$(3x^2 +6y)dx -14yzdy +20xz^2$ is an exact differential then why the curl of $(3x^2+6y) hati -14yzhatj +20xz^2hatk $ is not zero?
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
$(3x^2 +6y)dx -14yzdy +20xz^2$ is an exact differential then why the curl of $(3x^2+6y) hati -14yzhatj +20xz^2hatk $ is not zero ? If you experiment if the differential equation $$partial ^2 (3x^2 +6y) / partial y partial z$$ = $$partial ^2 -14yz/partial zpartial x$$= $$partial ^2 20xz^2 /partial x partial y$$=0 but the curl of $$(3x^2+6y) hati -14yzhatj +20xz^2hatk $$ is not zero. Now if the differential equation is exact then the vector should be a gradient whose curl should be zero . Where am I wrong?
differential-equations curl
add a comment |Â
up vote
0
down vote
favorite
$(3x^2 +6y)dx -14yzdy +20xz^2$ is an exact differential then why the curl of $(3x^2+6y) hati -14yzhatj +20xz^2hatk $ is not zero ? If you experiment if the differential equation $$partial ^2 (3x^2 +6y) / partial y partial z$$ = $$partial ^2 -14yz/partial zpartial x$$= $$partial ^2 20xz^2 /partial x partial y$$=0 but the curl of $$(3x^2+6y) hati -14yzhatj +20xz^2hatk $$ is not zero. Now if the differential equation is exact then the vector should be a gradient whose curl should be zero . Where am I wrong?
differential-equations curl
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
$(3x^2 +6y)dx -14yzdy +20xz^2$ is an exact differential then why the curl of $(3x^2+6y) hati -14yzhatj +20xz^2hatk $ is not zero ? If you experiment if the differential equation $$partial ^2 (3x^2 +6y) / partial y partial z$$ = $$partial ^2 -14yz/partial zpartial x$$= $$partial ^2 20xz^2 /partial x partial y$$=0 but the curl of $$(3x^2+6y) hati -14yzhatj +20xz^2hatk $$ is not zero. Now if the differential equation is exact then the vector should be a gradient whose curl should be zero . Where am I wrong?
differential-equations curl
$(3x^2 +6y)dx -14yzdy +20xz^2$ is an exact differential then why the curl of $(3x^2+6y) hati -14yzhatj +20xz^2hatk $ is not zero ? If you experiment if the differential equation $$partial ^2 (3x^2 +6y) / partial y partial z$$ = $$partial ^2 -14yz/partial zpartial x$$= $$partial ^2 20xz^2 /partial x partial y$$=0 but the curl of $$(3x^2+6y) hati -14yzhatj +20xz^2hatk $$ is not zero. Now if the differential equation is exact then the vector should be a gradient whose curl should be zero . Where am I wrong?
differential-equations curl
differential-equations curl
asked Sep 6 at 11:30
user187604
2388
2388
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
The curl equals $(14y, -20 z^2, -6) =left(fracpartial F_zpartial y - fracpartial F_ypartial zright) mathbfi + left(fracpartial F_xpartial z - fracpartial F_zpartial x right) mathbfj + left(fracpartial F_ypartial x - fracpartial F_xpartial y right) mathbfk = beginbmatrixfracpartial F_zpartial y - fracpartial F_ypartial z \ fracpartial F_xpartial z - fracpartial F_zpartial x \ fracpartial F_ypartial x - fracpartial F_xpartial yendbmatrix$ There is no second order differential unlike what you posted.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
The curl equals $(14y, -20 z^2, -6) =left(fracpartial F_zpartial y - fracpartial F_ypartial zright) mathbfi + left(fracpartial F_xpartial z - fracpartial F_zpartial x right) mathbfj + left(fracpartial F_ypartial x - fracpartial F_xpartial y right) mathbfk = beginbmatrixfracpartial F_zpartial y - fracpartial F_ypartial z \ fracpartial F_xpartial z - fracpartial F_zpartial x \ fracpartial F_ypartial x - fracpartial F_xpartial yendbmatrix$ There is no second order differential unlike what you posted.
add a comment |Â
up vote
0
down vote
The curl equals $(14y, -20 z^2, -6) =left(fracpartial F_zpartial y - fracpartial F_ypartial zright) mathbfi + left(fracpartial F_xpartial z - fracpartial F_zpartial x right) mathbfj + left(fracpartial F_ypartial x - fracpartial F_xpartial y right) mathbfk = beginbmatrixfracpartial F_zpartial y - fracpartial F_ypartial z \ fracpartial F_xpartial z - fracpartial F_zpartial x \ fracpartial F_ypartial x - fracpartial F_xpartial yendbmatrix$ There is no second order differential unlike what you posted.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
The curl equals $(14y, -20 z^2, -6) =left(fracpartial F_zpartial y - fracpartial F_ypartial zright) mathbfi + left(fracpartial F_xpartial z - fracpartial F_zpartial x right) mathbfj + left(fracpartial F_ypartial x - fracpartial F_xpartial y right) mathbfk = beginbmatrixfracpartial F_zpartial y - fracpartial F_ypartial z \ fracpartial F_xpartial z - fracpartial F_zpartial x \ fracpartial F_ypartial x - fracpartial F_xpartial yendbmatrix$ There is no second order differential unlike what you posted.
The curl equals $(14y, -20 z^2, -6) =left(fracpartial F_zpartial y - fracpartial F_ypartial zright) mathbfi + left(fracpartial F_xpartial z - fracpartial F_zpartial x right) mathbfj + left(fracpartial F_ypartial x - fracpartial F_xpartial y right) mathbfk = beginbmatrixfracpartial F_zpartial y - fracpartial F_ypartial z \ fracpartial F_xpartial z - fracpartial F_zpartial x \ fracpartial F_ypartial x - fracpartial F_xpartial yendbmatrix$ There is no second order differential unlike what you posted.
answered Sep 6 at 11:38
PackSciences
41616
41616
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2907366%2f3x2-6ydx-14yzdy-20xz2-is-an-exact-differential-then-why-the-curl-of-3%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password