show that $ sum^n_k=1|f(2^n)-f(2^k)|leq fracn(n-1)2$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite













If $displaystyle bigg|f(a+b)-f(b)bigg|leq fracab; forall; a,bin mathbbQ,bneq 0.$



Then show that $displaystyle sum^n_k=1bigg|f(2^n)-f(2^k)bigg|leq fracn(n-1)2$




Try: put $displaystyle a=h>0$ Then $displaystyle bigg|f(b+h)-f(b)bigg|leq frachb$



So $displaystyle lim_hrightarrow 0bigg|fracf(b+h)-f(b)hbigg|leq lim_hrightarrow 0frac1bRightarrow |f'(b)|leq frac1b$



Could some help me how to solve it, please help me. Thanks










share|cite|improve this question





















  • As you stated the problem, we do not know if $f$ has a derivative.
    – nicomezi
    Sep 6 at 6:14






  • 1




    There is no such function $f$ because $|f(a+b) - f(b)| le frac ab$ cannot hold if $frac ab$ is negative.
    – Martin R
    Sep 6 at 6:23















up vote
3
down vote

favorite













If $displaystyle bigg|f(a+b)-f(b)bigg|leq fracab; forall; a,bin mathbbQ,bneq 0.$



Then show that $displaystyle sum^n_k=1bigg|f(2^n)-f(2^k)bigg|leq fracn(n-1)2$




Try: put $displaystyle a=h>0$ Then $displaystyle bigg|f(b+h)-f(b)bigg|leq frachb$



So $displaystyle lim_hrightarrow 0bigg|fracf(b+h)-f(b)hbigg|leq lim_hrightarrow 0frac1bRightarrow |f'(b)|leq frac1b$



Could some help me how to solve it, please help me. Thanks










share|cite|improve this question





















  • As you stated the problem, we do not know if $f$ has a derivative.
    – nicomezi
    Sep 6 at 6:14






  • 1




    There is no such function $f$ because $|f(a+b) - f(b)| le frac ab$ cannot hold if $frac ab$ is negative.
    – Martin R
    Sep 6 at 6:23













up vote
3
down vote

favorite









up vote
3
down vote

favorite












If $displaystyle bigg|f(a+b)-f(b)bigg|leq fracab; forall; a,bin mathbbQ,bneq 0.$



Then show that $displaystyle sum^n_k=1bigg|f(2^n)-f(2^k)bigg|leq fracn(n-1)2$




Try: put $displaystyle a=h>0$ Then $displaystyle bigg|f(b+h)-f(b)bigg|leq frachb$



So $displaystyle lim_hrightarrow 0bigg|fracf(b+h)-f(b)hbigg|leq lim_hrightarrow 0frac1bRightarrow |f'(b)|leq frac1b$



Could some help me how to solve it, please help me. Thanks










share|cite|improve this question














If $displaystyle bigg|f(a+b)-f(b)bigg|leq fracab; forall; a,bin mathbbQ,bneq 0.$



Then show that $displaystyle sum^n_k=1bigg|f(2^n)-f(2^k)bigg|leq fracn(n-1)2$




Try: put $displaystyle a=h>0$ Then $displaystyle bigg|f(b+h)-f(b)bigg|leq frachb$



So $displaystyle lim_hrightarrow 0bigg|fracf(b+h)-f(b)hbigg|leq lim_hrightarrow 0frac1bRightarrow |f'(b)|leq frac1b$



Could some help me how to solve it, please help me. Thanks







functions






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Sep 6 at 6:09









Durgesh Tiwari

4,8702526




4,8702526











  • As you stated the problem, we do not know if $f$ has a derivative.
    – nicomezi
    Sep 6 at 6:14






  • 1




    There is no such function $f$ because $|f(a+b) - f(b)| le frac ab$ cannot hold if $frac ab$ is negative.
    – Martin R
    Sep 6 at 6:23

















  • As you stated the problem, we do not know if $f$ has a derivative.
    – nicomezi
    Sep 6 at 6:14






  • 1




    There is no such function $f$ because $|f(a+b) - f(b)| le frac ab$ cannot hold if $frac ab$ is negative.
    – Martin R
    Sep 6 at 6:23
















As you stated the problem, we do not know if $f$ has a derivative.
– nicomezi
Sep 6 at 6:14




As you stated the problem, we do not know if $f$ has a derivative.
– nicomezi
Sep 6 at 6:14




1




1




There is no such function $f$ because $|f(a+b) - f(b)| le frac ab$ cannot hold if $frac ab$ is negative.
– Martin R
Sep 6 at 6:23





There is no such function $f$ because $|f(a+b) - f(b)| le frac ab$ cannot hold if $frac ab$ is negative.
– Martin R
Sep 6 at 6:23











2 Answers
2






active

oldest

votes

















up vote
2
down vote



accepted










Recall the Absolute Value identity: $,left|a+bright|leleft|aright|+left|bright|,$:

$$
beginalign
left|f(a+b)-f(b)right|&lefracab=fraca+bb-1 \[2mm]
left|fleft(2^rright)-fleft(2^r-1right)right|&lefrac2^r2^r-1-1=2-1=colorred1 \[2mm]
sum_k=1^nleft|fleft(2^nright)-fleft(2^kright)right|&=sum_k=1^nbigg|fleft(2^nright)colorblue-fleft(2^n-1right)+fleft(2^n-1right)-dots \
&qquadcolorbluedots-fleft(2^k+1right)+fleft(2^k+1right)-fleft(2^kright)bigg| \[2mm]
&lesum_k=1^n,sum_r=k+1^n,left|fleft(2^rright)-fleft(2^r-1right)right| \[2mm]
&lesum_k=1^n,sum_r=k+1^ncolorred1=sum_k=1^n(n-k)=sum_k=0^n-1k=fracn(n-1)2
endalign
$$






share|cite|improve this answer



























    up vote
    3
    down vote













    You can show it by induction on $n$. The case $n=1$ is trivial. Suppose the result is true for an $ngeq 1$, we want to show that it holds for $n+1$. We have
    $$
    sum_k=1^n+1|f(2^n+1)-f(2^k)|=sum_k=1^n|f(2^n+1)-f(2^k)|leqsum_k=1^nleft[|f(2^n+1)-f(2^n)|+|f(2^n)-f(2^k)|right]leq n|f(2^n+1)-f(2^n)|+fracn(n-1)2
    $$
    where in the last step we used the induction hypothesis. Now estimate $|f(2^n+1)-f(2^n)|$ using the condition for suitable $a,b$.






    share|cite|improve this answer




















      Your Answer




      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2907149%2fshow-that-sumn-k-1f2n-f2k-leq-fracnn-12%23new-answer', 'question_page');

      );

      Post as a guest






























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      2
      down vote



      accepted










      Recall the Absolute Value identity: $,left|a+bright|leleft|aright|+left|bright|,$:

      $$
      beginalign
      left|f(a+b)-f(b)right|&lefracab=fraca+bb-1 \[2mm]
      left|fleft(2^rright)-fleft(2^r-1right)right|&lefrac2^r2^r-1-1=2-1=colorred1 \[2mm]
      sum_k=1^nleft|fleft(2^nright)-fleft(2^kright)right|&=sum_k=1^nbigg|fleft(2^nright)colorblue-fleft(2^n-1right)+fleft(2^n-1right)-dots \
      &qquadcolorbluedots-fleft(2^k+1right)+fleft(2^k+1right)-fleft(2^kright)bigg| \[2mm]
      &lesum_k=1^n,sum_r=k+1^n,left|fleft(2^rright)-fleft(2^r-1right)right| \[2mm]
      &lesum_k=1^n,sum_r=k+1^ncolorred1=sum_k=1^n(n-k)=sum_k=0^n-1k=fracn(n-1)2
      endalign
      $$






      share|cite|improve this answer
























        up vote
        2
        down vote



        accepted










        Recall the Absolute Value identity: $,left|a+bright|leleft|aright|+left|bright|,$:

        $$
        beginalign
        left|f(a+b)-f(b)right|&lefracab=fraca+bb-1 \[2mm]
        left|fleft(2^rright)-fleft(2^r-1right)right|&lefrac2^r2^r-1-1=2-1=colorred1 \[2mm]
        sum_k=1^nleft|fleft(2^nright)-fleft(2^kright)right|&=sum_k=1^nbigg|fleft(2^nright)colorblue-fleft(2^n-1right)+fleft(2^n-1right)-dots \
        &qquadcolorbluedots-fleft(2^k+1right)+fleft(2^k+1right)-fleft(2^kright)bigg| \[2mm]
        &lesum_k=1^n,sum_r=k+1^n,left|fleft(2^rright)-fleft(2^r-1right)right| \[2mm]
        &lesum_k=1^n,sum_r=k+1^ncolorred1=sum_k=1^n(n-k)=sum_k=0^n-1k=fracn(n-1)2
        endalign
        $$






        share|cite|improve this answer






















          up vote
          2
          down vote



          accepted







          up vote
          2
          down vote



          accepted






          Recall the Absolute Value identity: $,left|a+bright|leleft|aright|+left|bright|,$:

          $$
          beginalign
          left|f(a+b)-f(b)right|&lefracab=fraca+bb-1 \[2mm]
          left|fleft(2^rright)-fleft(2^r-1right)right|&lefrac2^r2^r-1-1=2-1=colorred1 \[2mm]
          sum_k=1^nleft|fleft(2^nright)-fleft(2^kright)right|&=sum_k=1^nbigg|fleft(2^nright)colorblue-fleft(2^n-1right)+fleft(2^n-1right)-dots \
          &qquadcolorbluedots-fleft(2^k+1right)+fleft(2^k+1right)-fleft(2^kright)bigg| \[2mm]
          &lesum_k=1^n,sum_r=k+1^n,left|fleft(2^rright)-fleft(2^r-1right)right| \[2mm]
          &lesum_k=1^n,sum_r=k+1^ncolorred1=sum_k=1^n(n-k)=sum_k=0^n-1k=fracn(n-1)2
          endalign
          $$






          share|cite|improve this answer












          Recall the Absolute Value identity: $,left|a+bright|leleft|aright|+left|bright|,$:

          $$
          beginalign
          left|f(a+b)-f(b)right|&lefracab=fraca+bb-1 \[2mm]
          left|fleft(2^rright)-fleft(2^r-1right)right|&lefrac2^r2^r-1-1=2-1=colorred1 \[2mm]
          sum_k=1^nleft|fleft(2^nright)-fleft(2^kright)right|&=sum_k=1^nbigg|fleft(2^nright)colorblue-fleft(2^n-1right)+fleft(2^n-1right)-dots \
          &qquadcolorbluedots-fleft(2^k+1right)+fleft(2^k+1right)-fleft(2^kright)bigg| \[2mm]
          &lesum_k=1^n,sum_r=k+1^n,left|fleft(2^rright)-fleft(2^r-1right)right| \[2mm]
          &lesum_k=1^n,sum_r=k+1^ncolorred1=sum_k=1^n(n-k)=sum_k=0^n-1k=fracn(n-1)2
          endalign
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Sep 6 at 9:39









          Hazem Orabi

          2,5882528




          2,5882528




















              up vote
              3
              down vote













              You can show it by induction on $n$. The case $n=1$ is trivial. Suppose the result is true for an $ngeq 1$, we want to show that it holds for $n+1$. We have
              $$
              sum_k=1^n+1|f(2^n+1)-f(2^k)|=sum_k=1^n|f(2^n+1)-f(2^k)|leqsum_k=1^nleft[|f(2^n+1)-f(2^n)|+|f(2^n)-f(2^k)|right]leq n|f(2^n+1)-f(2^n)|+fracn(n-1)2
              $$
              where in the last step we used the induction hypothesis. Now estimate $|f(2^n+1)-f(2^n)|$ using the condition for suitable $a,b$.






              share|cite|improve this answer
























                up vote
                3
                down vote













                You can show it by induction on $n$. The case $n=1$ is trivial. Suppose the result is true for an $ngeq 1$, we want to show that it holds for $n+1$. We have
                $$
                sum_k=1^n+1|f(2^n+1)-f(2^k)|=sum_k=1^n|f(2^n+1)-f(2^k)|leqsum_k=1^nleft[|f(2^n+1)-f(2^n)|+|f(2^n)-f(2^k)|right]leq n|f(2^n+1)-f(2^n)|+fracn(n-1)2
                $$
                where in the last step we used the induction hypothesis. Now estimate $|f(2^n+1)-f(2^n)|$ using the condition for suitable $a,b$.






                share|cite|improve this answer






















                  up vote
                  3
                  down vote










                  up vote
                  3
                  down vote









                  You can show it by induction on $n$. The case $n=1$ is trivial. Suppose the result is true for an $ngeq 1$, we want to show that it holds for $n+1$. We have
                  $$
                  sum_k=1^n+1|f(2^n+1)-f(2^k)|=sum_k=1^n|f(2^n+1)-f(2^k)|leqsum_k=1^nleft[|f(2^n+1)-f(2^n)|+|f(2^n)-f(2^k)|right]leq n|f(2^n+1)-f(2^n)|+fracn(n-1)2
                  $$
                  where in the last step we used the induction hypothesis. Now estimate $|f(2^n+1)-f(2^n)|$ using the condition for suitable $a,b$.






                  share|cite|improve this answer












                  You can show it by induction on $n$. The case $n=1$ is trivial. Suppose the result is true for an $ngeq 1$, we want to show that it holds for $n+1$. We have
                  $$
                  sum_k=1^n+1|f(2^n+1)-f(2^k)|=sum_k=1^n|f(2^n+1)-f(2^k)|leqsum_k=1^nleft[|f(2^n+1)-f(2^n)|+|f(2^n)-f(2^k)|right]leq n|f(2^n+1)-f(2^n)|+fracn(n-1)2
                  $$
                  where in the last step we used the induction hypothesis. Now estimate $|f(2^n+1)-f(2^n)|$ using the condition for suitable $a,b$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Sep 6 at 6:45









                  Redundant Aunt

                  7,14521141




                  7,14521141



























                       

                      draft saved


                      draft discarded















































                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2907149%2fshow-that-sumn-k-1f2n-f2k-leq-fracnn-12%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      這個網誌中的熱門文章

                      How to combine Bézier curves to a surface?

                      Mutual Information Always Non-negative

                      Why am i infinitely getting the same tweet with the Twitter Search API?