Evaluating $int frac1x^4+1 dx$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite
5












I am trying to evaluate the integral



$$int frac11+x^4 mathrm dx.$$



The integrand $frac11+x^4$ is a rational function (quotient of two polynomials), so I could solve the integral if I can find the partial fraction of $frac11+x^4$. But I failed to factorize $1+x^4$.



Any other methods are also wellcome.










share|cite|improve this question























  • I suppose it's been long enough (6 to 7 weeks). At this Math Forum archived post you'll find 3 .pdf files giving extremely detailed evaluations of the antiderivative of $frac1x^n + 1$ for $n=4,;5,$ and $6.$
    – Dave L. Renfro
    May 7 '13 at 19:43














up vote
1
down vote

favorite
5












I am trying to evaluate the integral



$$int frac11+x^4 mathrm dx.$$



The integrand $frac11+x^4$ is a rational function (quotient of two polynomials), so I could solve the integral if I can find the partial fraction of $frac11+x^4$. But I failed to factorize $1+x^4$.



Any other methods are also wellcome.










share|cite|improve this question























  • I suppose it's been long enough (6 to 7 weeks). At this Math Forum archived post you'll find 3 .pdf files giving extremely detailed evaluations of the antiderivative of $frac1x^n + 1$ for $n=4,;5,$ and $6.$
    – Dave L. Renfro
    May 7 '13 at 19:43












up vote
1
down vote

favorite
5









up vote
1
down vote

favorite
5






5





I am trying to evaluate the integral



$$int frac11+x^4 mathrm dx.$$



The integrand $frac11+x^4$ is a rational function (quotient of two polynomials), so I could solve the integral if I can find the partial fraction of $frac11+x^4$. But I failed to factorize $1+x^4$.



Any other methods are also wellcome.










share|cite|improve this question















I am trying to evaluate the integral



$$int frac11+x^4 mathrm dx.$$



The integrand $frac11+x^4$ is a rational function (quotient of two polynomials), so I could solve the integral if I can find the partial fraction of $frac11+x^4$. But I failed to factorize $1+x^4$.



Any other methods are also wellcome.







calculus integration partial-fractions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Sep 6 at 5:25







user99914

















asked Mar 18 '13 at 8:42









kalpeshmpopat

1,40211232




1,40211232











  • I suppose it's been long enough (6 to 7 weeks). At this Math Forum archived post you'll find 3 .pdf files giving extremely detailed evaluations of the antiderivative of $frac1x^n + 1$ for $n=4,;5,$ and $6.$
    – Dave L. Renfro
    May 7 '13 at 19:43
















  • I suppose it's been long enough (6 to 7 weeks). At this Math Forum archived post you'll find 3 .pdf files giving extremely detailed evaluations of the antiderivative of $frac1x^n + 1$ for $n=4,;5,$ and $6.$
    – Dave L. Renfro
    May 7 '13 at 19:43















I suppose it's been long enough (6 to 7 weeks). At this Math Forum archived post you'll find 3 .pdf files giving extremely detailed evaluations of the antiderivative of $frac1x^n + 1$ for $n=4,;5,$ and $6.$
– Dave L. Renfro
May 7 '13 at 19:43




I suppose it's been long enough (6 to 7 weeks). At this Math Forum archived post you'll find 3 .pdf files giving extremely detailed evaluations of the antiderivative of $frac1x^n + 1$ for $n=4,;5,$ and $6.$
– Dave L. Renfro
May 7 '13 at 19:43










4 Answers
4






active

oldest

votes

















up vote
18
down vote



accepted










Without using fractional decomposition:
beginalign*intfrac1x^4+1 dx & =frac12intfrac21+x^4 dx\ &=frac12intfrac(1-x^2)+(1+x^2)1+x^4 dx\ &=frac12intfrac1-x^21+x^4 dx+frac12intfrac1+x^21+x^4 dx\
&=frac12intfrac1-frac1x^2x^2+frac1x^2, dx+frac12intfrac1+frac1x^2x^2+frac1x^2, dx\ &=frac12left(intfrac1-frac1x^2left(x+frac1xright)^2-2, dx+intfrac1+frac1x^2left(x-frac1xright)^2+2, dxright)\ &=frac12left(intfracdleft(x+frac1xright)left(x+frac1xright)^2-2+intfracdleft(x-frac1xright)left(x-frac1xright)^2+2right)endalign*



So, finally solution is $$intfrac1x^4+1 dx =frac12left(fracarctanleft(fracx^2-1xsqrt2right)sqrt2-frac12sqrt2logleft(fracx^2-sqrt2x+1x^2+sqrt2x+1right)right)+C$$






share|cite|improve this answer






















  • This is really difficult . You are genius .
    – SmartCoder
    Mar 1 at 13:49

















up vote
10
down vote













Hint:

$$x^4+1=(x^2-sqrt2x+1)(x^2+sqrt2x+1) tag1$$
You can integrate using partial fraction decomposition. Since
$$x^4+1=(x^2-sqrt2x+1)(x^2+sqrt2x+1),$$
then
$$frac1x^4+1=fracAx+Bx^2-sqrt2x+1+fracCx+Dx^2+sqrt2x+1=frac(Ax+B)(x^2+sqrt2x+1)+(Cx+D)(x^2-sqrt2x+1)(x^2-sqrt2x+1)(x^2+sqrt2x+1) = \
= fracx^3(A+C)+x^2(Asqrt2+B+D-Csqrt2)+x(Bsqrt2-Dsqrt2)+B+D(x^2-sqrt2x+1)(x^2+sqrt2x+1)$$
$$begincases
A+C=0;\
B+D+sqrt2(A-C)=0; \
B-D=0; \
B+D=1.
endcases$$



$$
A=-C=-frac12sqrt2; \
B=D=frac12$$



$$
frac1x^4+1=frac12sqrt2left(dfrac-x+sqrt2x^2-sqrt2x+1+ dfracx+sqrt2x^2+sqrt2x+1 right).
$$



Added

Decomposition (1) can be done using one of the following ways:



  1. Completion to the full square
    $$x^4+1=x^4 +2x^2+1 -2x^2=(x^2+1)^2-left(sqrt2xright)^2 = \ =big(x^2-sqrt2x +1 big)big( x^2+sqrt2x +1 big).$$


  2. Let $omega_i, iin1,, 2,,3,,4 $ are roots of the equation $x^4+1=0$ over $mathbbC:$ $omega_1=fracsqrt22(1-i), omega_2=fracsqrt22(1+i) omega_3=fracsqrt22(-1+i), omega_4=fracsqrt22(-1-i). $ Then use the decomposition into prime factors and multiply pairwise complex conjugate:
    $x^4+1= left( x-fracsqrt22(1-i) right)left( x-fracsqrt22(1+i) right)left( x-fracsqrt22(-1+i) right)left( x-fracsqrt22(-1-i) right) = \ =big(x^2-sqrt2x +1 big)big( x^2+sqrt2x +1 big).$






share|cite|improve this answer






















  • Its too difficult to calculate yet
    – kalpeshmpopat
    Mar 18 '13 at 8:51






  • 3




    He said "FULL ANSWER"!
    – Amihai Zivan
    Mar 18 '13 at 9:06










  • Why is that too difficult? Well, you could do $$intfrac1x^4+4,dx$$ first using the factorization coming from $$x^4+4=(x^4+4x^2+4)-4x^2=cdots$$ and then do a linear substitution to get back to your integral.
    – Jyrki Lahtonen
    Mar 18 '13 at 9:06







  • 13




    We won't do your homework - we try to teach you to do it yourself.
    – Jyrki Lahtonen
    Mar 18 '13 at 9:07










  • @M.Strochyk How did you compute $x^4+1$ to be equal to $(x^2-sqrt2x +1)(x^2+sqrt2x+1)$? Is there a general method for doing that?
    – Mr Reality
    Nov 5 '17 at 5:02


















up vote
3
down vote













$$I =int frac1x^4+1 dx$$



If we add and subtract $2x^2$ to $x^4 + 1$, we get:
$$int frac1x^4 + 2x^2 + 1 - 2x^2$$



We know $x^4 + 2x^2 + 1 = (x^2 + 1)^2$



$$int frac1(x^2 + 1)^2 - 2x^2$$



We know $a^2 - b^2 = (a - b)(a + b)$



Hence, $(x^2 + 1)^2 - 2x^2 = (x^2 + 1 - sqrt2x)(x^2 + 1 + sqrt2x)$



$$int frac1(x^2-sqrt2x+1)(x^2+sqrt2x+1)$$



Now using partial fraction decomposition:



$$frac1(x^2-sqrt2x+1)(x^2+sqrt2x+1) = fracAx + Bx^2-sqrt2x+1 + fracCx + Dx^2+sqrt2x+1$$



After you have found A, B, C and D, its just a basic $fraclinearquadratic$ type integral.






share|cite|improve this answer






















  • Is there a general method for factorizing stuff like $x^4+1$?
    – Mr Reality
    Nov 5 '17 at 5:11

















up vote
1
down vote













The indefinite integral is a rational fraction and is typically solved using partial fractions decomposition.



You first factor the denominator $x^4+1$, which has four complex roots, the fourth roots of minus one, let $omega_0$, $omega_1$, $omega_2$, and $omega_3$. Then you decompose



$$frac1x^4+1=frac ax-omega_0+frac bx-omega_1+frac cx-omega_2+frac dx-omega_3$$



The unknown coefficients are found by multiplying by one of the denominators and taking the limit to the root:



$$a=lim_xtoomega_0fracx-omega_0x^4+1=frac14omega_0^3,$$
and similarly for the other terms.



Then, a single term is integrated with a complex logarithm
$$intfracdxx-omega=ln(x-omega)=ln|x-omega|+iangle(x-omega).$$



Here we have $omega_0=dfrac1+isqrt2$, hence



$$lnsqrt(x-frac1sqrt2)^2+(frac1sqrt2)^2-iarctanfracfrac1sqrt2x-frac1sqrt2\
=frac12ln(x^2-sqrt2x+1)-ifracpi2+iarctan(sqrt2x-1).$$



Repeat for the four terms (there is a lot of symmetry) and form the linear combination.






share|cite|improve this answer




















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f333611%2fevaluating-int-frac1x41-dx%23new-answer', 'question_page');

    );

    Post as a guest






























    4 Answers
    4






    active

    oldest

    votes








    4 Answers
    4






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    18
    down vote



    accepted










    Without using fractional decomposition:
    beginalign*intfrac1x^4+1 dx & =frac12intfrac21+x^4 dx\ &=frac12intfrac(1-x^2)+(1+x^2)1+x^4 dx\ &=frac12intfrac1-x^21+x^4 dx+frac12intfrac1+x^21+x^4 dx\
    &=frac12intfrac1-frac1x^2x^2+frac1x^2, dx+frac12intfrac1+frac1x^2x^2+frac1x^2, dx\ &=frac12left(intfrac1-frac1x^2left(x+frac1xright)^2-2, dx+intfrac1+frac1x^2left(x-frac1xright)^2+2, dxright)\ &=frac12left(intfracdleft(x+frac1xright)left(x+frac1xright)^2-2+intfracdleft(x-frac1xright)left(x-frac1xright)^2+2right)endalign*



    So, finally solution is $$intfrac1x^4+1 dx =frac12left(fracarctanleft(fracx^2-1xsqrt2right)sqrt2-frac12sqrt2logleft(fracx^2-sqrt2x+1x^2+sqrt2x+1right)right)+C$$






    share|cite|improve this answer






















    • This is really difficult . You are genius .
      – SmartCoder
      Mar 1 at 13:49














    up vote
    18
    down vote



    accepted










    Without using fractional decomposition:
    beginalign*intfrac1x^4+1 dx & =frac12intfrac21+x^4 dx\ &=frac12intfrac(1-x^2)+(1+x^2)1+x^4 dx\ &=frac12intfrac1-x^21+x^4 dx+frac12intfrac1+x^21+x^4 dx\
    &=frac12intfrac1-frac1x^2x^2+frac1x^2, dx+frac12intfrac1+frac1x^2x^2+frac1x^2, dx\ &=frac12left(intfrac1-frac1x^2left(x+frac1xright)^2-2, dx+intfrac1+frac1x^2left(x-frac1xright)^2+2, dxright)\ &=frac12left(intfracdleft(x+frac1xright)left(x+frac1xright)^2-2+intfracdleft(x-frac1xright)left(x-frac1xright)^2+2right)endalign*



    So, finally solution is $$intfrac1x^4+1 dx =frac12left(fracarctanleft(fracx^2-1xsqrt2right)sqrt2-frac12sqrt2logleft(fracx^2-sqrt2x+1x^2+sqrt2x+1right)right)+C$$






    share|cite|improve this answer






















    • This is really difficult . You are genius .
      – SmartCoder
      Mar 1 at 13:49












    up vote
    18
    down vote



    accepted







    up vote
    18
    down vote



    accepted






    Without using fractional decomposition:
    beginalign*intfrac1x^4+1 dx & =frac12intfrac21+x^4 dx\ &=frac12intfrac(1-x^2)+(1+x^2)1+x^4 dx\ &=frac12intfrac1-x^21+x^4 dx+frac12intfrac1+x^21+x^4 dx\
    &=frac12intfrac1-frac1x^2x^2+frac1x^2, dx+frac12intfrac1+frac1x^2x^2+frac1x^2, dx\ &=frac12left(intfrac1-frac1x^2left(x+frac1xright)^2-2, dx+intfrac1+frac1x^2left(x-frac1xright)^2+2, dxright)\ &=frac12left(intfracdleft(x+frac1xright)left(x+frac1xright)^2-2+intfracdleft(x-frac1xright)left(x-frac1xright)^2+2right)endalign*



    So, finally solution is $$intfrac1x^4+1 dx =frac12left(fracarctanleft(fracx^2-1xsqrt2right)sqrt2-frac12sqrt2logleft(fracx^2-sqrt2x+1x^2+sqrt2x+1right)right)+C$$






    share|cite|improve this answer














    Without using fractional decomposition:
    beginalign*intfrac1x^4+1 dx & =frac12intfrac21+x^4 dx\ &=frac12intfrac(1-x^2)+(1+x^2)1+x^4 dx\ &=frac12intfrac1-x^21+x^4 dx+frac12intfrac1+x^21+x^4 dx\
    &=frac12intfrac1-frac1x^2x^2+frac1x^2, dx+frac12intfrac1+frac1x^2x^2+frac1x^2, dx\ &=frac12left(intfrac1-frac1x^2left(x+frac1xright)^2-2, dx+intfrac1+frac1x^2left(x-frac1xright)^2+2, dxright)\ &=frac12left(intfracdleft(x+frac1xright)left(x+frac1xright)^2-2+intfracdleft(x-frac1xright)left(x-frac1xright)^2+2right)endalign*



    So, finally solution is $$intfrac1x^4+1 dx =frac12left(fracarctanleft(fracx^2-1xsqrt2right)sqrt2-frac12sqrt2logleft(fracx^2-sqrt2x+1x^2+sqrt2x+1right)right)+C$$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited May 2 '14 at 9:17

























    answered Mar 18 '13 at 9:22









    Cortizol

    2,6451235




    2,6451235











    • This is really difficult . You are genius .
      – SmartCoder
      Mar 1 at 13:49
















    • This is really difficult . You are genius .
      – SmartCoder
      Mar 1 at 13:49















    This is really difficult . You are genius .
    – SmartCoder
    Mar 1 at 13:49




    This is really difficult . You are genius .
    – SmartCoder
    Mar 1 at 13:49










    up vote
    10
    down vote













    Hint:

    $$x^4+1=(x^2-sqrt2x+1)(x^2+sqrt2x+1) tag1$$
    You can integrate using partial fraction decomposition. Since
    $$x^4+1=(x^2-sqrt2x+1)(x^2+sqrt2x+1),$$
    then
    $$frac1x^4+1=fracAx+Bx^2-sqrt2x+1+fracCx+Dx^2+sqrt2x+1=frac(Ax+B)(x^2+sqrt2x+1)+(Cx+D)(x^2-sqrt2x+1)(x^2-sqrt2x+1)(x^2+sqrt2x+1) = \
    = fracx^3(A+C)+x^2(Asqrt2+B+D-Csqrt2)+x(Bsqrt2-Dsqrt2)+B+D(x^2-sqrt2x+1)(x^2+sqrt2x+1)$$
    $$begincases
    A+C=0;\
    B+D+sqrt2(A-C)=0; \
    B-D=0; \
    B+D=1.
    endcases$$



    $$
    A=-C=-frac12sqrt2; \
    B=D=frac12$$



    $$
    frac1x^4+1=frac12sqrt2left(dfrac-x+sqrt2x^2-sqrt2x+1+ dfracx+sqrt2x^2+sqrt2x+1 right).
    $$



    Added

    Decomposition (1) can be done using one of the following ways:



    1. Completion to the full square
      $$x^4+1=x^4 +2x^2+1 -2x^2=(x^2+1)^2-left(sqrt2xright)^2 = \ =big(x^2-sqrt2x +1 big)big( x^2+sqrt2x +1 big).$$


    2. Let $omega_i, iin1,, 2,,3,,4 $ are roots of the equation $x^4+1=0$ over $mathbbC:$ $omega_1=fracsqrt22(1-i), omega_2=fracsqrt22(1+i) omega_3=fracsqrt22(-1+i), omega_4=fracsqrt22(-1-i). $ Then use the decomposition into prime factors and multiply pairwise complex conjugate:
      $x^4+1= left( x-fracsqrt22(1-i) right)left( x-fracsqrt22(1+i) right)left( x-fracsqrt22(-1+i) right)left( x-fracsqrt22(-1-i) right) = \ =big(x^2-sqrt2x +1 big)big( x^2+sqrt2x +1 big).$






    share|cite|improve this answer






















    • Its too difficult to calculate yet
      – kalpeshmpopat
      Mar 18 '13 at 8:51






    • 3




      He said "FULL ANSWER"!
      – Amihai Zivan
      Mar 18 '13 at 9:06










    • Why is that too difficult? Well, you could do $$intfrac1x^4+4,dx$$ first using the factorization coming from $$x^4+4=(x^4+4x^2+4)-4x^2=cdots$$ and then do a linear substitution to get back to your integral.
      – Jyrki Lahtonen
      Mar 18 '13 at 9:06







    • 13




      We won't do your homework - we try to teach you to do it yourself.
      – Jyrki Lahtonen
      Mar 18 '13 at 9:07










    • @M.Strochyk How did you compute $x^4+1$ to be equal to $(x^2-sqrt2x +1)(x^2+sqrt2x+1)$? Is there a general method for doing that?
      – Mr Reality
      Nov 5 '17 at 5:02















    up vote
    10
    down vote













    Hint:

    $$x^4+1=(x^2-sqrt2x+1)(x^2+sqrt2x+1) tag1$$
    You can integrate using partial fraction decomposition. Since
    $$x^4+1=(x^2-sqrt2x+1)(x^2+sqrt2x+1),$$
    then
    $$frac1x^4+1=fracAx+Bx^2-sqrt2x+1+fracCx+Dx^2+sqrt2x+1=frac(Ax+B)(x^2+sqrt2x+1)+(Cx+D)(x^2-sqrt2x+1)(x^2-sqrt2x+1)(x^2+sqrt2x+1) = \
    = fracx^3(A+C)+x^2(Asqrt2+B+D-Csqrt2)+x(Bsqrt2-Dsqrt2)+B+D(x^2-sqrt2x+1)(x^2+sqrt2x+1)$$
    $$begincases
    A+C=0;\
    B+D+sqrt2(A-C)=0; \
    B-D=0; \
    B+D=1.
    endcases$$



    $$
    A=-C=-frac12sqrt2; \
    B=D=frac12$$



    $$
    frac1x^4+1=frac12sqrt2left(dfrac-x+sqrt2x^2-sqrt2x+1+ dfracx+sqrt2x^2+sqrt2x+1 right).
    $$



    Added

    Decomposition (1) can be done using one of the following ways:



    1. Completion to the full square
      $$x^4+1=x^4 +2x^2+1 -2x^2=(x^2+1)^2-left(sqrt2xright)^2 = \ =big(x^2-sqrt2x +1 big)big( x^2+sqrt2x +1 big).$$


    2. Let $omega_i, iin1,, 2,,3,,4 $ are roots of the equation $x^4+1=0$ over $mathbbC:$ $omega_1=fracsqrt22(1-i), omega_2=fracsqrt22(1+i) omega_3=fracsqrt22(-1+i), omega_4=fracsqrt22(-1-i). $ Then use the decomposition into prime factors and multiply pairwise complex conjugate:
      $x^4+1= left( x-fracsqrt22(1-i) right)left( x-fracsqrt22(1+i) right)left( x-fracsqrt22(-1+i) right)left( x-fracsqrt22(-1-i) right) = \ =big(x^2-sqrt2x +1 big)big( x^2+sqrt2x +1 big).$






    share|cite|improve this answer






















    • Its too difficult to calculate yet
      – kalpeshmpopat
      Mar 18 '13 at 8:51






    • 3




      He said "FULL ANSWER"!
      – Amihai Zivan
      Mar 18 '13 at 9:06










    • Why is that too difficult? Well, you could do $$intfrac1x^4+4,dx$$ first using the factorization coming from $$x^4+4=(x^4+4x^2+4)-4x^2=cdots$$ and then do a linear substitution to get back to your integral.
      – Jyrki Lahtonen
      Mar 18 '13 at 9:06







    • 13




      We won't do your homework - we try to teach you to do it yourself.
      – Jyrki Lahtonen
      Mar 18 '13 at 9:07










    • @M.Strochyk How did you compute $x^4+1$ to be equal to $(x^2-sqrt2x +1)(x^2+sqrt2x+1)$? Is there a general method for doing that?
      – Mr Reality
      Nov 5 '17 at 5:02













    up vote
    10
    down vote










    up vote
    10
    down vote









    Hint:

    $$x^4+1=(x^2-sqrt2x+1)(x^2+sqrt2x+1) tag1$$
    You can integrate using partial fraction decomposition. Since
    $$x^4+1=(x^2-sqrt2x+1)(x^2+sqrt2x+1),$$
    then
    $$frac1x^4+1=fracAx+Bx^2-sqrt2x+1+fracCx+Dx^2+sqrt2x+1=frac(Ax+B)(x^2+sqrt2x+1)+(Cx+D)(x^2-sqrt2x+1)(x^2-sqrt2x+1)(x^2+sqrt2x+1) = \
    = fracx^3(A+C)+x^2(Asqrt2+B+D-Csqrt2)+x(Bsqrt2-Dsqrt2)+B+D(x^2-sqrt2x+1)(x^2+sqrt2x+1)$$
    $$begincases
    A+C=0;\
    B+D+sqrt2(A-C)=0; \
    B-D=0; \
    B+D=1.
    endcases$$



    $$
    A=-C=-frac12sqrt2; \
    B=D=frac12$$



    $$
    frac1x^4+1=frac12sqrt2left(dfrac-x+sqrt2x^2-sqrt2x+1+ dfracx+sqrt2x^2+sqrt2x+1 right).
    $$



    Added

    Decomposition (1) can be done using one of the following ways:



    1. Completion to the full square
      $$x^4+1=x^4 +2x^2+1 -2x^2=(x^2+1)^2-left(sqrt2xright)^2 = \ =big(x^2-sqrt2x +1 big)big( x^2+sqrt2x +1 big).$$


    2. Let $omega_i, iin1,, 2,,3,,4 $ are roots of the equation $x^4+1=0$ over $mathbbC:$ $omega_1=fracsqrt22(1-i), omega_2=fracsqrt22(1+i) omega_3=fracsqrt22(-1+i), omega_4=fracsqrt22(-1-i). $ Then use the decomposition into prime factors and multiply pairwise complex conjugate:
      $x^4+1= left( x-fracsqrt22(1-i) right)left( x-fracsqrt22(1+i) right)left( x-fracsqrt22(-1+i) right)left( x-fracsqrt22(-1-i) right) = \ =big(x^2-sqrt2x +1 big)big( x^2+sqrt2x +1 big).$






    share|cite|improve this answer














    Hint:

    $$x^4+1=(x^2-sqrt2x+1)(x^2+sqrt2x+1) tag1$$
    You can integrate using partial fraction decomposition. Since
    $$x^4+1=(x^2-sqrt2x+1)(x^2+sqrt2x+1),$$
    then
    $$frac1x^4+1=fracAx+Bx^2-sqrt2x+1+fracCx+Dx^2+sqrt2x+1=frac(Ax+B)(x^2+sqrt2x+1)+(Cx+D)(x^2-sqrt2x+1)(x^2-sqrt2x+1)(x^2+sqrt2x+1) = \
    = fracx^3(A+C)+x^2(Asqrt2+B+D-Csqrt2)+x(Bsqrt2-Dsqrt2)+B+D(x^2-sqrt2x+1)(x^2+sqrt2x+1)$$
    $$begincases
    A+C=0;\
    B+D+sqrt2(A-C)=0; \
    B-D=0; \
    B+D=1.
    endcases$$



    $$
    A=-C=-frac12sqrt2; \
    B=D=frac12$$



    $$
    frac1x^4+1=frac12sqrt2left(dfrac-x+sqrt2x^2-sqrt2x+1+ dfracx+sqrt2x^2+sqrt2x+1 right).
    $$



    Added

    Decomposition (1) can be done using one of the following ways:



    1. Completion to the full square
      $$x^4+1=x^4 +2x^2+1 -2x^2=(x^2+1)^2-left(sqrt2xright)^2 = \ =big(x^2-sqrt2x +1 big)big( x^2+sqrt2x +1 big).$$


    2. Let $omega_i, iin1,, 2,,3,,4 $ are roots of the equation $x^4+1=0$ over $mathbbC:$ $omega_1=fracsqrt22(1-i), omega_2=fracsqrt22(1+i) omega_3=fracsqrt22(-1+i), omega_4=fracsqrt22(-1-i). $ Then use the decomposition into prime factors and multiply pairwise complex conjugate:
      $x^4+1= left( x-fracsqrt22(1-i) right)left( x-fracsqrt22(1+i) right)left( x-fracsqrt22(-1+i) right)left( x-fracsqrt22(-1-i) right) = \ =big(x^2-sqrt2x +1 big)big( x^2+sqrt2x +1 big).$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Nov 5 '17 at 18:07

























    answered Mar 18 '13 at 8:49









    M. Strochyk

    7,64711119




    7,64711119











    • Its too difficult to calculate yet
      – kalpeshmpopat
      Mar 18 '13 at 8:51






    • 3




      He said "FULL ANSWER"!
      – Amihai Zivan
      Mar 18 '13 at 9:06










    • Why is that too difficult? Well, you could do $$intfrac1x^4+4,dx$$ first using the factorization coming from $$x^4+4=(x^4+4x^2+4)-4x^2=cdots$$ and then do a linear substitution to get back to your integral.
      – Jyrki Lahtonen
      Mar 18 '13 at 9:06







    • 13




      We won't do your homework - we try to teach you to do it yourself.
      – Jyrki Lahtonen
      Mar 18 '13 at 9:07










    • @M.Strochyk How did you compute $x^4+1$ to be equal to $(x^2-sqrt2x +1)(x^2+sqrt2x+1)$? Is there a general method for doing that?
      – Mr Reality
      Nov 5 '17 at 5:02

















    • Its too difficult to calculate yet
      – kalpeshmpopat
      Mar 18 '13 at 8:51






    • 3




      He said "FULL ANSWER"!
      – Amihai Zivan
      Mar 18 '13 at 9:06










    • Why is that too difficult? Well, you could do $$intfrac1x^4+4,dx$$ first using the factorization coming from $$x^4+4=(x^4+4x^2+4)-4x^2=cdots$$ and then do a linear substitution to get back to your integral.
      – Jyrki Lahtonen
      Mar 18 '13 at 9:06







    • 13




      We won't do your homework - we try to teach you to do it yourself.
      – Jyrki Lahtonen
      Mar 18 '13 at 9:07










    • @M.Strochyk How did you compute $x^4+1$ to be equal to $(x^2-sqrt2x +1)(x^2+sqrt2x+1)$? Is there a general method for doing that?
      – Mr Reality
      Nov 5 '17 at 5:02
















    Its too difficult to calculate yet
    – kalpeshmpopat
    Mar 18 '13 at 8:51




    Its too difficult to calculate yet
    – kalpeshmpopat
    Mar 18 '13 at 8:51




    3




    3




    He said "FULL ANSWER"!
    – Amihai Zivan
    Mar 18 '13 at 9:06




    He said "FULL ANSWER"!
    – Amihai Zivan
    Mar 18 '13 at 9:06












    Why is that too difficult? Well, you could do $$intfrac1x^4+4,dx$$ first using the factorization coming from $$x^4+4=(x^4+4x^2+4)-4x^2=cdots$$ and then do a linear substitution to get back to your integral.
    – Jyrki Lahtonen
    Mar 18 '13 at 9:06





    Why is that too difficult? Well, you could do $$intfrac1x^4+4,dx$$ first using the factorization coming from $$x^4+4=(x^4+4x^2+4)-4x^2=cdots$$ and then do a linear substitution to get back to your integral.
    – Jyrki Lahtonen
    Mar 18 '13 at 9:06





    13




    13




    We won't do your homework - we try to teach you to do it yourself.
    – Jyrki Lahtonen
    Mar 18 '13 at 9:07




    We won't do your homework - we try to teach you to do it yourself.
    – Jyrki Lahtonen
    Mar 18 '13 at 9:07












    @M.Strochyk How did you compute $x^4+1$ to be equal to $(x^2-sqrt2x +1)(x^2+sqrt2x+1)$? Is there a general method for doing that?
    – Mr Reality
    Nov 5 '17 at 5:02





    @M.Strochyk How did you compute $x^4+1$ to be equal to $(x^2-sqrt2x +1)(x^2+sqrt2x+1)$? Is there a general method for doing that?
    – Mr Reality
    Nov 5 '17 at 5:02











    up vote
    3
    down vote













    $$I =int frac1x^4+1 dx$$



    If we add and subtract $2x^2$ to $x^4 + 1$, we get:
    $$int frac1x^4 + 2x^2 + 1 - 2x^2$$



    We know $x^4 + 2x^2 + 1 = (x^2 + 1)^2$



    $$int frac1(x^2 + 1)^2 - 2x^2$$



    We know $a^2 - b^2 = (a - b)(a + b)$



    Hence, $(x^2 + 1)^2 - 2x^2 = (x^2 + 1 - sqrt2x)(x^2 + 1 + sqrt2x)$



    $$int frac1(x^2-sqrt2x+1)(x^2+sqrt2x+1)$$



    Now using partial fraction decomposition:



    $$frac1(x^2-sqrt2x+1)(x^2+sqrt2x+1) = fracAx + Bx^2-sqrt2x+1 + fracCx + Dx^2+sqrt2x+1$$



    After you have found A, B, C and D, its just a basic $fraclinearquadratic$ type integral.






    share|cite|improve this answer






















    • Is there a general method for factorizing stuff like $x^4+1$?
      – Mr Reality
      Nov 5 '17 at 5:11














    up vote
    3
    down vote













    $$I =int frac1x^4+1 dx$$



    If we add and subtract $2x^2$ to $x^4 + 1$, we get:
    $$int frac1x^4 + 2x^2 + 1 - 2x^2$$



    We know $x^4 + 2x^2 + 1 = (x^2 + 1)^2$



    $$int frac1(x^2 + 1)^2 - 2x^2$$



    We know $a^2 - b^2 = (a - b)(a + b)$



    Hence, $(x^2 + 1)^2 - 2x^2 = (x^2 + 1 - sqrt2x)(x^2 + 1 + sqrt2x)$



    $$int frac1(x^2-sqrt2x+1)(x^2+sqrt2x+1)$$



    Now using partial fraction decomposition:



    $$frac1(x^2-sqrt2x+1)(x^2+sqrt2x+1) = fracAx + Bx^2-sqrt2x+1 + fracCx + Dx^2+sqrt2x+1$$



    After you have found A, B, C and D, its just a basic $fraclinearquadratic$ type integral.






    share|cite|improve this answer






















    • Is there a general method for factorizing stuff like $x^4+1$?
      – Mr Reality
      Nov 5 '17 at 5:11












    up vote
    3
    down vote










    up vote
    3
    down vote









    $$I =int frac1x^4+1 dx$$



    If we add and subtract $2x^2$ to $x^4 + 1$, we get:
    $$int frac1x^4 + 2x^2 + 1 - 2x^2$$



    We know $x^4 + 2x^2 + 1 = (x^2 + 1)^2$



    $$int frac1(x^2 + 1)^2 - 2x^2$$



    We know $a^2 - b^2 = (a - b)(a + b)$



    Hence, $(x^2 + 1)^2 - 2x^2 = (x^2 + 1 - sqrt2x)(x^2 + 1 + sqrt2x)$



    $$int frac1(x^2-sqrt2x+1)(x^2+sqrt2x+1)$$



    Now using partial fraction decomposition:



    $$frac1(x^2-sqrt2x+1)(x^2+sqrt2x+1) = fracAx + Bx^2-sqrt2x+1 + fracCx + Dx^2+sqrt2x+1$$



    After you have found A, B, C and D, its just a basic $fraclinearquadratic$ type integral.






    share|cite|improve this answer














    $$I =int frac1x^4+1 dx$$



    If we add and subtract $2x^2$ to $x^4 + 1$, we get:
    $$int frac1x^4 + 2x^2 + 1 - 2x^2$$



    We know $x^4 + 2x^2 + 1 = (x^2 + 1)^2$



    $$int frac1(x^2 + 1)^2 - 2x^2$$



    We know $a^2 - b^2 = (a - b)(a + b)$



    Hence, $(x^2 + 1)^2 - 2x^2 = (x^2 + 1 - sqrt2x)(x^2 + 1 + sqrt2x)$



    $$int frac1(x^2-sqrt2x+1)(x^2+sqrt2x+1)$$



    Now using partial fraction decomposition:



    $$frac1(x^2-sqrt2x+1)(x^2+sqrt2x+1) = fracAx + Bx^2-sqrt2x+1 + fracCx + Dx^2+sqrt2x+1$$



    After you have found A, B, C and D, its just a basic $fraclinearquadratic$ type integral.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited May 22 '15 at 16:39









    abiessu

    6,62221540




    6,62221540










    answered Mar 18 '13 at 9:10









    Aneesh Dogra

    199119




    199119











    • Is there a general method for factorizing stuff like $x^4+1$?
      – Mr Reality
      Nov 5 '17 at 5:11
















    • Is there a general method for factorizing stuff like $x^4+1$?
      – Mr Reality
      Nov 5 '17 at 5:11















    Is there a general method for factorizing stuff like $x^4+1$?
    – Mr Reality
    Nov 5 '17 at 5:11




    Is there a general method for factorizing stuff like $x^4+1$?
    – Mr Reality
    Nov 5 '17 at 5:11










    up vote
    1
    down vote













    The indefinite integral is a rational fraction and is typically solved using partial fractions decomposition.



    You first factor the denominator $x^4+1$, which has four complex roots, the fourth roots of minus one, let $omega_0$, $omega_1$, $omega_2$, and $omega_3$. Then you decompose



    $$frac1x^4+1=frac ax-omega_0+frac bx-omega_1+frac cx-omega_2+frac dx-omega_3$$



    The unknown coefficients are found by multiplying by one of the denominators and taking the limit to the root:



    $$a=lim_xtoomega_0fracx-omega_0x^4+1=frac14omega_0^3,$$
    and similarly for the other terms.



    Then, a single term is integrated with a complex logarithm
    $$intfracdxx-omega=ln(x-omega)=ln|x-omega|+iangle(x-omega).$$



    Here we have $omega_0=dfrac1+isqrt2$, hence



    $$lnsqrt(x-frac1sqrt2)^2+(frac1sqrt2)^2-iarctanfracfrac1sqrt2x-frac1sqrt2\
    =frac12ln(x^2-sqrt2x+1)-ifracpi2+iarctan(sqrt2x-1).$$



    Repeat for the four terms (there is a lot of symmetry) and form the linear combination.






    share|cite|improve this answer
























      up vote
      1
      down vote













      The indefinite integral is a rational fraction and is typically solved using partial fractions decomposition.



      You first factor the denominator $x^4+1$, which has four complex roots, the fourth roots of minus one, let $omega_0$, $omega_1$, $omega_2$, and $omega_3$. Then you decompose



      $$frac1x^4+1=frac ax-omega_0+frac bx-omega_1+frac cx-omega_2+frac dx-omega_3$$



      The unknown coefficients are found by multiplying by one of the denominators and taking the limit to the root:



      $$a=lim_xtoomega_0fracx-omega_0x^4+1=frac14omega_0^3,$$
      and similarly for the other terms.



      Then, a single term is integrated with a complex logarithm
      $$intfracdxx-omega=ln(x-omega)=ln|x-omega|+iangle(x-omega).$$



      Here we have $omega_0=dfrac1+isqrt2$, hence



      $$lnsqrt(x-frac1sqrt2)^2+(frac1sqrt2)^2-iarctanfracfrac1sqrt2x-frac1sqrt2\
      =frac12ln(x^2-sqrt2x+1)-ifracpi2+iarctan(sqrt2x-1).$$



      Repeat for the four terms (there is a lot of symmetry) and form the linear combination.






      share|cite|improve this answer






















        up vote
        1
        down vote










        up vote
        1
        down vote









        The indefinite integral is a rational fraction and is typically solved using partial fractions decomposition.



        You first factor the denominator $x^4+1$, which has four complex roots, the fourth roots of minus one, let $omega_0$, $omega_1$, $omega_2$, and $omega_3$. Then you decompose



        $$frac1x^4+1=frac ax-omega_0+frac bx-omega_1+frac cx-omega_2+frac dx-omega_3$$



        The unknown coefficients are found by multiplying by one of the denominators and taking the limit to the root:



        $$a=lim_xtoomega_0fracx-omega_0x^4+1=frac14omega_0^3,$$
        and similarly for the other terms.



        Then, a single term is integrated with a complex logarithm
        $$intfracdxx-omega=ln(x-omega)=ln|x-omega|+iangle(x-omega).$$



        Here we have $omega_0=dfrac1+isqrt2$, hence



        $$lnsqrt(x-frac1sqrt2)^2+(frac1sqrt2)^2-iarctanfracfrac1sqrt2x-frac1sqrt2\
        =frac12ln(x^2-sqrt2x+1)-ifracpi2+iarctan(sqrt2x-1).$$



        Repeat for the four terms (there is a lot of symmetry) and form the linear combination.






        share|cite|improve this answer












        The indefinite integral is a rational fraction and is typically solved using partial fractions decomposition.



        You first factor the denominator $x^4+1$, which has four complex roots, the fourth roots of minus one, let $omega_0$, $omega_1$, $omega_2$, and $omega_3$. Then you decompose



        $$frac1x^4+1=frac ax-omega_0+frac bx-omega_1+frac cx-omega_2+frac dx-omega_3$$



        The unknown coefficients are found by multiplying by one of the denominators and taking the limit to the root:



        $$a=lim_xtoomega_0fracx-omega_0x^4+1=frac14omega_0^3,$$
        and similarly for the other terms.



        Then, a single term is integrated with a complex logarithm
        $$intfracdxx-omega=ln(x-omega)=ln|x-omega|+iangle(x-omega).$$



        Here we have $omega_0=dfrac1+isqrt2$, hence



        $$lnsqrt(x-frac1sqrt2)^2+(frac1sqrt2)^2-iarctanfracfrac1sqrt2x-frac1sqrt2\
        =frac12ln(x^2-sqrt2x+1)-ifracpi2+iarctan(sqrt2x-1).$$



        Repeat for the four terms (there is a lot of symmetry) and form the linear combination.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Apr 1 '15 at 8:01









        Yves Daoust

        115k666209




        115k666209



























             

            draft saved


            draft discarded















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f333611%2fevaluating-int-frac1x41-dx%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            How to combine Bézier curves to a surface?

            Carbon dioxide

            Why am i infinitely getting the same tweet with the Twitter Search API?