Does the tensor product preserve coreflexive equalizers?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite












Let $Bbbk$ be any commutative ring and $otimes$ denote the tensor product over $Bbbk$. By a coreflexive pair I mean a parallel pair of $Bbbk$-module homomorphisms admitting a common retraction, i.e. a pair of arrows $f,g:Mto N$ such that there exists $r:Nto M$ satisfying $rcirc f=mathsfid_M=rcirc g$. By a coreflexive equalizer I mean the equalizer of a coreflexive pair.




Q: Does $Potimes -$ preserve coreflexive equalizers for every $Bbbk$-module $P$?




I know that $Potimes -$ does not preserve equalizers in general, but a coreflexive equalizer is something more particular.







share|cite|improve this question
























    up vote
    2
    down vote

    favorite












    Let $Bbbk$ be any commutative ring and $otimes$ denote the tensor product over $Bbbk$. By a coreflexive pair I mean a parallel pair of $Bbbk$-module homomorphisms admitting a common retraction, i.e. a pair of arrows $f,g:Mto N$ such that there exists $r:Nto M$ satisfying $rcirc f=mathsfid_M=rcirc g$. By a coreflexive equalizer I mean the equalizer of a coreflexive pair.




    Q: Does $Potimes -$ preserve coreflexive equalizers for every $Bbbk$-module $P$?




    I know that $Potimes -$ does not preserve equalizers in general, but a coreflexive equalizer is something more particular.







    share|cite|improve this question






















      up vote
      2
      down vote

      favorite









      up vote
      2
      down vote

      favorite











      Let $Bbbk$ be any commutative ring and $otimes$ denote the tensor product over $Bbbk$. By a coreflexive pair I mean a parallel pair of $Bbbk$-module homomorphisms admitting a common retraction, i.e. a pair of arrows $f,g:Mto N$ such that there exists $r:Nto M$ satisfying $rcirc f=mathsfid_M=rcirc g$. By a coreflexive equalizer I mean the equalizer of a coreflexive pair.




      Q: Does $Potimes -$ preserve coreflexive equalizers for every $Bbbk$-module $P$?




      I know that $Potimes -$ does not preserve equalizers in general, but a coreflexive equalizer is something more particular.







      share|cite|improve this question












      Let $Bbbk$ be any commutative ring and $otimes$ denote the tensor product over $Bbbk$. By a coreflexive pair I mean a parallel pair of $Bbbk$-module homomorphisms admitting a common retraction, i.e. a pair of arrows $f,g:Mto N$ such that there exists $r:Nto M$ satisfying $rcirc f=mathsfid_M=rcirc g$. By a coreflexive equalizer I mean the equalizer of a coreflexive pair.




      Q: Does $Potimes -$ preserve coreflexive equalizers for every $Bbbk$-module $P$?




      I know that $Potimes -$ does not preserve equalizers in general, but a coreflexive equalizer is something more particular.









      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Aug 26 at 11:14









      Ender Wiggins

      755320




      755320




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          2
          down vote



          accepted










          There is always a natural map $eta : ker(f-g)otimes Pto ker((f-g)otimes P)$, but it is not always an isomorphism, as the following example shows.



          Consider $M=N= bigoplus mathbb Z$ indexed over the naturals, and the maps $f(x) = (0,x_1,x_2,ldots)$, $g(x) = (2x_1,x_1,x_2,ldots)$, and $r(x) = (x_2,x_3,ldots)$, so that $rf=rg=1$ and $a = g-f$ is given by $a(x) = (2x_1,0,0,ldots)$. Then $K=ker a = langle (0,x_2,x_3,ldots)rangle$, while $mathbb Z/2otimes a = 0$. It follows that the map $eta$ is not an isomorphism.



          Using this idea, you can prove that tensor products preserve equalizers iff they preserve the reflexive ones. Indeed, consider any map of $mathbb k$-modules $f:Mto N$ and let $F : widetildeMto Nopluswidetilde M$ be the map $(m_1,m_2,ldots)mapsto (fm_1,m_1,m_2,ldots)$, where the tilde means taking a sum. Let $G$ be the map where $f=0$. Then $F$ and $G$ admit a common retraction given by sending $(n,m_1,m_2,ldots)$ to $(m_1,m_2,ldots)$, and $K=ker(F-G)$ is $ker foplus widetilde M$.



          Then you obtain that the map $Kotimes Pto ker((F-G)otimes P)$ is just the map with coordinates the natural map $ker fotimes Pto ker(fotimes P)$ and the identity of $widetilde Motimes P$, so the claim follows.






          share|cite|improve this answer






















          • I beg your pardon, Pedro, but I cannot see how this allows me to conclude that $Potimes mathsfEq(f,g)cong mathsfEq(Potimes f,Potimes g)$?
            – Ender Wiggins
            Aug 26 at 13:55










          • @EnderWiggins My bad, I misread what you were asking. Fixed.
            – Pedro Tamaroff♦
            Aug 26 at 15:01










          • Ok, I followed your argument and indeed the conclusion is that $ker((F-G)otimes P)cong ker(fotimes P)oplusbigoplus(Motimes P)$, $ker(F-G)otimes Pcong (ker(f)otimes P) oplus(bigoplus Motimes P)$ and so $-otimes P$ preserves equalizers if and only if it preserves coreflexive ones. However, there's a point in the example you chose that I find obscure: $mathbbZ_2otimes ker(a) = mathbbZ_2otimes(0oplus bigoplus mathbbZ) cong bigoplus mathbbZ_2 cong ker(mathbbZ_2otimes a)$.
            – Ender Wiggins
            Aug 26 at 15:43











          • What about $M=bigoplus mathbbZ$, $N=mathbbZ_2oplusbigoplusmathbbZ$, $f(x)=([0],x_1,x_2,ldots)$, $g(x)=([x_1],x_1,x_2,ldots)$?In such a case $ker(f-g)=2mathbbZoplusbigoplus mathbbZ$, whence $ker(f-g)otimesmathbbZ_2=(2mathbbZotimes mathbbZ_2)oplusbigoplus mathbbZ_2$ while $ker((f-g)otimesmathbbZ_2)=bigoplus mathbbZ_2$
            – Ender Wiggins
            Aug 26 at 15:54







          • 1




            @EnderWiggins The equalizers may be abstractly isomorphic, but saying that the functor preserves them means the natural map is an isomorphism.
            – Pedro Tamaroff♦
            Aug 26 at 16:16










          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2894931%2fdoes-the-tensor-product-preserve-coreflexive-equalizers%23new-answer', 'question_page');

          );

          Post as a guest






























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          2
          down vote



          accepted










          There is always a natural map $eta : ker(f-g)otimes Pto ker((f-g)otimes P)$, but it is not always an isomorphism, as the following example shows.



          Consider $M=N= bigoplus mathbb Z$ indexed over the naturals, and the maps $f(x) = (0,x_1,x_2,ldots)$, $g(x) = (2x_1,x_1,x_2,ldots)$, and $r(x) = (x_2,x_3,ldots)$, so that $rf=rg=1$ and $a = g-f$ is given by $a(x) = (2x_1,0,0,ldots)$. Then $K=ker a = langle (0,x_2,x_3,ldots)rangle$, while $mathbb Z/2otimes a = 0$. It follows that the map $eta$ is not an isomorphism.



          Using this idea, you can prove that tensor products preserve equalizers iff they preserve the reflexive ones. Indeed, consider any map of $mathbb k$-modules $f:Mto N$ and let $F : widetildeMto Nopluswidetilde M$ be the map $(m_1,m_2,ldots)mapsto (fm_1,m_1,m_2,ldots)$, where the tilde means taking a sum. Let $G$ be the map where $f=0$. Then $F$ and $G$ admit a common retraction given by sending $(n,m_1,m_2,ldots)$ to $(m_1,m_2,ldots)$, and $K=ker(F-G)$ is $ker foplus widetilde M$.



          Then you obtain that the map $Kotimes Pto ker((F-G)otimes P)$ is just the map with coordinates the natural map $ker fotimes Pto ker(fotimes P)$ and the identity of $widetilde Motimes P$, so the claim follows.






          share|cite|improve this answer






















          • I beg your pardon, Pedro, but I cannot see how this allows me to conclude that $Potimes mathsfEq(f,g)cong mathsfEq(Potimes f,Potimes g)$?
            – Ender Wiggins
            Aug 26 at 13:55










          • @EnderWiggins My bad, I misread what you were asking. Fixed.
            – Pedro Tamaroff♦
            Aug 26 at 15:01










          • Ok, I followed your argument and indeed the conclusion is that $ker((F-G)otimes P)cong ker(fotimes P)oplusbigoplus(Motimes P)$, $ker(F-G)otimes Pcong (ker(f)otimes P) oplus(bigoplus Motimes P)$ and so $-otimes P$ preserves equalizers if and only if it preserves coreflexive ones. However, there's a point in the example you chose that I find obscure: $mathbbZ_2otimes ker(a) = mathbbZ_2otimes(0oplus bigoplus mathbbZ) cong bigoplus mathbbZ_2 cong ker(mathbbZ_2otimes a)$.
            – Ender Wiggins
            Aug 26 at 15:43











          • What about $M=bigoplus mathbbZ$, $N=mathbbZ_2oplusbigoplusmathbbZ$, $f(x)=([0],x_1,x_2,ldots)$, $g(x)=([x_1],x_1,x_2,ldots)$?In such a case $ker(f-g)=2mathbbZoplusbigoplus mathbbZ$, whence $ker(f-g)otimesmathbbZ_2=(2mathbbZotimes mathbbZ_2)oplusbigoplus mathbbZ_2$ while $ker((f-g)otimesmathbbZ_2)=bigoplus mathbbZ_2$
            – Ender Wiggins
            Aug 26 at 15:54







          • 1




            @EnderWiggins The equalizers may be abstractly isomorphic, but saying that the functor preserves them means the natural map is an isomorphism.
            – Pedro Tamaroff♦
            Aug 26 at 16:16














          up vote
          2
          down vote



          accepted










          There is always a natural map $eta : ker(f-g)otimes Pto ker((f-g)otimes P)$, but it is not always an isomorphism, as the following example shows.



          Consider $M=N= bigoplus mathbb Z$ indexed over the naturals, and the maps $f(x) = (0,x_1,x_2,ldots)$, $g(x) = (2x_1,x_1,x_2,ldots)$, and $r(x) = (x_2,x_3,ldots)$, so that $rf=rg=1$ and $a = g-f$ is given by $a(x) = (2x_1,0,0,ldots)$. Then $K=ker a = langle (0,x_2,x_3,ldots)rangle$, while $mathbb Z/2otimes a = 0$. It follows that the map $eta$ is not an isomorphism.



          Using this idea, you can prove that tensor products preserve equalizers iff they preserve the reflexive ones. Indeed, consider any map of $mathbb k$-modules $f:Mto N$ and let $F : widetildeMto Nopluswidetilde M$ be the map $(m_1,m_2,ldots)mapsto (fm_1,m_1,m_2,ldots)$, where the tilde means taking a sum. Let $G$ be the map where $f=0$. Then $F$ and $G$ admit a common retraction given by sending $(n,m_1,m_2,ldots)$ to $(m_1,m_2,ldots)$, and $K=ker(F-G)$ is $ker foplus widetilde M$.



          Then you obtain that the map $Kotimes Pto ker((F-G)otimes P)$ is just the map with coordinates the natural map $ker fotimes Pto ker(fotimes P)$ and the identity of $widetilde Motimes P$, so the claim follows.






          share|cite|improve this answer






















          • I beg your pardon, Pedro, but I cannot see how this allows me to conclude that $Potimes mathsfEq(f,g)cong mathsfEq(Potimes f,Potimes g)$?
            – Ender Wiggins
            Aug 26 at 13:55










          • @EnderWiggins My bad, I misread what you were asking. Fixed.
            – Pedro Tamaroff♦
            Aug 26 at 15:01










          • Ok, I followed your argument and indeed the conclusion is that $ker((F-G)otimes P)cong ker(fotimes P)oplusbigoplus(Motimes P)$, $ker(F-G)otimes Pcong (ker(f)otimes P) oplus(bigoplus Motimes P)$ and so $-otimes P$ preserves equalizers if and only if it preserves coreflexive ones. However, there's a point in the example you chose that I find obscure: $mathbbZ_2otimes ker(a) = mathbbZ_2otimes(0oplus bigoplus mathbbZ) cong bigoplus mathbbZ_2 cong ker(mathbbZ_2otimes a)$.
            – Ender Wiggins
            Aug 26 at 15:43











          • What about $M=bigoplus mathbbZ$, $N=mathbbZ_2oplusbigoplusmathbbZ$, $f(x)=([0],x_1,x_2,ldots)$, $g(x)=([x_1],x_1,x_2,ldots)$?In such a case $ker(f-g)=2mathbbZoplusbigoplus mathbbZ$, whence $ker(f-g)otimesmathbbZ_2=(2mathbbZotimes mathbbZ_2)oplusbigoplus mathbbZ_2$ while $ker((f-g)otimesmathbbZ_2)=bigoplus mathbbZ_2$
            – Ender Wiggins
            Aug 26 at 15:54







          • 1




            @EnderWiggins The equalizers may be abstractly isomorphic, but saying that the functor preserves them means the natural map is an isomorphism.
            – Pedro Tamaroff♦
            Aug 26 at 16:16












          up vote
          2
          down vote



          accepted







          up vote
          2
          down vote



          accepted






          There is always a natural map $eta : ker(f-g)otimes Pto ker((f-g)otimes P)$, but it is not always an isomorphism, as the following example shows.



          Consider $M=N= bigoplus mathbb Z$ indexed over the naturals, and the maps $f(x) = (0,x_1,x_2,ldots)$, $g(x) = (2x_1,x_1,x_2,ldots)$, and $r(x) = (x_2,x_3,ldots)$, so that $rf=rg=1$ and $a = g-f$ is given by $a(x) = (2x_1,0,0,ldots)$. Then $K=ker a = langle (0,x_2,x_3,ldots)rangle$, while $mathbb Z/2otimes a = 0$. It follows that the map $eta$ is not an isomorphism.



          Using this idea, you can prove that tensor products preserve equalizers iff they preserve the reflexive ones. Indeed, consider any map of $mathbb k$-modules $f:Mto N$ and let $F : widetildeMto Nopluswidetilde M$ be the map $(m_1,m_2,ldots)mapsto (fm_1,m_1,m_2,ldots)$, where the tilde means taking a sum. Let $G$ be the map where $f=0$. Then $F$ and $G$ admit a common retraction given by sending $(n,m_1,m_2,ldots)$ to $(m_1,m_2,ldots)$, and $K=ker(F-G)$ is $ker foplus widetilde M$.



          Then you obtain that the map $Kotimes Pto ker((F-G)otimes P)$ is just the map with coordinates the natural map $ker fotimes Pto ker(fotimes P)$ and the identity of $widetilde Motimes P$, so the claim follows.






          share|cite|improve this answer














          There is always a natural map $eta : ker(f-g)otimes Pto ker((f-g)otimes P)$, but it is not always an isomorphism, as the following example shows.



          Consider $M=N= bigoplus mathbb Z$ indexed over the naturals, and the maps $f(x) = (0,x_1,x_2,ldots)$, $g(x) = (2x_1,x_1,x_2,ldots)$, and $r(x) = (x_2,x_3,ldots)$, so that $rf=rg=1$ and $a = g-f$ is given by $a(x) = (2x_1,0,0,ldots)$. Then $K=ker a = langle (0,x_2,x_3,ldots)rangle$, while $mathbb Z/2otimes a = 0$. It follows that the map $eta$ is not an isomorphism.



          Using this idea, you can prove that tensor products preserve equalizers iff they preserve the reflexive ones. Indeed, consider any map of $mathbb k$-modules $f:Mto N$ and let $F : widetildeMto Nopluswidetilde M$ be the map $(m_1,m_2,ldots)mapsto (fm_1,m_1,m_2,ldots)$, where the tilde means taking a sum. Let $G$ be the map where $f=0$. Then $F$ and $G$ admit a common retraction given by sending $(n,m_1,m_2,ldots)$ to $(m_1,m_2,ldots)$, and $K=ker(F-G)$ is $ker foplus widetilde M$.



          Then you obtain that the map $Kotimes Pto ker((F-G)otimes P)$ is just the map with coordinates the natural map $ker fotimes Pto ker(fotimes P)$ and the identity of $widetilde Motimes P$, so the claim follows.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Aug 26 at 15:12

























          answered Aug 26 at 13:13









          Pedro Tamaroff♦

          94.4k10143291




          94.4k10143291











          • I beg your pardon, Pedro, but I cannot see how this allows me to conclude that $Potimes mathsfEq(f,g)cong mathsfEq(Potimes f,Potimes g)$?
            – Ender Wiggins
            Aug 26 at 13:55










          • @EnderWiggins My bad, I misread what you were asking. Fixed.
            – Pedro Tamaroff♦
            Aug 26 at 15:01










          • Ok, I followed your argument and indeed the conclusion is that $ker((F-G)otimes P)cong ker(fotimes P)oplusbigoplus(Motimes P)$, $ker(F-G)otimes Pcong (ker(f)otimes P) oplus(bigoplus Motimes P)$ and so $-otimes P$ preserves equalizers if and only if it preserves coreflexive ones. However, there's a point in the example you chose that I find obscure: $mathbbZ_2otimes ker(a) = mathbbZ_2otimes(0oplus bigoplus mathbbZ) cong bigoplus mathbbZ_2 cong ker(mathbbZ_2otimes a)$.
            – Ender Wiggins
            Aug 26 at 15:43











          • What about $M=bigoplus mathbbZ$, $N=mathbbZ_2oplusbigoplusmathbbZ$, $f(x)=([0],x_1,x_2,ldots)$, $g(x)=([x_1],x_1,x_2,ldots)$?In such a case $ker(f-g)=2mathbbZoplusbigoplus mathbbZ$, whence $ker(f-g)otimesmathbbZ_2=(2mathbbZotimes mathbbZ_2)oplusbigoplus mathbbZ_2$ while $ker((f-g)otimesmathbbZ_2)=bigoplus mathbbZ_2$
            – Ender Wiggins
            Aug 26 at 15:54







          • 1




            @EnderWiggins The equalizers may be abstractly isomorphic, but saying that the functor preserves them means the natural map is an isomorphism.
            – Pedro Tamaroff♦
            Aug 26 at 16:16
















          • I beg your pardon, Pedro, but I cannot see how this allows me to conclude that $Potimes mathsfEq(f,g)cong mathsfEq(Potimes f,Potimes g)$?
            – Ender Wiggins
            Aug 26 at 13:55










          • @EnderWiggins My bad, I misread what you were asking. Fixed.
            – Pedro Tamaroff♦
            Aug 26 at 15:01










          • Ok, I followed your argument and indeed the conclusion is that $ker((F-G)otimes P)cong ker(fotimes P)oplusbigoplus(Motimes P)$, $ker(F-G)otimes Pcong (ker(f)otimes P) oplus(bigoplus Motimes P)$ and so $-otimes P$ preserves equalizers if and only if it preserves coreflexive ones. However, there's a point in the example you chose that I find obscure: $mathbbZ_2otimes ker(a) = mathbbZ_2otimes(0oplus bigoplus mathbbZ) cong bigoplus mathbbZ_2 cong ker(mathbbZ_2otimes a)$.
            – Ender Wiggins
            Aug 26 at 15:43











          • What about $M=bigoplus mathbbZ$, $N=mathbbZ_2oplusbigoplusmathbbZ$, $f(x)=([0],x_1,x_2,ldots)$, $g(x)=([x_1],x_1,x_2,ldots)$?In such a case $ker(f-g)=2mathbbZoplusbigoplus mathbbZ$, whence $ker(f-g)otimesmathbbZ_2=(2mathbbZotimes mathbbZ_2)oplusbigoplus mathbbZ_2$ while $ker((f-g)otimesmathbbZ_2)=bigoplus mathbbZ_2$
            – Ender Wiggins
            Aug 26 at 15:54







          • 1




            @EnderWiggins The equalizers may be abstractly isomorphic, but saying that the functor preserves them means the natural map is an isomorphism.
            – Pedro Tamaroff♦
            Aug 26 at 16:16















          I beg your pardon, Pedro, but I cannot see how this allows me to conclude that $Potimes mathsfEq(f,g)cong mathsfEq(Potimes f,Potimes g)$?
          – Ender Wiggins
          Aug 26 at 13:55




          I beg your pardon, Pedro, but I cannot see how this allows me to conclude that $Potimes mathsfEq(f,g)cong mathsfEq(Potimes f,Potimes g)$?
          – Ender Wiggins
          Aug 26 at 13:55












          @EnderWiggins My bad, I misread what you were asking. Fixed.
          – Pedro Tamaroff♦
          Aug 26 at 15:01




          @EnderWiggins My bad, I misread what you were asking. Fixed.
          – Pedro Tamaroff♦
          Aug 26 at 15:01












          Ok, I followed your argument and indeed the conclusion is that $ker((F-G)otimes P)cong ker(fotimes P)oplusbigoplus(Motimes P)$, $ker(F-G)otimes Pcong (ker(f)otimes P) oplus(bigoplus Motimes P)$ and so $-otimes P$ preserves equalizers if and only if it preserves coreflexive ones. However, there's a point in the example you chose that I find obscure: $mathbbZ_2otimes ker(a) = mathbbZ_2otimes(0oplus bigoplus mathbbZ) cong bigoplus mathbbZ_2 cong ker(mathbbZ_2otimes a)$.
          – Ender Wiggins
          Aug 26 at 15:43





          Ok, I followed your argument and indeed the conclusion is that $ker((F-G)otimes P)cong ker(fotimes P)oplusbigoplus(Motimes P)$, $ker(F-G)otimes Pcong (ker(f)otimes P) oplus(bigoplus Motimes P)$ and so $-otimes P$ preserves equalizers if and only if it preserves coreflexive ones. However, there's a point in the example you chose that I find obscure: $mathbbZ_2otimes ker(a) = mathbbZ_2otimes(0oplus bigoplus mathbbZ) cong bigoplus mathbbZ_2 cong ker(mathbbZ_2otimes a)$.
          – Ender Wiggins
          Aug 26 at 15:43













          What about $M=bigoplus mathbbZ$, $N=mathbbZ_2oplusbigoplusmathbbZ$, $f(x)=([0],x_1,x_2,ldots)$, $g(x)=([x_1],x_1,x_2,ldots)$?In such a case $ker(f-g)=2mathbbZoplusbigoplus mathbbZ$, whence $ker(f-g)otimesmathbbZ_2=(2mathbbZotimes mathbbZ_2)oplusbigoplus mathbbZ_2$ while $ker((f-g)otimesmathbbZ_2)=bigoplus mathbbZ_2$
          – Ender Wiggins
          Aug 26 at 15:54





          What about $M=bigoplus mathbbZ$, $N=mathbbZ_2oplusbigoplusmathbbZ$, $f(x)=([0],x_1,x_2,ldots)$, $g(x)=([x_1],x_1,x_2,ldots)$?In such a case $ker(f-g)=2mathbbZoplusbigoplus mathbbZ$, whence $ker(f-g)otimesmathbbZ_2=(2mathbbZotimes mathbbZ_2)oplusbigoplus mathbbZ_2$ while $ker((f-g)otimesmathbbZ_2)=bigoplus mathbbZ_2$
          – Ender Wiggins
          Aug 26 at 15:54





          1




          1




          @EnderWiggins The equalizers may be abstractly isomorphic, but saying that the functor preserves them means the natural map is an isomorphism.
          – Pedro Tamaroff♦
          Aug 26 at 16:16




          @EnderWiggins The equalizers may be abstractly isomorphic, but saying that the functor preserves them means the natural map is an isomorphism.
          – Pedro Tamaroff♦
          Aug 26 at 16:16

















           

          draft saved


          draft discarded















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2894931%2fdoes-the-tensor-product-preserve-coreflexive-equalizers%23new-answer', 'question_page');

          );

          Post as a guest













































































          這個網誌中的熱門文章

          How to combine Bézier curves to a surface?

          Mutual Information Always Non-negative

          Why am i infinitely getting the same tweet with the Twitter Search API?