Combinatorial proof for a sum of binomial coefficient products [duplicate]
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
This question already has an answer here:
Prove that $sumlimits_k=0^mbinommkbinomn+km=sumlimits_k=0^mbinomnkbinommk2^k$ [duplicate]
4 answers
Alternative combinatorial proof for $sumlimits_r=0^nbinomnrbinomm+rn=sumlimits_r=0^nbinomnrbinommr2^r$
2 answers
I would like to prove the following statement to be true.
$$
sum_k = 0^m binommkbinomn+km
= sum_k = 0^mbinomnkbinommk2^k
$$
combinatorics discrete-mathematics binomial-coefficients
marked as duplicate by amWhy, Jendrik Stelzner, N. F. Taussig
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Aug 26 at 11:16
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |Â
up vote
0
down vote
favorite
This question already has an answer here:
Prove that $sumlimits_k=0^mbinommkbinomn+km=sumlimits_k=0^mbinomnkbinommk2^k$ [duplicate]
4 answers
Alternative combinatorial proof for $sumlimits_r=0^nbinomnrbinomm+rn=sumlimits_r=0^nbinomnrbinommr2^r$
2 answers
I would like to prove the following statement to be true.
$$
sum_k = 0^m binommkbinomn+km
= sum_k = 0^mbinomnkbinommk2^k
$$
combinatorics discrete-mathematics binomial-coefficients
marked as duplicate by amWhy, Jendrik Stelzner, N. F. Taussig
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Aug 26 at 11:16
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
First, I would try to express the combinatorial expressions as fractions.
â DavidS
Aug 26 at 11:08
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
This question already has an answer here:
Prove that $sumlimits_k=0^mbinommkbinomn+km=sumlimits_k=0^mbinomnkbinommk2^k$ [duplicate]
4 answers
Alternative combinatorial proof for $sumlimits_r=0^nbinomnrbinomm+rn=sumlimits_r=0^nbinomnrbinommr2^r$
2 answers
I would like to prove the following statement to be true.
$$
sum_k = 0^m binommkbinomn+km
= sum_k = 0^mbinomnkbinommk2^k
$$
combinatorics discrete-mathematics binomial-coefficients
This question already has an answer here:
Prove that $sumlimits_k=0^mbinommkbinomn+km=sumlimits_k=0^mbinomnkbinommk2^k$ [duplicate]
4 answers
Alternative combinatorial proof for $sumlimits_r=0^nbinomnrbinomm+rn=sumlimits_r=0^nbinomnrbinommr2^r$
2 answers
I would like to prove the following statement to be true.
$$
sum_k = 0^m binommkbinomn+km
= sum_k = 0^mbinomnkbinommk2^k
$$
This question already has an answer here:
Prove that $sumlimits_k=0^mbinommkbinomn+km=sumlimits_k=0^mbinomnkbinommk2^k$ [duplicate]
4 answers
Alternative combinatorial proof for $sumlimits_r=0^nbinomnrbinomm+rn=sumlimits_r=0^nbinomnrbinommr2^r$
2 answers
combinatorics discrete-mathematics binomial-coefficients
edited Aug 26 at 11:08
Jendrik Stelzner
7,58221037
7,58221037
asked Aug 26 at 11:05
Alan DSouza
6
6
marked as duplicate by amWhy, Jendrik Stelzner, N. F. Taussig
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Aug 26 at 11:16
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by amWhy, Jendrik Stelzner, N. F. Taussig
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Aug 26 at 11:16
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
First, I would try to express the combinatorial expressions as fractions.
â DavidS
Aug 26 at 11:08
add a comment |Â
First, I would try to express the combinatorial expressions as fractions.
â DavidS
Aug 26 at 11:08
First, I would try to express the combinatorial expressions as fractions.
â DavidS
Aug 26 at 11:08
First, I would try to express the combinatorial expressions as fractions.
â DavidS
Aug 26 at 11:08
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
First, I would try to express the combinatorial expressions as fractions.
â DavidS
Aug 26 at 11:08