$(3x^2 +6y)dx -14yzdy +20xz^2$ is an exact differential then why the curl of $(3x^2+6y) hati -14yzhatj +20xz^2hatk $ is not zero?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












$(3x^2 +6y)dx -14yzdy +20xz^2$ is an exact differential then why the curl of $(3x^2+6y) hati -14yzhatj +20xz^2hatk $ is not zero ? If you experiment if the differential equation $$partial ^2 (3x^2 +6y) / partial y partial z$$ = $$partial ^2 -14yz/partial zpartial x$$= $$partial ^2 20xz^2 /partial x partial y$$=0 but the curl of $$(3x^2+6y) hati -14yzhatj +20xz^2hatk $$ is not zero. Now if the differential equation is exact then the vector should be a gradient whose curl should be zero . Where am I wrong?










share|cite|improve this question

























    up vote
    0
    down vote

    favorite












    $(3x^2 +6y)dx -14yzdy +20xz^2$ is an exact differential then why the curl of $(3x^2+6y) hati -14yzhatj +20xz^2hatk $ is not zero ? If you experiment if the differential equation $$partial ^2 (3x^2 +6y) / partial y partial z$$ = $$partial ^2 -14yz/partial zpartial x$$= $$partial ^2 20xz^2 /partial x partial y$$=0 but the curl of $$(3x^2+6y) hati -14yzhatj +20xz^2hatk $$ is not zero. Now if the differential equation is exact then the vector should be a gradient whose curl should be zero . Where am I wrong?










    share|cite|improve this question























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      $(3x^2 +6y)dx -14yzdy +20xz^2$ is an exact differential then why the curl of $(3x^2+6y) hati -14yzhatj +20xz^2hatk $ is not zero ? If you experiment if the differential equation $$partial ^2 (3x^2 +6y) / partial y partial z$$ = $$partial ^2 -14yz/partial zpartial x$$= $$partial ^2 20xz^2 /partial x partial y$$=0 but the curl of $$(3x^2+6y) hati -14yzhatj +20xz^2hatk $$ is not zero. Now if the differential equation is exact then the vector should be a gradient whose curl should be zero . Where am I wrong?










      share|cite|improve this question













      $(3x^2 +6y)dx -14yzdy +20xz^2$ is an exact differential then why the curl of $(3x^2+6y) hati -14yzhatj +20xz^2hatk $ is not zero ? If you experiment if the differential equation $$partial ^2 (3x^2 +6y) / partial y partial z$$ = $$partial ^2 -14yz/partial zpartial x$$= $$partial ^2 20xz^2 /partial x partial y$$=0 but the curl of $$(3x^2+6y) hati -14yzhatj +20xz^2hatk $$ is not zero. Now if the differential equation is exact then the vector should be a gradient whose curl should be zero . Where am I wrong?







      differential-equations curl






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Sep 6 at 11:30









      user187604

      2388




      2388




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote













          The curl equals $(14y, -20 z^2, -6) =left(fracpartial F_zpartial y - fracpartial F_ypartial zright) mathbfi + left(fracpartial F_xpartial z - fracpartial F_zpartial x right) mathbfj + left(fracpartial F_ypartial x - fracpartial F_xpartial y right) mathbfk = beginbmatrixfracpartial F_zpartial y - fracpartial F_ypartial z \ fracpartial F_xpartial z - fracpartial F_zpartial x \ fracpartial F_ypartial x - fracpartial F_xpartial yendbmatrix$ There is no second order differential unlike what you posted.






          share|cite|improve this answer




















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2907366%2f3x2-6ydx-14yzdy-20xz2-is-an-exact-differential-then-why-the-curl-of-3%23new-answer', 'question_page');

            );

            Post as a guest






























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            0
            down vote













            The curl equals $(14y, -20 z^2, -6) =left(fracpartial F_zpartial y - fracpartial F_ypartial zright) mathbfi + left(fracpartial F_xpartial z - fracpartial F_zpartial x right) mathbfj + left(fracpartial F_ypartial x - fracpartial F_xpartial y right) mathbfk = beginbmatrixfracpartial F_zpartial y - fracpartial F_ypartial z \ fracpartial F_xpartial z - fracpartial F_zpartial x \ fracpartial F_ypartial x - fracpartial F_xpartial yendbmatrix$ There is no second order differential unlike what you posted.






            share|cite|improve this answer
























              up vote
              0
              down vote













              The curl equals $(14y, -20 z^2, -6) =left(fracpartial F_zpartial y - fracpartial F_ypartial zright) mathbfi + left(fracpartial F_xpartial z - fracpartial F_zpartial x right) mathbfj + left(fracpartial F_ypartial x - fracpartial F_xpartial y right) mathbfk = beginbmatrixfracpartial F_zpartial y - fracpartial F_ypartial z \ fracpartial F_xpartial z - fracpartial F_zpartial x \ fracpartial F_ypartial x - fracpartial F_xpartial yendbmatrix$ There is no second order differential unlike what you posted.






              share|cite|improve this answer






















                up vote
                0
                down vote










                up vote
                0
                down vote









                The curl equals $(14y, -20 z^2, -6) =left(fracpartial F_zpartial y - fracpartial F_ypartial zright) mathbfi + left(fracpartial F_xpartial z - fracpartial F_zpartial x right) mathbfj + left(fracpartial F_ypartial x - fracpartial F_xpartial y right) mathbfk = beginbmatrixfracpartial F_zpartial y - fracpartial F_ypartial z \ fracpartial F_xpartial z - fracpartial F_zpartial x \ fracpartial F_ypartial x - fracpartial F_xpartial yendbmatrix$ There is no second order differential unlike what you posted.






                share|cite|improve this answer












                The curl equals $(14y, -20 z^2, -6) =left(fracpartial F_zpartial y - fracpartial F_ypartial zright) mathbfi + left(fracpartial F_xpartial z - fracpartial F_zpartial x right) mathbfj + left(fracpartial F_ypartial x - fracpartial F_xpartial y right) mathbfk = beginbmatrixfracpartial F_zpartial y - fracpartial F_ypartial z \ fracpartial F_xpartial z - fracpartial F_zpartial x \ fracpartial F_ypartial x - fracpartial F_xpartial yendbmatrix$ There is no second order differential unlike what you posted.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Sep 6 at 11:38









                PackSciences

                41616




                41616



























                     

                    draft saved


                    draft discarded















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2907366%2f3x2-6ydx-14yzdy-20xz2-is-an-exact-differential-then-why-the-curl-of-3%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    這個網誌中的熱門文章

                    How to combine Bézier curves to a surface?

                    Mutual Information Always Non-negative

                    Why am i infinitely getting the same tweet with the Twitter Search API?