Evaluating $int frac1x^4+1 dx$
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
I am trying to evaluate the integral
$$int frac11+x^4 mathrm dx.$$
The integrand $frac11+x^4$ is a rational function (quotient of two polynomials), so I could solve the integral if I can find the partial fraction of $frac11+x^4$. But I failed to factorize $1+x^4$.
Any other methods are also wellcome.
calculus integration partial-fractions
add a comment |Â
up vote
1
down vote
favorite
I am trying to evaluate the integral
$$int frac11+x^4 mathrm dx.$$
The integrand $frac11+x^4$ is a rational function (quotient of two polynomials), so I could solve the integral if I can find the partial fraction of $frac11+x^4$. But I failed to factorize $1+x^4$.
Any other methods are also wellcome.
calculus integration partial-fractions
I suppose it's been long enough (6 to 7 weeks). At this Math Forum archived post you'll find 3 .pdf files giving extremely detailed evaluations of the antiderivative of $frac1x^n + 1$ for $n=4,;5,$ and $6.$
â Dave L. Renfro
May 7 '13 at 19:43
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I am trying to evaluate the integral
$$int frac11+x^4 mathrm dx.$$
The integrand $frac11+x^4$ is a rational function (quotient of two polynomials), so I could solve the integral if I can find the partial fraction of $frac11+x^4$. But I failed to factorize $1+x^4$.
Any other methods are also wellcome.
calculus integration partial-fractions
I am trying to evaluate the integral
$$int frac11+x^4 mathrm dx.$$
The integrand $frac11+x^4$ is a rational function (quotient of two polynomials), so I could solve the integral if I can find the partial fraction of $frac11+x^4$. But I failed to factorize $1+x^4$.
Any other methods are also wellcome.
calculus integration partial-fractions
calculus integration partial-fractions
edited Sep 6 at 5:25
user99914
asked Mar 18 '13 at 8:42
kalpeshmpopat
1,40211232
1,40211232
I suppose it's been long enough (6 to 7 weeks). At this Math Forum archived post you'll find 3 .pdf files giving extremely detailed evaluations of the antiderivative of $frac1x^n + 1$ for $n=4,;5,$ and $6.$
â Dave L. Renfro
May 7 '13 at 19:43
add a comment |Â
I suppose it's been long enough (6 to 7 weeks). At this Math Forum archived post you'll find 3 .pdf files giving extremely detailed evaluations of the antiderivative of $frac1x^n + 1$ for $n=4,;5,$ and $6.$
â Dave L. Renfro
May 7 '13 at 19:43
I suppose it's been long enough (6 to 7 weeks). At this Math Forum archived post you'll find 3 .pdf files giving extremely detailed evaluations of the antiderivative of $frac1x^n + 1$ for $n=4,;5,$ and $6.$
â Dave L. Renfro
May 7 '13 at 19:43
I suppose it's been long enough (6 to 7 weeks). At this Math Forum archived post you'll find 3 .pdf files giving extremely detailed evaluations of the antiderivative of $frac1x^n + 1$ for $n=4,;5,$ and $6.$
â Dave L. Renfro
May 7 '13 at 19:43
add a comment |Â
4 Answers
4
active
oldest
votes
up vote
18
down vote
accepted
Without using fractional decomposition:
beginalign*intfrac1x^4+1 dx & =frac12intfrac21+x^4 dx\ &=frac12intfrac(1-x^2)+(1+x^2)1+x^4 dx\ &=frac12intfrac1-x^21+x^4 dx+frac12intfrac1+x^21+x^4 dx\
&=frac12intfrac1-frac1x^2x^2+frac1x^2, dx+frac12intfrac1+frac1x^2x^2+frac1x^2, dx\ &=frac12left(intfrac1-frac1x^2left(x+frac1xright)^2-2, dx+intfrac1+frac1x^2left(x-frac1xright)^2+2, dxright)\ &=frac12left(intfracdleft(x+frac1xright)left(x+frac1xright)^2-2+intfracdleft(x-frac1xright)left(x-frac1xright)^2+2right)endalign*
So, finally solution is $$intfrac1x^4+1 dx =frac12left(fracarctanleft(fracx^2-1xsqrt2right)sqrt2-frac12sqrt2logleft(fracx^2-sqrt2x+1x^2+sqrt2x+1right)right)+C$$
This is really difficult . You are genius .
â SmartCoder
Mar 1 at 13:49
add a comment |Â
up vote
10
down vote
Hint:
$$x^4+1=(x^2-sqrt2x+1)(x^2+sqrt2x+1) tag1$$
You can integrate using partial fraction decomposition. Since
$$x^4+1=(x^2-sqrt2x+1)(x^2+sqrt2x+1),$$
then
$$frac1x^4+1=fracAx+Bx^2-sqrt2x+1+fracCx+Dx^2+sqrt2x+1=frac(Ax+B)(x^2+sqrt2x+1)+(Cx+D)(x^2-sqrt2x+1)(x^2-sqrt2x+1)(x^2+sqrt2x+1) = \
= fracx^3(A+C)+x^2(Asqrt2+B+D-Csqrt2)+x(Bsqrt2-Dsqrt2)+B+D(x^2-sqrt2x+1)(x^2+sqrt2x+1)$$
$$begincases
A+C=0;\
B+D+sqrt2(A-C)=0; \
B-D=0; \
B+D=1.
endcases$$
$$
A=-C=-frac12sqrt2; \
B=D=frac12$$
$$
frac1x^4+1=frac12sqrt2left(dfrac-x+sqrt2x^2-sqrt2x+1+ dfracx+sqrt2x^2+sqrt2x+1 right).
$$
Added
Decomposition (1) can be done using one of the following ways:
Completion to the full square
$$x^4+1=x^4 +2x^2+1 -2x^2=(x^2+1)^2-left(sqrt2xright)^2 = \ =big(x^2-sqrt2x +1 big)big( x^2+sqrt2x +1 big).$$Let $omega_i, iin1,, 2,,3,,4 $ are roots of the equation $x^4+1=0$ over $mathbbC:$ $omega_1=fracsqrt22(1-i), omega_2=fracsqrt22(1+i) omega_3=fracsqrt22(-1+i), omega_4=fracsqrt22(-1-i). $ Then use the decomposition into prime factors and multiply pairwise complex conjugate:
$x^4+1= left( x-fracsqrt22(1-i) right)left( x-fracsqrt22(1+i) right)left( x-fracsqrt22(-1+i) right)left( x-fracsqrt22(-1-i) right) = \ =big(x^2-sqrt2x +1 big)big( x^2+sqrt2x +1 big).$
Its too difficult to calculate yet
â kalpeshmpopat
Mar 18 '13 at 8:51
3
He said "FULL ANSWER"!
â Amihai Zivan
Mar 18 '13 at 9:06
Why is that too difficult? Well, you could do $$intfrac1x^4+4,dx$$ first using the factorization coming from $$x^4+4=(x^4+4x^2+4)-4x^2=cdots$$ and then do a linear substitution to get back to your integral.
â Jyrki Lahtonen
Mar 18 '13 at 9:06
13
We won't do your homework - we try to teach you to do it yourself.
â Jyrki Lahtonen
Mar 18 '13 at 9:07
@M.Strochyk How did you compute $x^4+1$ to be equal to $(x^2-sqrt2x +1)(x^2+sqrt2x+1)$? Is there a general method for doing that?
â Mr Reality
Nov 5 '17 at 5:02
 |Â
show 9 more comments
up vote
3
down vote
$$I =int frac1x^4+1 dx$$
If we add and subtract $2x^2$ to $x^4 + 1$, we get:
$$int frac1x^4 + 2x^2 + 1 - 2x^2$$
We know $x^4 + 2x^2 + 1 = (x^2 + 1)^2$
$$int frac1(x^2 + 1)^2 - 2x^2$$
We know $a^2 - b^2 = (a - b)(a + b)$
Hence, $(x^2 + 1)^2 - 2x^2 = (x^2 + 1 - sqrt2x)(x^2 + 1 + sqrt2x)$
$$int frac1(x^2-sqrt2x+1)(x^2+sqrt2x+1)$$
Now using partial fraction decomposition:
$$frac1(x^2-sqrt2x+1)(x^2+sqrt2x+1) = fracAx + Bx^2-sqrt2x+1 + fracCx + Dx^2+sqrt2x+1$$
After you have found A, B, C and D, its just a basic $fraclinearquadratic$ type integral.
Is there a general method for factorizing stuff like $x^4+1$?
â Mr Reality
Nov 5 '17 at 5:11
add a comment |Â
up vote
1
down vote
The indefinite integral is a rational fraction and is typically solved using partial fractions decomposition.
You first factor the denominator $x^4+1$, which has four complex roots, the fourth roots of minus one, let $omega_0$, $omega_1$, $omega_2$, and $omega_3$. Then you decompose
$$frac1x^4+1=frac ax-omega_0+frac bx-omega_1+frac cx-omega_2+frac dx-omega_3$$
The unknown coefficients are found by multiplying by one of the denominators and taking the limit to the root:
$$a=lim_xtoomega_0fracx-omega_0x^4+1=frac14omega_0^3,$$
and similarly for the other terms.
Then, a single term is integrated with a complex logarithm
$$intfracdxx-omega=ln(x-omega)=ln|x-omega|+iangle(x-omega).$$
Here we have $omega_0=dfrac1+isqrt2$, hence
$$lnsqrt(x-frac1sqrt2)^2+(frac1sqrt2)^2-iarctanfracfrac1sqrt2x-frac1sqrt2\
=frac12ln(x^2-sqrt2x+1)-ifracpi2+iarctan(sqrt2x-1).$$
Repeat for the four terms (there is a lot of symmetry) and form the linear combination.
add a comment |Â
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
18
down vote
accepted
Without using fractional decomposition:
beginalign*intfrac1x^4+1 dx & =frac12intfrac21+x^4 dx\ &=frac12intfrac(1-x^2)+(1+x^2)1+x^4 dx\ &=frac12intfrac1-x^21+x^4 dx+frac12intfrac1+x^21+x^4 dx\
&=frac12intfrac1-frac1x^2x^2+frac1x^2, dx+frac12intfrac1+frac1x^2x^2+frac1x^2, dx\ &=frac12left(intfrac1-frac1x^2left(x+frac1xright)^2-2, dx+intfrac1+frac1x^2left(x-frac1xright)^2+2, dxright)\ &=frac12left(intfracdleft(x+frac1xright)left(x+frac1xright)^2-2+intfracdleft(x-frac1xright)left(x-frac1xright)^2+2right)endalign*
So, finally solution is $$intfrac1x^4+1 dx =frac12left(fracarctanleft(fracx^2-1xsqrt2right)sqrt2-frac12sqrt2logleft(fracx^2-sqrt2x+1x^2+sqrt2x+1right)right)+C$$
This is really difficult . You are genius .
â SmartCoder
Mar 1 at 13:49
add a comment |Â
up vote
18
down vote
accepted
Without using fractional decomposition:
beginalign*intfrac1x^4+1 dx & =frac12intfrac21+x^4 dx\ &=frac12intfrac(1-x^2)+(1+x^2)1+x^4 dx\ &=frac12intfrac1-x^21+x^4 dx+frac12intfrac1+x^21+x^4 dx\
&=frac12intfrac1-frac1x^2x^2+frac1x^2, dx+frac12intfrac1+frac1x^2x^2+frac1x^2, dx\ &=frac12left(intfrac1-frac1x^2left(x+frac1xright)^2-2, dx+intfrac1+frac1x^2left(x-frac1xright)^2+2, dxright)\ &=frac12left(intfracdleft(x+frac1xright)left(x+frac1xright)^2-2+intfracdleft(x-frac1xright)left(x-frac1xright)^2+2right)endalign*
So, finally solution is $$intfrac1x^4+1 dx =frac12left(fracarctanleft(fracx^2-1xsqrt2right)sqrt2-frac12sqrt2logleft(fracx^2-sqrt2x+1x^2+sqrt2x+1right)right)+C$$
This is really difficult . You are genius .
â SmartCoder
Mar 1 at 13:49
add a comment |Â
up vote
18
down vote
accepted
up vote
18
down vote
accepted
Without using fractional decomposition:
beginalign*intfrac1x^4+1 dx & =frac12intfrac21+x^4 dx\ &=frac12intfrac(1-x^2)+(1+x^2)1+x^4 dx\ &=frac12intfrac1-x^21+x^4 dx+frac12intfrac1+x^21+x^4 dx\
&=frac12intfrac1-frac1x^2x^2+frac1x^2, dx+frac12intfrac1+frac1x^2x^2+frac1x^2, dx\ &=frac12left(intfrac1-frac1x^2left(x+frac1xright)^2-2, dx+intfrac1+frac1x^2left(x-frac1xright)^2+2, dxright)\ &=frac12left(intfracdleft(x+frac1xright)left(x+frac1xright)^2-2+intfracdleft(x-frac1xright)left(x-frac1xright)^2+2right)endalign*
So, finally solution is $$intfrac1x^4+1 dx =frac12left(fracarctanleft(fracx^2-1xsqrt2right)sqrt2-frac12sqrt2logleft(fracx^2-sqrt2x+1x^2+sqrt2x+1right)right)+C$$
Without using fractional decomposition:
beginalign*intfrac1x^4+1 dx & =frac12intfrac21+x^4 dx\ &=frac12intfrac(1-x^2)+(1+x^2)1+x^4 dx\ &=frac12intfrac1-x^21+x^4 dx+frac12intfrac1+x^21+x^4 dx\
&=frac12intfrac1-frac1x^2x^2+frac1x^2, dx+frac12intfrac1+frac1x^2x^2+frac1x^2, dx\ &=frac12left(intfrac1-frac1x^2left(x+frac1xright)^2-2, dx+intfrac1+frac1x^2left(x-frac1xright)^2+2, dxright)\ &=frac12left(intfracdleft(x+frac1xright)left(x+frac1xright)^2-2+intfracdleft(x-frac1xright)left(x-frac1xright)^2+2right)endalign*
So, finally solution is $$intfrac1x^4+1 dx =frac12left(fracarctanleft(fracx^2-1xsqrt2right)sqrt2-frac12sqrt2logleft(fracx^2-sqrt2x+1x^2+sqrt2x+1right)right)+C$$
edited May 2 '14 at 9:17
answered Mar 18 '13 at 9:22
Cortizol
2,6451235
2,6451235
This is really difficult . You are genius .
â SmartCoder
Mar 1 at 13:49
add a comment |Â
This is really difficult . You are genius .
â SmartCoder
Mar 1 at 13:49
This is really difficult . You are genius .
â SmartCoder
Mar 1 at 13:49
This is really difficult . You are genius .
â SmartCoder
Mar 1 at 13:49
add a comment |Â
up vote
10
down vote
Hint:
$$x^4+1=(x^2-sqrt2x+1)(x^2+sqrt2x+1) tag1$$
You can integrate using partial fraction decomposition. Since
$$x^4+1=(x^2-sqrt2x+1)(x^2+sqrt2x+1),$$
then
$$frac1x^4+1=fracAx+Bx^2-sqrt2x+1+fracCx+Dx^2+sqrt2x+1=frac(Ax+B)(x^2+sqrt2x+1)+(Cx+D)(x^2-sqrt2x+1)(x^2-sqrt2x+1)(x^2+sqrt2x+1) = \
= fracx^3(A+C)+x^2(Asqrt2+B+D-Csqrt2)+x(Bsqrt2-Dsqrt2)+B+D(x^2-sqrt2x+1)(x^2+sqrt2x+1)$$
$$begincases
A+C=0;\
B+D+sqrt2(A-C)=0; \
B-D=0; \
B+D=1.
endcases$$
$$
A=-C=-frac12sqrt2; \
B=D=frac12$$
$$
frac1x^4+1=frac12sqrt2left(dfrac-x+sqrt2x^2-sqrt2x+1+ dfracx+sqrt2x^2+sqrt2x+1 right).
$$
Added
Decomposition (1) can be done using one of the following ways:
Completion to the full square
$$x^4+1=x^4 +2x^2+1 -2x^2=(x^2+1)^2-left(sqrt2xright)^2 = \ =big(x^2-sqrt2x +1 big)big( x^2+sqrt2x +1 big).$$Let $omega_i, iin1,, 2,,3,,4 $ are roots of the equation $x^4+1=0$ over $mathbbC:$ $omega_1=fracsqrt22(1-i), omega_2=fracsqrt22(1+i) omega_3=fracsqrt22(-1+i), omega_4=fracsqrt22(-1-i). $ Then use the decomposition into prime factors and multiply pairwise complex conjugate:
$x^4+1= left( x-fracsqrt22(1-i) right)left( x-fracsqrt22(1+i) right)left( x-fracsqrt22(-1+i) right)left( x-fracsqrt22(-1-i) right) = \ =big(x^2-sqrt2x +1 big)big( x^2+sqrt2x +1 big).$
Its too difficult to calculate yet
â kalpeshmpopat
Mar 18 '13 at 8:51
3
He said "FULL ANSWER"!
â Amihai Zivan
Mar 18 '13 at 9:06
Why is that too difficult? Well, you could do $$intfrac1x^4+4,dx$$ first using the factorization coming from $$x^4+4=(x^4+4x^2+4)-4x^2=cdots$$ and then do a linear substitution to get back to your integral.
â Jyrki Lahtonen
Mar 18 '13 at 9:06
13
We won't do your homework - we try to teach you to do it yourself.
â Jyrki Lahtonen
Mar 18 '13 at 9:07
@M.Strochyk How did you compute $x^4+1$ to be equal to $(x^2-sqrt2x +1)(x^2+sqrt2x+1)$? Is there a general method for doing that?
â Mr Reality
Nov 5 '17 at 5:02
 |Â
show 9 more comments
up vote
10
down vote
Hint:
$$x^4+1=(x^2-sqrt2x+1)(x^2+sqrt2x+1) tag1$$
You can integrate using partial fraction decomposition. Since
$$x^4+1=(x^2-sqrt2x+1)(x^2+sqrt2x+1),$$
then
$$frac1x^4+1=fracAx+Bx^2-sqrt2x+1+fracCx+Dx^2+sqrt2x+1=frac(Ax+B)(x^2+sqrt2x+1)+(Cx+D)(x^2-sqrt2x+1)(x^2-sqrt2x+1)(x^2+sqrt2x+1) = \
= fracx^3(A+C)+x^2(Asqrt2+B+D-Csqrt2)+x(Bsqrt2-Dsqrt2)+B+D(x^2-sqrt2x+1)(x^2+sqrt2x+1)$$
$$begincases
A+C=0;\
B+D+sqrt2(A-C)=0; \
B-D=0; \
B+D=1.
endcases$$
$$
A=-C=-frac12sqrt2; \
B=D=frac12$$
$$
frac1x^4+1=frac12sqrt2left(dfrac-x+sqrt2x^2-sqrt2x+1+ dfracx+sqrt2x^2+sqrt2x+1 right).
$$
Added
Decomposition (1) can be done using one of the following ways:
Completion to the full square
$$x^4+1=x^4 +2x^2+1 -2x^2=(x^2+1)^2-left(sqrt2xright)^2 = \ =big(x^2-sqrt2x +1 big)big( x^2+sqrt2x +1 big).$$Let $omega_i, iin1,, 2,,3,,4 $ are roots of the equation $x^4+1=0$ over $mathbbC:$ $omega_1=fracsqrt22(1-i), omega_2=fracsqrt22(1+i) omega_3=fracsqrt22(-1+i), omega_4=fracsqrt22(-1-i). $ Then use the decomposition into prime factors and multiply pairwise complex conjugate:
$x^4+1= left( x-fracsqrt22(1-i) right)left( x-fracsqrt22(1+i) right)left( x-fracsqrt22(-1+i) right)left( x-fracsqrt22(-1-i) right) = \ =big(x^2-sqrt2x +1 big)big( x^2+sqrt2x +1 big).$
Its too difficult to calculate yet
â kalpeshmpopat
Mar 18 '13 at 8:51
3
He said "FULL ANSWER"!
â Amihai Zivan
Mar 18 '13 at 9:06
Why is that too difficult? Well, you could do $$intfrac1x^4+4,dx$$ first using the factorization coming from $$x^4+4=(x^4+4x^2+4)-4x^2=cdots$$ and then do a linear substitution to get back to your integral.
â Jyrki Lahtonen
Mar 18 '13 at 9:06
13
We won't do your homework - we try to teach you to do it yourself.
â Jyrki Lahtonen
Mar 18 '13 at 9:07
@M.Strochyk How did you compute $x^4+1$ to be equal to $(x^2-sqrt2x +1)(x^2+sqrt2x+1)$? Is there a general method for doing that?
â Mr Reality
Nov 5 '17 at 5:02
 |Â
show 9 more comments
up vote
10
down vote
up vote
10
down vote
Hint:
$$x^4+1=(x^2-sqrt2x+1)(x^2+sqrt2x+1) tag1$$
You can integrate using partial fraction decomposition. Since
$$x^4+1=(x^2-sqrt2x+1)(x^2+sqrt2x+1),$$
then
$$frac1x^4+1=fracAx+Bx^2-sqrt2x+1+fracCx+Dx^2+sqrt2x+1=frac(Ax+B)(x^2+sqrt2x+1)+(Cx+D)(x^2-sqrt2x+1)(x^2-sqrt2x+1)(x^2+sqrt2x+1) = \
= fracx^3(A+C)+x^2(Asqrt2+B+D-Csqrt2)+x(Bsqrt2-Dsqrt2)+B+D(x^2-sqrt2x+1)(x^2+sqrt2x+1)$$
$$begincases
A+C=0;\
B+D+sqrt2(A-C)=0; \
B-D=0; \
B+D=1.
endcases$$
$$
A=-C=-frac12sqrt2; \
B=D=frac12$$
$$
frac1x^4+1=frac12sqrt2left(dfrac-x+sqrt2x^2-sqrt2x+1+ dfracx+sqrt2x^2+sqrt2x+1 right).
$$
Added
Decomposition (1) can be done using one of the following ways:
Completion to the full square
$$x^4+1=x^4 +2x^2+1 -2x^2=(x^2+1)^2-left(sqrt2xright)^2 = \ =big(x^2-sqrt2x +1 big)big( x^2+sqrt2x +1 big).$$Let $omega_i, iin1,, 2,,3,,4 $ are roots of the equation $x^4+1=0$ over $mathbbC:$ $omega_1=fracsqrt22(1-i), omega_2=fracsqrt22(1+i) omega_3=fracsqrt22(-1+i), omega_4=fracsqrt22(-1-i). $ Then use the decomposition into prime factors and multiply pairwise complex conjugate:
$x^4+1= left( x-fracsqrt22(1-i) right)left( x-fracsqrt22(1+i) right)left( x-fracsqrt22(-1+i) right)left( x-fracsqrt22(-1-i) right) = \ =big(x^2-sqrt2x +1 big)big( x^2+sqrt2x +1 big).$
Hint:
$$x^4+1=(x^2-sqrt2x+1)(x^2+sqrt2x+1) tag1$$
You can integrate using partial fraction decomposition. Since
$$x^4+1=(x^2-sqrt2x+1)(x^2+sqrt2x+1),$$
then
$$frac1x^4+1=fracAx+Bx^2-sqrt2x+1+fracCx+Dx^2+sqrt2x+1=frac(Ax+B)(x^2+sqrt2x+1)+(Cx+D)(x^2-sqrt2x+1)(x^2-sqrt2x+1)(x^2+sqrt2x+1) = \
= fracx^3(A+C)+x^2(Asqrt2+B+D-Csqrt2)+x(Bsqrt2-Dsqrt2)+B+D(x^2-sqrt2x+1)(x^2+sqrt2x+1)$$
$$begincases
A+C=0;\
B+D+sqrt2(A-C)=0; \
B-D=0; \
B+D=1.
endcases$$
$$
A=-C=-frac12sqrt2; \
B=D=frac12$$
$$
frac1x^4+1=frac12sqrt2left(dfrac-x+sqrt2x^2-sqrt2x+1+ dfracx+sqrt2x^2+sqrt2x+1 right).
$$
Added
Decomposition (1) can be done using one of the following ways:
Completion to the full square
$$x^4+1=x^4 +2x^2+1 -2x^2=(x^2+1)^2-left(sqrt2xright)^2 = \ =big(x^2-sqrt2x +1 big)big( x^2+sqrt2x +1 big).$$Let $omega_i, iin1,, 2,,3,,4 $ are roots of the equation $x^4+1=0$ over $mathbbC:$ $omega_1=fracsqrt22(1-i), omega_2=fracsqrt22(1+i) omega_3=fracsqrt22(-1+i), omega_4=fracsqrt22(-1-i). $ Then use the decomposition into prime factors and multiply pairwise complex conjugate:
$x^4+1= left( x-fracsqrt22(1-i) right)left( x-fracsqrt22(1+i) right)left( x-fracsqrt22(-1+i) right)left( x-fracsqrt22(-1-i) right) = \ =big(x^2-sqrt2x +1 big)big( x^2+sqrt2x +1 big).$
edited Nov 5 '17 at 18:07
answered Mar 18 '13 at 8:49
M. Strochyk
7,64711119
7,64711119
Its too difficult to calculate yet
â kalpeshmpopat
Mar 18 '13 at 8:51
3
He said "FULL ANSWER"!
â Amihai Zivan
Mar 18 '13 at 9:06
Why is that too difficult? Well, you could do $$intfrac1x^4+4,dx$$ first using the factorization coming from $$x^4+4=(x^4+4x^2+4)-4x^2=cdots$$ and then do a linear substitution to get back to your integral.
â Jyrki Lahtonen
Mar 18 '13 at 9:06
13
We won't do your homework - we try to teach you to do it yourself.
â Jyrki Lahtonen
Mar 18 '13 at 9:07
@M.Strochyk How did you compute $x^4+1$ to be equal to $(x^2-sqrt2x +1)(x^2+sqrt2x+1)$? Is there a general method for doing that?
â Mr Reality
Nov 5 '17 at 5:02
 |Â
show 9 more comments
Its too difficult to calculate yet
â kalpeshmpopat
Mar 18 '13 at 8:51
3
He said "FULL ANSWER"!
â Amihai Zivan
Mar 18 '13 at 9:06
Why is that too difficult? Well, you could do $$intfrac1x^4+4,dx$$ first using the factorization coming from $$x^4+4=(x^4+4x^2+4)-4x^2=cdots$$ and then do a linear substitution to get back to your integral.
â Jyrki Lahtonen
Mar 18 '13 at 9:06
13
We won't do your homework - we try to teach you to do it yourself.
â Jyrki Lahtonen
Mar 18 '13 at 9:07
@M.Strochyk How did you compute $x^4+1$ to be equal to $(x^2-sqrt2x +1)(x^2+sqrt2x+1)$? Is there a general method for doing that?
â Mr Reality
Nov 5 '17 at 5:02
Its too difficult to calculate yet
â kalpeshmpopat
Mar 18 '13 at 8:51
Its too difficult to calculate yet
â kalpeshmpopat
Mar 18 '13 at 8:51
3
3
He said "FULL ANSWER"!
â Amihai Zivan
Mar 18 '13 at 9:06
He said "FULL ANSWER"!
â Amihai Zivan
Mar 18 '13 at 9:06
Why is that too difficult? Well, you could do $$intfrac1x^4+4,dx$$ first using the factorization coming from $$x^4+4=(x^4+4x^2+4)-4x^2=cdots$$ and then do a linear substitution to get back to your integral.
â Jyrki Lahtonen
Mar 18 '13 at 9:06
Why is that too difficult? Well, you could do $$intfrac1x^4+4,dx$$ first using the factorization coming from $$x^4+4=(x^4+4x^2+4)-4x^2=cdots$$ and then do a linear substitution to get back to your integral.
â Jyrki Lahtonen
Mar 18 '13 at 9:06
13
13
We won't do your homework - we try to teach you to do it yourself.
â Jyrki Lahtonen
Mar 18 '13 at 9:07
We won't do your homework - we try to teach you to do it yourself.
â Jyrki Lahtonen
Mar 18 '13 at 9:07
@M.Strochyk How did you compute $x^4+1$ to be equal to $(x^2-sqrt2x +1)(x^2+sqrt2x+1)$? Is there a general method for doing that?
â Mr Reality
Nov 5 '17 at 5:02
@M.Strochyk How did you compute $x^4+1$ to be equal to $(x^2-sqrt2x +1)(x^2+sqrt2x+1)$? Is there a general method for doing that?
â Mr Reality
Nov 5 '17 at 5:02
 |Â
show 9 more comments
up vote
3
down vote
$$I =int frac1x^4+1 dx$$
If we add and subtract $2x^2$ to $x^4 + 1$, we get:
$$int frac1x^4 + 2x^2 + 1 - 2x^2$$
We know $x^4 + 2x^2 + 1 = (x^2 + 1)^2$
$$int frac1(x^2 + 1)^2 - 2x^2$$
We know $a^2 - b^2 = (a - b)(a + b)$
Hence, $(x^2 + 1)^2 - 2x^2 = (x^2 + 1 - sqrt2x)(x^2 + 1 + sqrt2x)$
$$int frac1(x^2-sqrt2x+1)(x^2+sqrt2x+1)$$
Now using partial fraction decomposition:
$$frac1(x^2-sqrt2x+1)(x^2+sqrt2x+1) = fracAx + Bx^2-sqrt2x+1 + fracCx + Dx^2+sqrt2x+1$$
After you have found A, B, C and D, its just a basic $fraclinearquadratic$ type integral.
Is there a general method for factorizing stuff like $x^4+1$?
â Mr Reality
Nov 5 '17 at 5:11
add a comment |Â
up vote
3
down vote
$$I =int frac1x^4+1 dx$$
If we add and subtract $2x^2$ to $x^4 + 1$, we get:
$$int frac1x^4 + 2x^2 + 1 - 2x^2$$
We know $x^4 + 2x^2 + 1 = (x^2 + 1)^2$
$$int frac1(x^2 + 1)^2 - 2x^2$$
We know $a^2 - b^2 = (a - b)(a + b)$
Hence, $(x^2 + 1)^2 - 2x^2 = (x^2 + 1 - sqrt2x)(x^2 + 1 + sqrt2x)$
$$int frac1(x^2-sqrt2x+1)(x^2+sqrt2x+1)$$
Now using partial fraction decomposition:
$$frac1(x^2-sqrt2x+1)(x^2+sqrt2x+1) = fracAx + Bx^2-sqrt2x+1 + fracCx + Dx^2+sqrt2x+1$$
After you have found A, B, C and D, its just a basic $fraclinearquadratic$ type integral.
Is there a general method for factorizing stuff like $x^4+1$?
â Mr Reality
Nov 5 '17 at 5:11
add a comment |Â
up vote
3
down vote
up vote
3
down vote
$$I =int frac1x^4+1 dx$$
If we add and subtract $2x^2$ to $x^4 + 1$, we get:
$$int frac1x^4 + 2x^2 + 1 - 2x^2$$
We know $x^4 + 2x^2 + 1 = (x^2 + 1)^2$
$$int frac1(x^2 + 1)^2 - 2x^2$$
We know $a^2 - b^2 = (a - b)(a + b)$
Hence, $(x^2 + 1)^2 - 2x^2 = (x^2 + 1 - sqrt2x)(x^2 + 1 + sqrt2x)$
$$int frac1(x^2-sqrt2x+1)(x^2+sqrt2x+1)$$
Now using partial fraction decomposition:
$$frac1(x^2-sqrt2x+1)(x^2+sqrt2x+1) = fracAx + Bx^2-sqrt2x+1 + fracCx + Dx^2+sqrt2x+1$$
After you have found A, B, C and D, its just a basic $fraclinearquadratic$ type integral.
$$I =int frac1x^4+1 dx$$
If we add and subtract $2x^2$ to $x^4 + 1$, we get:
$$int frac1x^4 + 2x^2 + 1 - 2x^2$$
We know $x^4 + 2x^2 + 1 = (x^2 + 1)^2$
$$int frac1(x^2 + 1)^2 - 2x^2$$
We know $a^2 - b^2 = (a - b)(a + b)$
Hence, $(x^2 + 1)^2 - 2x^2 = (x^2 + 1 - sqrt2x)(x^2 + 1 + sqrt2x)$
$$int frac1(x^2-sqrt2x+1)(x^2+sqrt2x+1)$$
Now using partial fraction decomposition:
$$frac1(x^2-sqrt2x+1)(x^2+sqrt2x+1) = fracAx + Bx^2-sqrt2x+1 + fracCx + Dx^2+sqrt2x+1$$
After you have found A, B, C and D, its just a basic $fraclinearquadratic$ type integral.
edited May 22 '15 at 16:39
abiessu
6,62221540
6,62221540
answered Mar 18 '13 at 9:10
Aneesh Dogra
199119
199119
Is there a general method for factorizing stuff like $x^4+1$?
â Mr Reality
Nov 5 '17 at 5:11
add a comment |Â
Is there a general method for factorizing stuff like $x^4+1$?
â Mr Reality
Nov 5 '17 at 5:11
Is there a general method for factorizing stuff like $x^4+1$?
â Mr Reality
Nov 5 '17 at 5:11
Is there a general method for factorizing stuff like $x^4+1$?
â Mr Reality
Nov 5 '17 at 5:11
add a comment |Â
up vote
1
down vote
The indefinite integral is a rational fraction and is typically solved using partial fractions decomposition.
You first factor the denominator $x^4+1$, which has four complex roots, the fourth roots of minus one, let $omega_0$, $omega_1$, $omega_2$, and $omega_3$. Then you decompose
$$frac1x^4+1=frac ax-omega_0+frac bx-omega_1+frac cx-omega_2+frac dx-omega_3$$
The unknown coefficients are found by multiplying by one of the denominators and taking the limit to the root:
$$a=lim_xtoomega_0fracx-omega_0x^4+1=frac14omega_0^3,$$
and similarly for the other terms.
Then, a single term is integrated with a complex logarithm
$$intfracdxx-omega=ln(x-omega)=ln|x-omega|+iangle(x-omega).$$
Here we have $omega_0=dfrac1+isqrt2$, hence
$$lnsqrt(x-frac1sqrt2)^2+(frac1sqrt2)^2-iarctanfracfrac1sqrt2x-frac1sqrt2\
=frac12ln(x^2-sqrt2x+1)-ifracpi2+iarctan(sqrt2x-1).$$
Repeat for the four terms (there is a lot of symmetry) and form the linear combination.
add a comment |Â
up vote
1
down vote
The indefinite integral is a rational fraction and is typically solved using partial fractions decomposition.
You first factor the denominator $x^4+1$, which has four complex roots, the fourth roots of minus one, let $omega_0$, $omega_1$, $omega_2$, and $omega_3$. Then you decompose
$$frac1x^4+1=frac ax-omega_0+frac bx-omega_1+frac cx-omega_2+frac dx-omega_3$$
The unknown coefficients are found by multiplying by one of the denominators and taking the limit to the root:
$$a=lim_xtoomega_0fracx-omega_0x^4+1=frac14omega_0^3,$$
and similarly for the other terms.
Then, a single term is integrated with a complex logarithm
$$intfracdxx-omega=ln(x-omega)=ln|x-omega|+iangle(x-omega).$$
Here we have $omega_0=dfrac1+isqrt2$, hence
$$lnsqrt(x-frac1sqrt2)^2+(frac1sqrt2)^2-iarctanfracfrac1sqrt2x-frac1sqrt2\
=frac12ln(x^2-sqrt2x+1)-ifracpi2+iarctan(sqrt2x-1).$$
Repeat for the four terms (there is a lot of symmetry) and form the linear combination.
add a comment |Â
up vote
1
down vote
up vote
1
down vote
The indefinite integral is a rational fraction and is typically solved using partial fractions decomposition.
You first factor the denominator $x^4+1$, which has four complex roots, the fourth roots of minus one, let $omega_0$, $omega_1$, $omega_2$, and $omega_3$. Then you decompose
$$frac1x^4+1=frac ax-omega_0+frac bx-omega_1+frac cx-omega_2+frac dx-omega_3$$
The unknown coefficients are found by multiplying by one of the denominators and taking the limit to the root:
$$a=lim_xtoomega_0fracx-omega_0x^4+1=frac14omega_0^3,$$
and similarly for the other terms.
Then, a single term is integrated with a complex logarithm
$$intfracdxx-omega=ln(x-omega)=ln|x-omega|+iangle(x-omega).$$
Here we have $omega_0=dfrac1+isqrt2$, hence
$$lnsqrt(x-frac1sqrt2)^2+(frac1sqrt2)^2-iarctanfracfrac1sqrt2x-frac1sqrt2\
=frac12ln(x^2-sqrt2x+1)-ifracpi2+iarctan(sqrt2x-1).$$
Repeat for the four terms (there is a lot of symmetry) and form the linear combination.
The indefinite integral is a rational fraction and is typically solved using partial fractions decomposition.
You first factor the denominator $x^4+1$, which has four complex roots, the fourth roots of minus one, let $omega_0$, $omega_1$, $omega_2$, and $omega_3$. Then you decompose
$$frac1x^4+1=frac ax-omega_0+frac bx-omega_1+frac cx-omega_2+frac dx-omega_3$$
The unknown coefficients are found by multiplying by one of the denominators and taking the limit to the root:
$$a=lim_xtoomega_0fracx-omega_0x^4+1=frac14omega_0^3,$$
and similarly for the other terms.
Then, a single term is integrated with a complex logarithm
$$intfracdxx-omega=ln(x-omega)=ln|x-omega|+iangle(x-omega).$$
Here we have $omega_0=dfrac1+isqrt2$, hence
$$lnsqrt(x-frac1sqrt2)^2+(frac1sqrt2)^2-iarctanfracfrac1sqrt2x-frac1sqrt2\
=frac12ln(x^2-sqrt2x+1)-ifracpi2+iarctan(sqrt2x-1).$$
Repeat for the four terms (there is a lot of symmetry) and form the linear combination.
answered Apr 1 '15 at 8:01
Yves Daoust
115k666209
115k666209
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f333611%2fevaluating-int-frac1x41-dx%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
I suppose it's been long enough (6 to 7 weeks). At this Math Forum archived post you'll find 3 .pdf files giving extremely detailed evaluations of the antiderivative of $frac1x^n + 1$ for $n=4,;5,$ and $6.$
â Dave L. Renfro
May 7 '13 at 19:43