show that $ sum^n_k=1|f(2^n)-f(2^k)|leq fracn(n-1)2$
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
If $displaystyle bigg|f(a+b)-f(b)bigg|leq fracab; forall; a,bin mathbbQ,bneq 0.$
Then show that $displaystyle sum^n_k=1bigg|f(2^n)-f(2^k)bigg|leq fracn(n-1)2$
Try: put $displaystyle a=h>0$ Then $displaystyle bigg|f(b+h)-f(b)bigg|leq frachb$
So $displaystyle lim_hrightarrow 0bigg|fracf(b+h)-f(b)hbigg|leq lim_hrightarrow 0frac1bRightarrow |f'(b)|leq frac1b$
Could some help me how to solve it, please help me. Thanks
functions
add a comment |Â
up vote
3
down vote
favorite
If $displaystyle bigg|f(a+b)-f(b)bigg|leq fracab; forall; a,bin mathbbQ,bneq 0.$
Then show that $displaystyle sum^n_k=1bigg|f(2^n)-f(2^k)bigg|leq fracn(n-1)2$
Try: put $displaystyle a=h>0$ Then $displaystyle bigg|f(b+h)-f(b)bigg|leq frachb$
So $displaystyle lim_hrightarrow 0bigg|fracf(b+h)-f(b)hbigg|leq lim_hrightarrow 0frac1bRightarrow |f'(b)|leq frac1b$
Could some help me how to solve it, please help me. Thanks
functions
As you stated the problem, we do not know if $f$ has a derivative.
â nicomezi
Sep 6 at 6:14
1
There is no such function $f$ because $|f(a+b) - f(b)| le frac ab$ cannot hold if $frac ab$ is negative.
â Martin R
Sep 6 at 6:23
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
If $displaystyle bigg|f(a+b)-f(b)bigg|leq fracab; forall; a,bin mathbbQ,bneq 0.$
Then show that $displaystyle sum^n_k=1bigg|f(2^n)-f(2^k)bigg|leq fracn(n-1)2$
Try: put $displaystyle a=h>0$ Then $displaystyle bigg|f(b+h)-f(b)bigg|leq frachb$
So $displaystyle lim_hrightarrow 0bigg|fracf(b+h)-f(b)hbigg|leq lim_hrightarrow 0frac1bRightarrow |f'(b)|leq frac1b$
Could some help me how to solve it, please help me. Thanks
functions
If $displaystyle bigg|f(a+b)-f(b)bigg|leq fracab; forall; a,bin mathbbQ,bneq 0.$
Then show that $displaystyle sum^n_k=1bigg|f(2^n)-f(2^k)bigg|leq fracn(n-1)2$
Try: put $displaystyle a=h>0$ Then $displaystyle bigg|f(b+h)-f(b)bigg|leq frachb$
So $displaystyle lim_hrightarrow 0bigg|fracf(b+h)-f(b)hbigg|leq lim_hrightarrow 0frac1bRightarrow |f'(b)|leq frac1b$
Could some help me how to solve it, please help me. Thanks
functions
functions
asked Sep 6 at 6:09
Durgesh Tiwari
4,8702526
4,8702526
As you stated the problem, we do not know if $f$ has a derivative.
â nicomezi
Sep 6 at 6:14
1
There is no such function $f$ because $|f(a+b) - f(b)| le frac ab$ cannot hold if $frac ab$ is negative.
â Martin R
Sep 6 at 6:23
add a comment |Â
As you stated the problem, we do not know if $f$ has a derivative.
â nicomezi
Sep 6 at 6:14
1
There is no such function $f$ because $|f(a+b) - f(b)| le frac ab$ cannot hold if $frac ab$ is negative.
â Martin R
Sep 6 at 6:23
As you stated the problem, we do not know if $f$ has a derivative.
â nicomezi
Sep 6 at 6:14
As you stated the problem, we do not know if $f$ has a derivative.
â nicomezi
Sep 6 at 6:14
1
1
There is no such function $f$ because $|f(a+b) - f(b)| le frac ab$ cannot hold if $frac ab$ is negative.
â Martin R
Sep 6 at 6:23
There is no such function $f$ because $|f(a+b) - f(b)| le frac ab$ cannot hold if $frac ab$ is negative.
â Martin R
Sep 6 at 6:23
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
2
down vote
accepted
Recall the Absolute Value identity: $,left|a+bright|leleft|aright|+left|bright|,$:
$$
beginalign
left|f(a+b)-f(b)right|&lefracab=fraca+bb-1 \[2mm]
left|fleft(2^rright)-fleft(2^r-1right)right|&lefrac2^r2^r-1-1=2-1=colorred1 \[2mm]
sum_k=1^nleft|fleft(2^nright)-fleft(2^kright)right|&=sum_k=1^nbigg|fleft(2^nright)colorblue-fleft(2^n-1right)+fleft(2^n-1right)-dots \
&qquadcolorbluedots-fleft(2^k+1right)+fleft(2^k+1right)-fleft(2^kright)bigg| \[2mm]
&lesum_k=1^n,sum_r=k+1^n,left|fleft(2^rright)-fleft(2^r-1right)right| \[2mm]
&lesum_k=1^n,sum_r=k+1^ncolorred1=sum_k=1^n(n-k)=sum_k=0^n-1k=fracn(n-1)2
endalign
$$
add a comment |Â
up vote
3
down vote
You can show it by induction on $n$. The case $n=1$ is trivial. Suppose the result is true for an $ngeq 1$, we want to show that it holds for $n+1$. We have
$$
sum_k=1^n+1|f(2^n+1)-f(2^k)|=sum_k=1^n|f(2^n+1)-f(2^k)|leqsum_k=1^nleft[|f(2^n+1)-f(2^n)|+|f(2^n)-f(2^k)|right]leq n|f(2^n+1)-f(2^n)|+fracn(n-1)2
$$
where in the last step we used the induction hypothesis. Now estimate $|f(2^n+1)-f(2^n)|$ using the condition for suitable $a,b$.
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
Recall the Absolute Value identity: $,left|a+bright|leleft|aright|+left|bright|,$:
$$
beginalign
left|f(a+b)-f(b)right|&lefracab=fraca+bb-1 \[2mm]
left|fleft(2^rright)-fleft(2^r-1right)right|&lefrac2^r2^r-1-1=2-1=colorred1 \[2mm]
sum_k=1^nleft|fleft(2^nright)-fleft(2^kright)right|&=sum_k=1^nbigg|fleft(2^nright)colorblue-fleft(2^n-1right)+fleft(2^n-1right)-dots \
&qquadcolorbluedots-fleft(2^k+1right)+fleft(2^k+1right)-fleft(2^kright)bigg| \[2mm]
&lesum_k=1^n,sum_r=k+1^n,left|fleft(2^rright)-fleft(2^r-1right)right| \[2mm]
&lesum_k=1^n,sum_r=k+1^ncolorred1=sum_k=1^n(n-k)=sum_k=0^n-1k=fracn(n-1)2
endalign
$$
add a comment |Â
up vote
2
down vote
accepted
Recall the Absolute Value identity: $,left|a+bright|leleft|aright|+left|bright|,$:
$$
beginalign
left|f(a+b)-f(b)right|&lefracab=fraca+bb-1 \[2mm]
left|fleft(2^rright)-fleft(2^r-1right)right|&lefrac2^r2^r-1-1=2-1=colorred1 \[2mm]
sum_k=1^nleft|fleft(2^nright)-fleft(2^kright)right|&=sum_k=1^nbigg|fleft(2^nright)colorblue-fleft(2^n-1right)+fleft(2^n-1right)-dots \
&qquadcolorbluedots-fleft(2^k+1right)+fleft(2^k+1right)-fleft(2^kright)bigg| \[2mm]
&lesum_k=1^n,sum_r=k+1^n,left|fleft(2^rright)-fleft(2^r-1right)right| \[2mm]
&lesum_k=1^n,sum_r=k+1^ncolorred1=sum_k=1^n(n-k)=sum_k=0^n-1k=fracn(n-1)2
endalign
$$
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
Recall the Absolute Value identity: $,left|a+bright|leleft|aright|+left|bright|,$:
$$
beginalign
left|f(a+b)-f(b)right|&lefracab=fraca+bb-1 \[2mm]
left|fleft(2^rright)-fleft(2^r-1right)right|&lefrac2^r2^r-1-1=2-1=colorred1 \[2mm]
sum_k=1^nleft|fleft(2^nright)-fleft(2^kright)right|&=sum_k=1^nbigg|fleft(2^nright)colorblue-fleft(2^n-1right)+fleft(2^n-1right)-dots \
&qquadcolorbluedots-fleft(2^k+1right)+fleft(2^k+1right)-fleft(2^kright)bigg| \[2mm]
&lesum_k=1^n,sum_r=k+1^n,left|fleft(2^rright)-fleft(2^r-1right)right| \[2mm]
&lesum_k=1^n,sum_r=k+1^ncolorred1=sum_k=1^n(n-k)=sum_k=0^n-1k=fracn(n-1)2
endalign
$$
Recall the Absolute Value identity: $,left|a+bright|leleft|aright|+left|bright|,$:
$$
beginalign
left|f(a+b)-f(b)right|&lefracab=fraca+bb-1 \[2mm]
left|fleft(2^rright)-fleft(2^r-1right)right|&lefrac2^r2^r-1-1=2-1=colorred1 \[2mm]
sum_k=1^nleft|fleft(2^nright)-fleft(2^kright)right|&=sum_k=1^nbigg|fleft(2^nright)colorblue-fleft(2^n-1right)+fleft(2^n-1right)-dots \
&qquadcolorbluedots-fleft(2^k+1right)+fleft(2^k+1right)-fleft(2^kright)bigg| \[2mm]
&lesum_k=1^n,sum_r=k+1^n,left|fleft(2^rright)-fleft(2^r-1right)right| \[2mm]
&lesum_k=1^n,sum_r=k+1^ncolorred1=sum_k=1^n(n-k)=sum_k=0^n-1k=fracn(n-1)2
endalign
$$
answered Sep 6 at 9:39
Hazem Orabi
2,5882528
2,5882528
add a comment |Â
add a comment |Â
up vote
3
down vote
You can show it by induction on $n$. The case $n=1$ is trivial. Suppose the result is true for an $ngeq 1$, we want to show that it holds for $n+1$. We have
$$
sum_k=1^n+1|f(2^n+1)-f(2^k)|=sum_k=1^n|f(2^n+1)-f(2^k)|leqsum_k=1^nleft[|f(2^n+1)-f(2^n)|+|f(2^n)-f(2^k)|right]leq n|f(2^n+1)-f(2^n)|+fracn(n-1)2
$$
where in the last step we used the induction hypothesis. Now estimate $|f(2^n+1)-f(2^n)|$ using the condition for suitable $a,b$.
add a comment |Â
up vote
3
down vote
You can show it by induction on $n$. The case $n=1$ is trivial. Suppose the result is true for an $ngeq 1$, we want to show that it holds for $n+1$. We have
$$
sum_k=1^n+1|f(2^n+1)-f(2^k)|=sum_k=1^n|f(2^n+1)-f(2^k)|leqsum_k=1^nleft[|f(2^n+1)-f(2^n)|+|f(2^n)-f(2^k)|right]leq n|f(2^n+1)-f(2^n)|+fracn(n-1)2
$$
where in the last step we used the induction hypothesis. Now estimate $|f(2^n+1)-f(2^n)|$ using the condition for suitable $a,b$.
add a comment |Â
up vote
3
down vote
up vote
3
down vote
You can show it by induction on $n$. The case $n=1$ is trivial. Suppose the result is true for an $ngeq 1$, we want to show that it holds for $n+1$. We have
$$
sum_k=1^n+1|f(2^n+1)-f(2^k)|=sum_k=1^n|f(2^n+1)-f(2^k)|leqsum_k=1^nleft[|f(2^n+1)-f(2^n)|+|f(2^n)-f(2^k)|right]leq n|f(2^n+1)-f(2^n)|+fracn(n-1)2
$$
where in the last step we used the induction hypothesis. Now estimate $|f(2^n+1)-f(2^n)|$ using the condition for suitable $a,b$.
You can show it by induction on $n$. The case $n=1$ is trivial. Suppose the result is true for an $ngeq 1$, we want to show that it holds for $n+1$. We have
$$
sum_k=1^n+1|f(2^n+1)-f(2^k)|=sum_k=1^n|f(2^n+1)-f(2^k)|leqsum_k=1^nleft[|f(2^n+1)-f(2^n)|+|f(2^n)-f(2^k)|right]leq n|f(2^n+1)-f(2^n)|+fracn(n-1)2
$$
where in the last step we used the induction hypothesis. Now estimate $|f(2^n+1)-f(2^n)|$ using the condition for suitable $a,b$.
answered Sep 6 at 6:45
Redundant Aunt
7,14521141
7,14521141
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2907149%2fshow-that-sumn-k-1f2n-f2k-leq-fracnn-12%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
As you stated the problem, we do not know if $f$ has a derivative.
â nicomezi
Sep 6 at 6:14
1
There is no such function $f$ because $|f(a+b) - f(b)| le frac ab$ cannot hold if $frac ab$ is negative.
â Martin R
Sep 6 at 6:23