Complement of a nowhere dense set
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Prove:
If $A$ is nowhere dense subset of a topological space $X$, then $X setminus A$ is
dense in $X$
This question is already appeared in this site but I'm mention again here is for check my proof.
Here's my try:
$A$ is nowhere dense means $textInt(overlineA)=phi$
In order to prove $X setminus A$ is dense, we prove every point of $X$ is either a point of $X setminus A$ or a limit point of $X setminus A$.
Let $x in X$ be arbitrary. If $x in X setminus A$, then we are done. So assume $x notin X setminus A$. That is $x in A$. In this case we prove $x$ is a limit point of $X setminus A$
Since $A subset overlineA$ implies $x in overlineA$ . Also we know $textIntA subset textInt(overlineA)(=phi,textby hypothesis)$, so $textIntA =phi$
So we write, $$x in overlineA=overlineA setminus phi =overlineA setminus textIntA=partial(A)=overlineA cap overlineXsetminus A $$
Hence $x in overlineXsetminus A$ and so $x$ is a limit point of $Xsetminus A$
Is this correct? Any suggestions must be appreciated!
general-topology
add a comment |Â
up vote
1
down vote
favorite
Prove:
If $A$ is nowhere dense subset of a topological space $X$, then $X setminus A$ is
dense in $X$
This question is already appeared in this site but I'm mention again here is for check my proof.
Here's my try:
$A$ is nowhere dense means $textInt(overlineA)=phi$
In order to prove $X setminus A$ is dense, we prove every point of $X$ is either a point of $X setminus A$ or a limit point of $X setminus A$.
Let $x in X$ be arbitrary. If $x in X setminus A$, then we are done. So assume $x notin X setminus A$. That is $x in A$. In this case we prove $x$ is a limit point of $X setminus A$
Since $A subset overlineA$ implies $x in overlineA$ . Also we know $textIntA subset textInt(overlineA)(=phi,textby hypothesis)$, so $textIntA =phi$
So we write, $$x in overlineA=overlineA setminus phi =overlineA setminus textIntA=partial(A)=overlineA cap overlineXsetminus A $$
Hence $x in overlineXsetminus A$ and so $x$ is a limit point of $Xsetminus A$
Is this correct? Any suggestions must be appreciated!
general-topology
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Prove:
If $A$ is nowhere dense subset of a topological space $X$, then $X setminus A$ is
dense in $X$
This question is already appeared in this site but I'm mention again here is for check my proof.
Here's my try:
$A$ is nowhere dense means $textInt(overlineA)=phi$
In order to prove $X setminus A$ is dense, we prove every point of $X$ is either a point of $X setminus A$ or a limit point of $X setminus A$.
Let $x in X$ be arbitrary. If $x in X setminus A$, then we are done. So assume $x notin X setminus A$. That is $x in A$. In this case we prove $x$ is a limit point of $X setminus A$
Since $A subset overlineA$ implies $x in overlineA$ . Also we know $textIntA subset textInt(overlineA)(=phi,textby hypothesis)$, so $textIntA =phi$
So we write, $$x in overlineA=overlineA setminus phi =overlineA setminus textIntA=partial(A)=overlineA cap overlineXsetminus A $$
Hence $x in overlineXsetminus A$ and so $x$ is a limit point of $Xsetminus A$
Is this correct? Any suggestions must be appreciated!
general-topology
Prove:
If $A$ is nowhere dense subset of a topological space $X$, then $X setminus A$ is
dense in $X$
This question is already appeared in this site but I'm mention again here is for check my proof.
Here's my try:
$A$ is nowhere dense means $textInt(overlineA)=phi$
In order to prove $X setminus A$ is dense, we prove every point of $X$ is either a point of $X setminus A$ or a limit point of $X setminus A$.
Let $x in X$ be arbitrary. If $x in X setminus A$, then we are done. So assume $x notin X setminus A$. That is $x in A$. In this case we prove $x$ is a limit point of $X setminus A$
Since $A subset overlineA$ implies $x in overlineA$ . Also we know $textIntA subset textInt(overlineA)(=phi,textby hypothesis)$, so $textIntA =phi$
So we write, $$x in overlineA=overlineA setminus phi =overlineA setminus textIntA=partial(A)=overlineA cap overlineXsetminus A $$
Hence $x in overlineXsetminus A$ and so $x$ is a limit point of $Xsetminus A$
Is this correct? Any suggestions must be appreciated!
general-topology
general-topology
asked Sep 6 at 9:03
LDM
541314
541314
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Your proof is correct. In fact $X setminus A$ is dense in $X$ if and only if $textInt(A) = emptyset$ because $overlineX setminus A = X setminus textInt(A)$.
Thanks!..........
â LDM
Sep 6 at 13:46
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Your proof is correct. In fact $X setminus A$ is dense in $X$ if and only if $textInt(A) = emptyset$ because $overlineX setminus A = X setminus textInt(A)$.
Thanks!..........
â LDM
Sep 6 at 13:46
add a comment |Â
up vote
1
down vote
accepted
Your proof is correct. In fact $X setminus A$ is dense in $X$ if and only if $textInt(A) = emptyset$ because $overlineX setminus A = X setminus textInt(A)$.
Thanks!..........
â LDM
Sep 6 at 13:46
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Your proof is correct. In fact $X setminus A$ is dense in $X$ if and only if $textInt(A) = emptyset$ because $overlineX setminus A = X setminus textInt(A)$.
Your proof is correct. In fact $X setminus A$ is dense in $X$ if and only if $textInt(A) = emptyset$ because $overlineX setminus A = X setminus textInt(A)$.
answered Sep 6 at 10:17
Paul Frost
4,8631425
4,8631425
Thanks!..........
â LDM
Sep 6 at 13:46
add a comment |Â
Thanks!..........
â LDM
Sep 6 at 13:46
Thanks!..........
â LDM
Sep 6 at 13:46
Thanks!..........
â LDM
Sep 6 at 13:46
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2907254%2fcomplement-of-a-nowhere-dense-set%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password