Does this matrix sequence always converge?
Clash Royale CLAN TAG#URR8PPP
up vote
4
down vote
favorite
Suppose $a_0, a_1, ... , a_n-1$ are real numbers from $(0; 1)$, such that $sum_k=0^n-1 a_k=1$. Suppose $A = (c_ij)$ is a $n times n$ matrix with entries $c_ij = a_(i-j)%n$, where $%$ is modulo operation. Is it always true that $lim_m to infty A^m = frac1n beginpmatrix 1 & 1 & cdots & 1 \1 & 1 & cdots & 1 \ vdots & vdots & ddots & vdots \ 1 & 1 & cdots & 1 endpmatrix$?
This statement is true for $n = 2$:
Suppose $A = beginpmatrix a_0 & 1 - a_0 \ 1 - a_0 & a_0 endpmatrix = beginpmatrix 1 & -1 \ 1 & 1endpmatrix^-1beginpmatrix 1 & 0 \ 0 & 1-2a_0 endpmatrixbeginpmatrix 1 & -1 \ 1 & 1 endpmatrix$. Because $a_0$ is in $(0; 1)$, $1-2a_0$ is in $(-1;1)$. Thus $$lim_m to infty A^m = beginpmatrix 1 & -1 \ 1 & 1endpmatrix^-1beginpmatrix 1 & 0 \ 0 & 0endpmatrixbeginpmatrix 1 & -1 \ 1 & 1 endpmatrix = frac12beginpmatrix 1 & 1 \ 1 & 1 endpmatrix$$
However, I do not know how to prove this statement for arbitrary $n$.
Any help will be appreciated.
linear-algebra sequences-and-series matrices limits matrix-calculus
add a comment |Â
up vote
4
down vote
favorite
Suppose $a_0, a_1, ... , a_n-1$ are real numbers from $(0; 1)$, such that $sum_k=0^n-1 a_k=1$. Suppose $A = (c_ij)$ is a $n times n$ matrix with entries $c_ij = a_(i-j)%n$, where $%$ is modulo operation. Is it always true that $lim_m to infty A^m = frac1n beginpmatrix 1 & 1 & cdots & 1 \1 & 1 & cdots & 1 \ vdots & vdots & ddots & vdots \ 1 & 1 & cdots & 1 endpmatrix$?
This statement is true for $n = 2$:
Suppose $A = beginpmatrix a_0 & 1 - a_0 \ 1 - a_0 & a_0 endpmatrix = beginpmatrix 1 & -1 \ 1 & 1endpmatrix^-1beginpmatrix 1 & 0 \ 0 & 1-2a_0 endpmatrixbeginpmatrix 1 & -1 \ 1 & 1 endpmatrix$. Because $a_0$ is in $(0; 1)$, $1-2a_0$ is in $(-1;1)$. Thus $$lim_m to infty A^m = beginpmatrix 1 & -1 \ 1 & 1endpmatrix^-1beginpmatrix 1 & 0 \ 0 & 0endpmatrixbeginpmatrix 1 & -1 \ 1 & 1 endpmatrix = frac12beginpmatrix 1 & 1 \ 1 & 1 endpmatrix$$
However, I do not know how to prove this statement for arbitrary $n$.
Any help will be appreciated.
linear-algebra sequences-and-series matrices limits matrix-calculus
I took the liberty of changing $sum_k=0^n-1a_n$ to $sum_k=0^n-1a_k=1$, as that was probably the intention.
â Saucy O'Path
Sep 6 at 11:10
@Saucy O'Path, yes it was. Thank You for correcting my typo!
â Yanior Weg
Sep 6 at 11:14
add a comment |Â
up vote
4
down vote
favorite
up vote
4
down vote
favorite
Suppose $a_0, a_1, ... , a_n-1$ are real numbers from $(0; 1)$, such that $sum_k=0^n-1 a_k=1$. Suppose $A = (c_ij)$ is a $n times n$ matrix with entries $c_ij = a_(i-j)%n$, where $%$ is modulo operation. Is it always true that $lim_m to infty A^m = frac1n beginpmatrix 1 & 1 & cdots & 1 \1 & 1 & cdots & 1 \ vdots & vdots & ddots & vdots \ 1 & 1 & cdots & 1 endpmatrix$?
This statement is true for $n = 2$:
Suppose $A = beginpmatrix a_0 & 1 - a_0 \ 1 - a_0 & a_0 endpmatrix = beginpmatrix 1 & -1 \ 1 & 1endpmatrix^-1beginpmatrix 1 & 0 \ 0 & 1-2a_0 endpmatrixbeginpmatrix 1 & -1 \ 1 & 1 endpmatrix$. Because $a_0$ is in $(0; 1)$, $1-2a_0$ is in $(-1;1)$. Thus $$lim_m to infty A^m = beginpmatrix 1 & -1 \ 1 & 1endpmatrix^-1beginpmatrix 1 & 0 \ 0 & 0endpmatrixbeginpmatrix 1 & -1 \ 1 & 1 endpmatrix = frac12beginpmatrix 1 & 1 \ 1 & 1 endpmatrix$$
However, I do not know how to prove this statement for arbitrary $n$.
Any help will be appreciated.
linear-algebra sequences-and-series matrices limits matrix-calculus
Suppose $a_0, a_1, ... , a_n-1$ are real numbers from $(0; 1)$, such that $sum_k=0^n-1 a_k=1$. Suppose $A = (c_ij)$ is a $n times n$ matrix with entries $c_ij = a_(i-j)%n$, where $%$ is modulo operation. Is it always true that $lim_m to infty A^m = frac1n beginpmatrix 1 & 1 & cdots & 1 \1 & 1 & cdots & 1 \ vdots & vdots & ddots & vdots \ 1 & 1 & cdots & 1 endpmatrix$?
This statement is true for $n = 2$:
Suppose $A = beginpmatrix a_0 & 1 - a_0 \ 1 - a_0 & a_0 endpmatrix = beginpmatrix 1 & -1 \ 1 & 1endpmatrix^-1beginpmatrix 1 & 0 \ 0 & 1-2a_0 endpmatrixbeginpmatrix 1 & -1 \ 1 & 1 endpmatrix$. Because $a_0$ is in $(0; 1)$, $1-2a_0$ is in $(-1;1)$. Thus $$lim_m to infty A^m = beginpmatrix 1 & -1 \ 1 & 1endpmatrix^-1beginpmatrix 1 & 0 \ 0 & 0endpmatrixbeginpmatrix 1 & -1 \ 1 & 1 endpmatrix = frac12beginpmatrix 1 & 1 \ 1 & 1 endpmatrix$$
However, I do not know how to prove this statement for arbitrary $n$.
Any help will be appreciated.
linear-algebra sequences-and-series matrices limits matrix-calculus
linear-algebra sequences-and-series matrices limits matrix-calculus
edited Sep 6 at 11:09
Saucy O'Path
3,841424
3,841424
asked Sep 6 at 11:05
Yanior Weg
1,1581731
1,1581731
I took the liberty of changing $sum_k=0^n-1a_n$ to $sum_k=0^n-1a_k=1$, as that was probably the intention.
â Saucy O'Path
Sep 6 at 11:10
@Saucy O'Path, yes it was. Thank You for correcting my typo!
â Yanior Weg
Sep 6 at 11:14
add a comment |Â
I took the liberty of changing $sum_k=0^n-1a_n$ to $sum_k=0^n-1a_k=1$, as that was probably the intention.
â Saucy O'Path
Sep 6 at 11:10
@Saucy O'Path, yes it was. Thank You for correcting my typo!
â Yanior Weg
Sep 6 at 11:14
I took the liberty of changing $sum_k=0^n-1a_n$ to $sum_k=0^n-1a_k=1$, as that was probably the intention.
â Saucy O'Path
Sep 6 at 11:10
I took the liberty of changing $sum_k=0^n-1a_n$ to $sum_k=0^n-1a_k=1$, as that was probably the intention.
â Saucy O'Path
Sep 6 at 11:10
@Saucy O'Path, yes it was. Thank You for correcting my typo!
â Yanior Weg
Sep 6 at 11:14
@Saucy O'Path, yes it was. Thank You for correcting my typo!
â Yanior Weg
Sep 6 at 11:14
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
2
down vote
accepted
This follows directly from the Perron-Frobenius theorem.
add a comment |Â
up vote
2
down vote
Your matrix $A$ is a circulant matrix:
$$A = beginbmatrix
a_0 & a_1 & cdots & a_n-1\
a_n-1 & a_0 & cdots & a_n-2\
vdots & vdots & cdots & vdots \
a_1 & a_2 & cdots & a_0\
endbmatrix$$
$A$ is known to have eigenvalues equal to $lambda_j = sum_k=0^n-1 a_komega_j^k$ with eigenvectors $beginbmatrix 1 \ omega_j \ omega_j^2 \ vdots \ omega_j^n-1endbmatrix$, where $omega_j = e^frac2pi ijn$ for $j = 0, ldots n-1$.
Therefore we can diagonalize $A$ as follows:
$$A = P^-1DP = beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix^-1
beginbmatrix
lambda_0 & 0 & cdots & 0 \
0 & lambda_1 & cdots & 0\
vdots & vdots & cdots & vdots \
0 & 0 & cdots & lambda_n-1\
endbmatrix
beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix$$
The triangle inequality for the eigenvalues gives
$$|lambda_j| = left|sum_k=0^n-1 a_komega_j^kright| le sum_k=0^n-1 a_k |omega_j|^k = sum_k=0^n-1 a_k = 1$$
with equality holding if and only if $a_0, a_1omega_j, ldots, a_n-1omega_j^n-1$ lie on the same side of a single line through the origin. Clearly this is true iff $j = 0$ so the eigenvalues satisfy $lambda_0 = 1$ and $|lambda_j| < 1$ for $j = 1, ldots, n-1$.
Hence letting $mtoinfty$ in $A^m = P^-1D^mP$ gives
beginalign
lim_mtoinfty A^m &= beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix^-1
beginbmatrix
1 & 0 & cdots & 0 \
0 & 0 & cdots & 0\
vdots & vdots & cdots & vdots \
0 & 0 & cdots & 0\
endbmatrix
beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix\
&= beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix^-1 beginbmatrix 1 \ 1 \ vdots \ 1endbmatrix
endalign
You can calculate this by hand, or notice that the columns of $lim_mtoinfty A^m$ satisfy the system $Px = beginbmatrix 1 \ 1 \ vdots \ 1endbmatrix$, which you can solve.
The sum $sum_k=0^n-1 omega_k^j$ is equal to $0$ here, which would suggest that the limit doesn't have to be of the form you specified.
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
This follows directly from the Perron-Frobenius theorem.
add a comment |Â
up vote
2
down vote
accepted
This follows directly from the Perron-Frobenius theorem.
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
This follows directly from the Perron-Frobenius theorem.
This follows directly from the Perron-Frobenius theorem.
answered Sep 6 at 11:34
kimchi lover
8,96031128
8,96031128
add a comment |Â
add a comment |Â
up vote
2
down vote
Your matrix $A$ is a circulant matrix:
$$A = beginbmatrix
a_0 & a_1 & cdots & a_n-1\
a_n-1 & a_0 & cdots & a_n-2\
vdots & vdots & cdots & vdots \
a_1 & a_2 & cdots & a_0\
endbmatrix$$
$A$ is known to have eigenvalues equal to $lambda_j = sum_k=0^n-1 a_komega_j^k$ with eigenvectors $beginbmatrix 1 \ omega_j \ omega_j^2 \ vdots \ omega_j^n-1endbmatrix$, where $omega_j = e^frac2pi ijn$ for $j = 0, ldots n-1$.
Therefore we can diagonalize $A$ as follows:
$$A = P^-1DP = beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix^-1
beginbmatrix
lambda_0 & 0 & cdots & 0 \
0 & lambda_1 & cdots & 0\
vdots & vdots & cdots & vdots \
0 & 0 & cdots & lambda_n-1\
endbmatrix
beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix$$
The triangle inequality for the eigenvalues gives
$$|lambda_j| = left|sum_k=0^n-1 a_komega_j^kright| le sum_k=0^n-1 a_k |omega_j|^k = sum_k=0^n-1 a_k = 1$$
with equality holding if and only if $a_0, a_1omega_j, ldots, a_n-1omega_j^n-1$ lie on the same side of a single line through the origin. Clearly this is true iff $j = 0$ so the eigenvalues satisfy $lambda_0 = 1$ and $|lambda_j| < 1$ for $j = 1, ldots, n-1$.
Hence letting $mtoinfty$ in $A^m = P^-1D^mP$ gives
beginalign
lim_mtoinfty A^m &= beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix^-1
beginbmatrix
1 & 0 & cdots & 0 \
0 & 0 & cdots & 0\
vdots & vdots & cdots & vdots \
0 & 0 & cdots & 0\
endbmatrix
beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix\
&= beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix^-1 beginbmatrix 1 \ 1 \ vdots \ 1endbmatrix
endalign
You can calculate this by hand, or notice that the columns of $lim_mtoinfty A^m$ satisfy the system $Px = beginbmatrix 1 \ 1 \ vdots \ 1endbmatrix$, which you can solve.
The sum $sum_k=0^n-1 omega_k^j$ is equal to $0$ here, which would suggest that the limit doesn't have to be of the form you specified.
add a comment |Â
up vote
2
down vote
Your matrix $A$ is a circulant matrix:
$$A = beginbmatrix
a_0 & a_1 & cdots & a_n-1\
a_n-1 & a_0 & cdots & a_n-2\
vdots & vdots & cdots & vdots \
a_1 & a_2 & cdots & a_0\
endbmatrix$$
$A$ is known to have eigenvalues equal to $lambda_j = sum_k=0^n-1 a_komega_j^k$ with eigenvectors $beginbmatrix 1 \ omega_j \ omega_j^2 \ vdots \ omega_j^n-1endbmatrix$, where $omega_j = e^frac2pi ijn$ for $j = 0, ldots n-1$.
Therefore we can diagonalize $A$ as follows:
$$A = P^-1DP = beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix^-1
beginbmatrix
lambda_0 & 0 & cdots & 0 \
0 & lambda_1 & cdots & 0\
vdots & vdots & cdots & vdots \
0 & 0 & cdots & lambda_n-1\
endbmatrix
beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix$$
The triangle inequality for the eigenvalues gives
$$|lambda_j| = left|sum_k=0^n-1 a_komega_j^kright| le sum_k=0^n-1 a_k |omega_j|^k = sum_k=0^n-1 a_k = 1$$
with equality holding if and only if $a_0, a_1omega_j, ldots, a_n-1omega_j^n-1$ lie on the same side of a single line through the origin. Clearly this is true iff $j = 0$ so the eigenvalues satisfy $lambda_0 = 1$ and $|lambda_j| < 1$ for $j = 1, ldots, n-1$.
Hence letting $mtoinfty$ in $A^m = P^-1D^mP$ gives
beginalign
lim_mtoinfty A^m &= beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix^-1
beginbmatrix
1 & 0 & cdots & 0 \
0 & 0 & cdots & 0\
vdots & vdots & cdots & vdots \
0 & 0 & cdots & 0\
endbmatrix
beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix\
&= beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix^-1 beginbmatrix 1 \ 1 \ vdots \ 1endbmatrix
endalign
You can calculate this by hand, or notice that the columns of $lim_mtoinfty A^m$ satisfy the system $Px = beginbmatrix 1 \ 1 \ vdots \ 1endbmatrix$, which you can solve.
The sum $sum_k=0^n-1 omega_k^j$ is equal to $0$ here, which would suggest that the limit doesn't have to be of the form you specified.
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Your matrix $A$ is a circulant matrix:
$$A = beginbmatrix
a_0 & a_1 & cdots & a_n-1\
a_n-1 & a_0 & cdots & a_n-2\
vdots & vdots & cdots & vdots \
a_1 & a_2 & cdots & a_0\
endbmatrix$$
$A$ is known to have eigenvalues equal to $lambda_j = sum_k=0^n-1 a_komega_j^k$ with eigenvectors $beginbmatrix 1 \ omega_j \ omega_j^2 \ vdots \ omega_j^n-1endbmatrix$, where $omega_j = e^frac2pi ijn$ for $j = 0, ldots n-1$.
Therefore we can diagonalize $A$ as follows:
$$A = P^-1DP = beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix^-1
beginbmatrix
lambda_0 & 0 & cdots & 0 \
0 & lambda_1 & cdots & 0\
vdots & vdots & cdots & vdots \
0 & 0 & cdots & lambda_n-1\
endbmatrix
beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix$$
The triangle inequality for the eigenvalues gives
$$|lambda_j| = left|sum_k=0^n-1 a_komega_j^kright| le sum_k=0^n-1 a_k |omega_j|^k = sum_k=0^n-1 a_k = 1$$
with equality holding if and only if $a_0, a_1omega_j, ldots, a_n-1omega_j^n-1$ lie on the same side of a single line through the origin. Clearly this is true iff $j = 0$ so the eigenvalues satisfy $lambda_0 = 1$ and $|lambda_j| < 1$ for $j = 1, ldots, n-1$.
Hence letting $mtoinfty$ in $A^m = P^-1D^mP$ gives
beginalign
lim_mtoinfty A^m &= beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix^-1
beginbmatrix
1 & 0 & cdots & 0 \
0 & 0 & cdots & 0\
vdots & vdots & cdots & vdots \
0 & 0 & cdots & 0\
endbmatrix
beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix\
&= beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix^-1 beginbmatrix 1 \ 1 \ vdots \ 1endbmatrix
endalign
You can calculate this by hand, or notice that the columns of $lim_mtoinfty A^m$ satisfy the system $Px = beginbmatrix 1 \ 1 \ vdots \ 1endbmatrix$, which you can solve.
The sum $sum_k=0^n-1 omega_k^j$ is equal to $0$ here, which would suggest that the limit doesn't have to be of the form you specified.
Your matrix $A$ is a circulant matrix:
$$A = beginbmatrix
a_0 & a_1 & cdots & a_n-1\
a_n-1 & a_0 & cdots & a_n-2\
vdots & vdots & cdots & vdots \
a_1 & a_2 & cdots & a_0\
endbmatrix$$
$A$ is known to have eigenvalues equal to $lambda_j = sum_k=0^n-1 a_komega_j^k$ with eigenvectors $beginbmatrix 1 \ omega_j \ omega_j^2 \ vdots \ omega_j^n-1endbmatrix$, where $omega_j = e^frac2pi ijn$ for $j = 0, ldots n-1$.
Therefore we can diagonalize $A$ as follows:
$$A = P^-1DP = beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix^-1
beginbmatrix
lambda_0 & 0 & cdots & 0 \
0 & lambda_1 & cdots & 0\
vdots & vdots & cdots & vdots \
0 & 0 & cdots & lambda_n-1\
endbmatrix
beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix$$
The triangle inequality for the eigenvalues gives
$$|lambda_j| = left|sum_k=0^n-1 a_komega_j^kright| le sum_k=0^n-1 a_k |omega_j|^k = sum_k=0^n-1 a_k = 1$$
with equality holding if and only if $a_0, a_1omega_j, ldots, a_n-1omega_j^n-1$ lie on the same side of a single line through the origin. Clearly this is true iff $j = 0$ so the eigenvalues satisfy $lambda_0 = 1$ and $|lambda_j| < 1$ for $j = 1, ldots, n-1$.
Hence letting $mtoinfty$ in $A^m = P^-1D^mP$ gives
beginalign
lim_mtoinfty A^m &= beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix^-1
beginbmatrix
1 & 0 & cdots & 0 \
0 & 0 & cdots & 0\
vdots & vdots & cdots & vdots \
0 & 0 & cdots & 0\
endbmatrix
beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix\
&= beginbmatrix
1 & 1 & cdots & 1\
omega_0 & omega_1 & cdots & omega_n-1\
vdots & vdots & cdots & vdots \
omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
endbmatrix^-1 beginbmatrix 1 \ 1 \ vdots \ 1endbmatrix
endalign
You can calculate this by hand, or notice that the columns of $lim_mtoinfty A^m$ satisfy the system $Px = beginbmatrix 1 \ 1 \ vdots \ 1endbmatrix$, which you can solve.
The sum $sum_k=0^n-1 omega_k^j$ is equal to $0$ here, which would suggest that the limit doesn't have to be of the form you specified.
answered Sep 6 at 14:21
mechanodroid
24.6k62245
24.6k62245
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2907338%2fdoes-this-matrix-sequence-always-converge%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
I took the liberty of changing $sum_k=0^n-1a_n$ to $sum_k=0^n-1a_k=1$, as that was probably the intention.
â Saucy O'Path
Sep 6 at 11:10
@Saucy O'Path, yes it was. Thank You for correcting my typo!
â Yanior Weg
Sep 6 at 11:14