Evaluate $int x^x^n+n-1(x ln x +1)mathrm dx$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite
1













$$int x^x^n+n-1(x ln x +1) mathrm dx$$




I tried integration by part, I had no result. can someone help?










share|cite|improve this question



























    up vote
    3
    down vote

    favorite
    1













    $$int x^x^n+n-1(x ln x +1) mathrm dx$$




    I tried integration by part, I had no result. can someone help?










    share|cite|improve this question

























      up vote
      3
      down vote

      favorite
      1









      up vote
      3
      down vote

      favorite
      1






      1






      $$int x^x^n+n-1(x ln x +1) mathrm dx$$




      I tried integration by part, I had no result. can someone help?










      share|cite|improve this question
















      $$int x^x^n+n-1(x ln x +1) mathrm dx$$




      I tried integration by part, I had no result. can someone help?







      calculus integration indefinite-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Sep 6 at 8:47









      Lorenzo B.

      1,5402418




      1,5402418










      asked Sep 6 at 8:02









      user123

      546




      546




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          2
          down vote



          accepted










          This is general form of integral:



          $$int x^x(ln x+1)dx= x^x$$



          Where n=1. By taking derivative for example for n=2 we can find how to manipulate the integrand to find the integral;



          $$y'=x^x^n+n-1(nln x+1)=x^x^n.x^n-1(nln x+1)$$



          ⇒ $$x^n-1(nln x+1)=n x^n-1 ln x +fracx^nx=(x^n ln x)'=(ln x^x^n)'$$



          ⇒ $$y'=x^x^n+n-1(nln x+1)=x^x^n.(ln x^x^n)'=$$



          Now we compare this with:



          $$ y=f(x)⇒ln y =ln f(x)⇒fracy'y=[ln f(x)]'$$



          and conclude that:



          $$ y=x^x^n$$






          share|cite|improve this answer





























            up vote
            6
            down vote













            I think the problem is $$int x^x^n+n-1(n ln x +1) dx$$



            If $y=x^x^n$



            $ln y=x^nln x$



            $$frac1ydfracdydx=nx^n-1ln x+x^n-1$$



            $$impliesdfracdydx=x^x^n+n-1(nln x+1)$$






            share|cite|improve this answer






















              Your Answer




              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: false,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













               

              draft saved


              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2907212%2fevaluate-int-xxnn-1x-ln-x-1-mathrm-dx%23new-answer', 'question_page');

              );

              Post as a guest






























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              2
              down vote



              accepted










              This is general form of integral:



              $$int x^x(ln x+1)dx= x^x$$



              Where n=1. By taking derivative for example for n=2 we can find how to manipulate the integrand to find the integral;



              $$y'=x^x^n+n-1(nln x+1)=x^x^n.x^n-1(nln x+1)$$



              ⇒ $$x^n-1(nln x+1)=n x^n-1 ln x +fracx^nx=(x^n ln x)'=(ln x^x^n)'$$



              ⇒ $$y'=x^x^n+n-1(nln x+1)=x^x^n.(ln x^x^n)'=$$



              Now we compare this with:



              $$ y=f(x)⇒ln y =ln f(x)⇒fracy'y=[ln f(x)]'$$



              and conclude that:



              $$ y=x^x^n$$






              share|cite|improve this answer


























                up vote
                2
                down vote



                accepted










                This is general form of integral:



                $$int x^x(ln x+1)dx= x^x$$



                Where n=1. By taking derivative for example for n=2 we can find how to manipulate the integrand to find the integral;



                $$y'=x^x^n+n-1(nln x+1)=x^x^n.x^n-1(nln x+1)$$



                ⇒ $$x^n-1(nln x+1)=n x^n-1 ln x +fracx^nx=(x^n ln x)'=(ln x^x^n)'$$



                ⇒ $$y'=x^x^n+n-1(nln x+1)=x^x^n.(ln x^x^n)'=$$



                Now we compare this with:



                $$ y=f(x)⇒ln y =ln f(x)⇒fracy'y=[ln f(x)]'$$



                and conclude that:



                $$ y=x^x^n$$






                share|cite|improve this answer
























                  up vote
                  2
                  down vote



                  accepted







                  up vote
                  2
                  down vote



                  accepted






                  This is general form of integral:



                  $$int x^x(ln x+1)dx= x^x$$



                  Where n=1. By taking derivative for example for n=2 we can find how to manipulate the integrand to find the integral;



                  $$y'=x^x^n+n-1(nln x+1)=x^x^n.x^n-1(nln x+1)$$



                  ⇒ $$x^n-1(nln x+1)=n x^n-1 ln x +fracx^nx=(x^n ln x)'=(ln x^x^n)'$$



                  ⇒ $$y'=x^x^n+n-1(nln x+1)=x^x^n.(ln x^x^n)'=$$



                  Now we compare this with:



                  $$ y=f(x)⇒ln y =ln f(x)⇒fracy'y=[ln f(x)]'$$



                  and conclude that:



                  $$ y=x^x^n$$






                  share|cite|improve this answer














                  This is general form of integral:



                  $$int x^x(ln x+1)dx= x^x$$



                  Where n=1. By taking derivative for example for n=2 we can find how to manipulate the integrand to find the integral;



                  $$y'=x^x^n+n-1(nln x+1)=x^x^n.x^n-1(nln x+1)$$



                  ⇒ $$x^n-1(nln x+1)=n x^n-1 ln x +fracx^nx=(x^n ln x)'=(ln x^x^n)'$$



                  ⇒ $$y'=x^x^n+n-1(nln x+1)=x^x^n.(ln x^x^n)'=$$



                  Now we compare this with:



                  $$ y=f(x)⇒ln y =ln f(x)⇒fracy'y=[ln f(x)]'$$



                  and conclude that:



                  $$ y=x^x^n$$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Sep 6 at 15:17

























                  answered Sep 6 at 13:23









                  sirous

                  1,050512




                  1,050512




















                      up vote
                      6
                      down vote













                      I think the problem is $$int x^x^n+n-1(n ln x +1) dx$$



                      If $y=x^x^n$



                      $ln y=x^nln x$



                      $$frac1ydfracdydx=nx^n-1ln x+x^n-1$$



                      $$impliesdfracdydx=x^x^n+n-1(nln x+1)$$






                      share|cite|improve this answer


























                        up vote
                        6
                        down vote













                        I think the problem is $$int x^x^n+n-1(n ln x +1) dx$$



                        If $y=x^x^n$



                        $ln y=x^nln x$



                        $$frac1ydfracdydx=nx^n-1ln x+x^n-1$$



                        $$impliesdfracdydx=x^x^n+n-1(nln x+1)$$






                        share|cite|improve this answer
























                          up vote
                          6
                          down vote










                          up vote
                          6
                          down vote









                          I think the problem is $$int x^x^n+n-1(n ln x +1) dx$$



                          If $y=x^x^n$



                          $ln y=x^nln x$



                          $$frac1ydfracdydx=nx^n-1ln x+x^n-1$$



                          $$impliesdfracdydx=x^x^n+n-1(nln x+1)$$






                          share|cite|improve this answer














                          I think the problem is $$int x^x^n+n-1(n ln x +1) dx$$



                          If $y=x^x^n$



                          $ln y=x^nln x$



                          $$frac1ydfracdydx=nx^n-1ln x+x^n-1$$



                          $$impliesdfracdydx=x^x^n+n-1(nln x+1)$$







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Sep 6 at 8:18









                          GoodDeeds

                          10.2k21335




                          10.2k21335










                          answered Sep 6 at 8:12









                          lab bhattacharjee

                          216k14153266




                          216k14153266



























                               

                              draft saved


                              draft discarded















































                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2907212%2fevaluate-int-xxnn-1x-ln-x-1-mathrm-dx%23new-answer', 'question_page');

                              );

                              Post as a guest













































































                              這個網誌中的熱門文章

                              How to combine Bézier curves to a surface?

                              Mutual Information Always Non-negative

                              Why am i infinitely getting the same tweet with the Twitter Search API?