You,donot,need,to,solve,the,first,part,it,will,cancel,when,you,mathoprm int egrate,the,sec ond,part.endarray]






    share|cite|improve this answer






















    • Hello Cipher, welcome to MathStackExchange! I have edited your post to included the mathjax syntax we use here. Please take a look and familiarise yourself with the usage of the typesetting language, and also check my edits to make sure I did not make a mistake in your intentions!
      – Kevin
      Aug 30 at 14:39






    • 1




      Thanks, it is perfect.
      – Cipher
      Aug 30 at 23:06










    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2899085%2fint-e-sin-t-cos-t-dt-int-e-sin-t-cos-t-sin-t-dt%23new-answer', 'question_page');

    );

    Post as a guest






























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    3
    down vote



    accepted










    $$I=int e^-sin t cos t dt - int e^-sin t cos t sin t dt$$



    You are substituting $x=sin t$
    Differentiate both sides w.r.t $t$



    Thus $$fracdxdt=cos t$$
    $$dx=cos(t) dt$$
    Thus $$I=int e^-sin t cdot dx - int e^-sin t sin t cdot dx$$
    $$I=int e^-x cdot dx - int e^-x cdot x cdot dx$$






    share|cite|improve this answer
























      up vote
      3
      down vote



      accepted










      $$I=int e^-sin t cos t dt - int e^-sin t cos t sin t dt$$



      You are substituting $x=sin t$
      Differentiate both sides w.r.t $t$



      Thus $$fracdxdt=cos t$$
      $$dx=cos(t) dt$$
      Thus $$I=int e^-sin t cdot dx - int e^-sin t sin t cdot dx$$
      $$I=int e^-x cdot dx - int e^-x cdot x cdot dx$$






      share|cite|improve this answer






















        up vote
        3
        down vote



        accepted







        up vote
        3
        down vote



        accepted






        $$I=int e^-sin t cos t dt - int e^-sin t cos t sin t dt$$



        You are substituting $x=sin t$
        Differentiate both sides w.r.t $t$



        Thus $$fracdxdt=cos t$$
        $$dx=cos(t) dt$$
        Thus $$I=int e^-sin t cdot dx - int e^-sin t sin t cdot dx$$
        $$I=int e^-x cdot dx - int e^-x cdot x cdot dx$$






        share|cite|improve this answer












        $$I=int e^-sin t cos t dt - int e^-sin t cos t sin t dt$$



        You are substituting $x=sin t$
        Differentiate both sides w.r.t $t$



        Thus $$fracdxdt=cos t$$
        $$dx=cos(t) dt$$
        Thus $$I=int e^-sin t cdot dx - int e^-sin t sin t cdot dx$$
        $$I=int e^-x cdot dx - int e^-x cdot x cdot dx$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Aug 30 at 4:22









        Deepesh Meena

        3,2492824




        3,2492824




















            up vote
            1
            down vote













            [beginarraylint e^ - sin t cos tdt - int e^ - sin t sin tcos tdt\There,are,two,parts,of,this,question.\Use,the,formulaint U^n du = fracu^n + 1n + 1 + c,to,solve,the,sec ond,part.\You,donot,need,to,solve,the,first,part,it,will,cancel,when,you,mathoprm int egrate,the,sec ond,part.endarray]






            share|cite|improve this answer






















            • Hello Cipher, welcome to MathStackExchange! I have edited your post to included the mathjax syntax we use here. Please take a look and familiarise yourself with the usage of the typesetting language, and also check my edits to make sure I did not make a mistake in your intentions!
              – Kevin
              Aug 30 at 14:39






            • 1




              Thanks, it is perfect.
              – Cipher
              Aug 30 at 23:06














            up vote
            1
            down vote













            [beginarraylint e^ - sin t cos tdt - int e^ - sin t sin tcos tdt\There,are,two,parts,of,this,question.\Use,the,formulaint U^n du = fracu^n + 1n + 1 + c,to,solve,the,sec ond,part.\You,donot,need,to,solve,the,first,part,it,will,cancel,when,you,mathoprm int egrate,the,sec ond,part.endarray]






            share|cite|improve this answer






















            • Hello Cipher, welcome to MathStackExchange! I have edited your post to included the mathjax syntax we use here. Please take a look and familiarise yourself with the usage of the typesetting language, and also check my edits to make sure I did not make a mistake in your intentions!
              – Kevin
              Aug 30 at 14:39






            • 1




              Thanks, it is perfect.
              – Cipher
              Aug 30 at 23:06












            up vote
            1
            down vote










            up vote
            1
            down vote









            [beginarraylint e^ - sin t cos tdt - int e^ - sin t sin tcos tdt\There,are,two,parts,of,this,question.\Use,the,formulaint U^n du = fracu^n + 1n + 1 + c,to,solve,the,sec ond,part.\You,donot,need,to,solve,the,first,part,it,will,cancel,when,you,mathoprm int egrate,the,sec ond,part.endarray]






            share|cite|improve this answer














            [beginarraylint e^ - sin t cos tdt - int e^ - sin t sin tcos tdt\There,are,two,parts,of,this,question.\Use,the,formulaint U^n du = fracu^n + 1n + 1 + c,to,solve,the,sec ond,part.\You,donot,need,to,solve,the,first,part,it,will,cancel,when,you,mathoprm int egrate,the,sec ond,part.endarray]







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Sep 4 at 22:29

























            answered Aug 30 at 14:28









            Cipher

            113




            113











            • Hello Cipher, welcome to MathStackExchange! I have edited your post to included the mathjax syntax we use here. Please take a look and familiarise yourself with the usage of the typesetting language, and also check my edits to make sure I did not make a mistake in your intentions!
              – Kevin
              Aug 30 at 14:39






            • 1




              Thanks, it is perfect.
              – Cipher
              Aug 30 at 23:06
















            • Hello Cipher, welcome to MathStackExchange! I have edited your post to included the mathjax syntax we use here. Please take a look and familiarise yourself with the usage of the typesetting language, and also check my edits to make sure I did not make a mistake in your intentions!
              – Kevin
              Aug 30 at 14:39






            • 1




              Thanks, it is perfect.
              – Cipher
              Aug 30 at 23:06















            Hello Cipher, welcome to MathStackExchange! I have edited your post to included the mathjax syntax we use here. Please take a look and familiarise yourself with the usage of the typesetting language, and also check my edits to make sure I did not make a mistake in your intentions!
            – Kevin
            Aug 30 at 14:39




            Hello Cipher, welcome to MathStackExchange! I have edited your post to included the mathjax syntax we use here. Please take a look and familiarise yourself with the usage of the typesetting language, and also check my edits to make sure I did not make a mistake in your intentions!
            – Kevin
            Aug 30 at 14:39




            1




            1




            Thanks, it is perfect.
            – Cipher
            Aug 30 at 23:06




            Thanks, it is perfect.
            – Cipher
            Aug 30 at 23:06

















             

            draft saved


            draft discarded















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2899085%2fint-e-sin-t-cos-t-dt-int-e-sin-t-cos-t-sin-t-dt%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            How to combine Bézier curves to a surface?

            Mutual Information Always Non-negative

            Why am i infinitely getting the same tweet with the Twitter Search API?