How to prove that $sum_k=1^nfrac1sqrt[n]k! sim fracnln n$
Clash Royale CLAN TAG#URR8PPP
up vote
12
down vote
favorite
Recently I have met this asymptotic estimation:
prove that $sum_k=1^nfrac1sqrt[n]k! sim fracnln n$ï¼Â$nto infty$.
Here is the way I think:
According to area principleï¼Â
beginalign*
Bigg|sum_k=1^nfrac1sqrt[n]k! -int_1^nfrac1sqrt[n]Gamma(x+1)d xBigg|leqslant frac1sqrt[n]Gamma(n+1)
endalign*
Thus we have
beginalign*
fracln nnBigg|sum_k=1^nfrac1sqrt[n]k! -int_1^nfrac1sqrt[n]Gamma(x+1)d xBigg|leqslant fracln nnfrac1sqrt[n]Gamma(n+1)sim fracln nncdot frac1sqrt[n]2pi n fracento 0,~~nto infty
endalign*
To this end we only need to show
beginalign*
int_1^nfrac1sqrt[n]Gamma(x+1)d xsim fracnln n
endalign*
But my train of thought is stuck here.Can you give me any help? Thanks a lot.
sequences-and-series limits summation
add a comment |Â
up vote
12
down vote
favorite
Recently I have met this asymptotic estimation:
prove that $sum_k=1^nfrac1sqrt[n]k! sim fracnln n$ï¼Â$nto infty$.
Here is the way I think:
According to area principleï¼Â
beginalign*
Bigg|sum_k=1^nfrac1sqrt[n]k! -int_1^nfrac1sqrt[n]Gamma(x+1)d xBigg|leqslant frac1sqrt[n]Gamma(n+1)
endalign*
Thus we have
beginalign*
fracln nnBigg|sum_k=1^nfrac1sqrt[n]k! -int_1^nfrac1sqrt[n]Gamma(x+1)d xBigg|leqslant fracln nnfrac1sqrt[n]Gamma(n+1)sim fracln nncdot frac1sqrt[n]2pi n fracento 0,~~nto infty
endalign*
To this end we only need to show
beginalign*
int_1^nfrac1sqrt[n]Gamma(x+1)d xsim fracnln n
endalign*
But my train of thought is stuck here.Can you give me any help? Thanks a lot.
sequences-and-series limits summation
Maybe you can use the stirling approximation again?
â orion
Aug 21 at 11:55
My computer shows that $fracln nnsum(sth)to0neq1$. Where did you find the result?
â Aforest
Aug 21 at 13:46
Is your question answered or is something still unclear? ;)
â user90369
Aug 27 at 8:26
add a comment |Â
up vote
12
down vote
favorite
up vote
12
down vote
favorite
Recently I have met this asymptotic estimation:
prove that $sum_k=1^nfrac1sqrt[n]k! sim fracnln n$ï¼Â$nto infty$.
Here is the way I think:
According to area principleï¼Â
beginalign*
Bigg|sum_k=1^nfrac1sqrt[n]k! -int_1^nfrac1sqrt[n]Gamma(x+1)d xBigg|leqslant frac1sqrt[n]Gamma(n+1)
endalign*
Thus we have
beginalign*
fracln nnBigg|sum_k=1^nfrac1sqrt[n]k! -int_1^nfrac1sqrt[n]Gamma(x+1)d xBigg|leqslant fracln nnfrac1sqrt[n]Gamma(n+1)sim fracln nncdot frac1sqrt[n]2pi n fracento 0,~~nto infty
endalign*
To this end we only need to show
beginalign*
int_1^nfrac1sqrt[n]Gamma(x+1)d xsim fracnln n
endalign*
But my train of thought is stuck here.Can you give me any help? Thanks a lot.
sequences-and-series limits summation
Recently I have met this asymptotic estimation:
prove that $sum_k=1^nfrac1sqrt[n]k! sim fracnln n$ï¼Â$nto infty$.
Here is the way I think:
According to area principleï¼Â
beginalign*
Bigg|sum_k=1^nfrac1sqrt[n]k! -int_1^nfrac1sqrt[n]Gamma(x+1)d xBigg|leqslant frac1sqrt[n]Gamma(n+1)
endalign*
Thus we have
beginalign*
fracln nnBigg|sum_k=1^nfrac1sqrt[n]k! -int_1^nfrac1sqrt[n]Gamma(x+1)d xBigg|leqslant fracln nnfrac1sqrt[n]Gamma(n+1)sim fracln nncdot frac1sqrt[n]2pi n fracento 0,~~nto infty
endalign*
To this end we only need to show
beginalign*
int_1^nfrac1sqrt[n]Gamma(x+1)d xsim fracnln n
endalign*
But my train of thought is stuck here.Can you give me any help? Thanks a lot.
sequences-and-series limits summation
edited Aug 21 at 21:51
asked Aug 21 at 11:37
mbfkk
324112
324112
Maybe you can use the stirling approximation again?
â orion
Aug 21 at 11:55
My computer shows that $fracln nnsum(sth)to0neq1$. Where did you find the result?
â Aforest
Aug 21 at 13:46
Is your question answered or is something still unclear? ;)
â user90369
Aug 27 at 8:26
add a comment |Â
Maybe you can use the stirling approximation again?
â orion
Aug 21 at 11:55
My computer shows that $fracln nnsum(sth)to0neq1$. Where did you find the result?
â Aforest
Aug 21 at 13:46
Is your question answered or is something still unclear? ;)
â user90369
Aug 27 at 8:26
Maybe you can use the stirling approximation again?
â orion
Aug 21 at 11:55
Maybe you can use the stirling approximation again?
â orion
Aug 21 at 11:55
My computer shows that $fracln nnsum(sth)to0neq1$. Where did you find the result?
â Aforest
Aug 21 at 13:46
My computer shows that $fracln nnsum(sth)to0neq1$. Where did you find the result?
â Aforest
Aug 21 at 13:46
Is your question answered or is something still unclear? ;)
â user90369
Aug 27 at 8:26
Is your question answered or is something still unclear? ;)
â user90369
Aug 27 at 8:26
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
9
down vote
Using the stirling formula and partial integration we get:
$displaystylefracln nnsumlimits_k=1^n frac1k!^1/n sim fracln nnintlimits_1^nfracdxGamma(1+x)^1/n = (ln n)intlimits_1/n^1fracdxGamma(1+nx)^1/n
sim (ln n)intlimits_1/n^1fracdx(nx/e)^x$
$displaystyle = left(fracln n(x/e)^xfracn^-x-ln nright)bigg|_1/n^1 + intlimits_1/n^1fracln frac1x(nx/e)^xdx enspace$ with
$enspacedisplaystyle left(fracln n(x/e)^xfracn^-x-ln nright)bigg|_1/n^1 sim 1$
$displaystyle 0< intlimits_1/n^1fracln frac1x(nx/e)^xdx < eintlimits_0^1fracln frac1xn^xdx =fraceln nleft(gamma+lnln n+intlimits_ln n^inftyfracdtte^tright)simfracelnln nln nsim 0$
with the Euler-Mascheroni constant $,gamma,$
It follows $enspacedisplaystylefracln nnsumlimits_k=1^n frac1k!^1/n sim 1enspace$ and therefore the claim.
Note:
$displaystyle intlimits_0^1fracln frac1xe^axdx=fracln a + gamma + Gamma(0,a)asim fracln aaenspace$ with the incomplete Gamma function $,Gamma(.,.)$
How can you get 0 after partial integration?I have tried,the part is$nint_frac1n^1fracn^-x-ln ncdot Big(fracexBig)^xln frac1xdx$,and since $1 leqslant Big(fracexBig)^x leqslant e$,so if that part tend to 0,we must have $int_frac1n^1fracnln n n^-xln frac1xdxto 0$,$nto infty$,but it's impossible ,for in fact we can see $int_frac1n^1fracnln n n^-xln frac1xdxto +infty$!
â mbfkk
Aug 23 at 13:09
@mbfkk : In my first version of my answer I simply forgot $n$ . Hope it's better now. :) I'm sorry about the inconvenience and misunderstandings. I've done the calculation of the last integral of my answer with the help of WolframAlpha. It was necessary to show, that the divergence of the last integral of your comment above is irrelevant regarding $n/ln n$ .
â user90369
Aug 25 at 12:54
Nice done!Thanks!
â mbfkk
Aug 25 at 23:15
@mbfkk: You are welcome. :)
â user90369
Aug 25 at 23:34
add a comment |Â
up vote
7
down vote
For any $x>0$, $$c_1,x^x+frac12e^-xleq Gamma(x+1)leq c_2,x^x+frac12e^-x$$ for some $c_1,c_2>0$ (see for example the Wikipedia page). Therefore, $$frac1sqrt[n]c_2int_1^nx^-x/nx^-frac12ne^x/n,dxleq int_1^nfrac1sqrt[n]Gamma(x+1),dxleqfrac1sqrt[n]c_1int_1^nx^-x/nx^-frac12ne^x/n,dx.$$ Next, note that $$n^-frac12nint_1^nx^-x/ne^x/n,dxleqint_1^nx^-x/nx^-frac12ne^x/n,dxleq int_1^nx^-x/ne^x/n,dx,$$ so it suffices to find the asymptotics of the last integral.
1
... which can be done through Laplace method. Nice approach, (+1).
â Jack D'Aurizioâ¦
Aug 21 at 15:57
Thanks for your reply! I'm still puzzled at how to get the asymptotics of $int_1^nx^-x/ne^x/n,dx$.Can you give any clearer hint?
â mbfkk
Aug 23 at 13:16
add a comment |Â
up vote
3
down vote
The terms $frac1sqrt[n]k!$, for $kin[1,n]$, are roughly of the same size, hence the upper bound provided by Holder's inequality
$$ sum_k=1^nfrac1sqrt[n]k!leq sqrt[n]n^n-1sum_k=1^nfrac1k!leq fracnsqrt[n]n/e$$
is expected to be close to the asymptotic behaviour of the RHS.
It can be improved via (I am going to outline the case $n=4$ for simplicity)
$$sum_k=1^4frac1sqrt[4]k!leq sqrt[4]left(tfrac11+tfrac12+tfrac13+tfrac14right)left(tfrac11+tfrac11+tfrac12+tfrac13right)left(tfrac11+tfrac11+tfrac11+tfrac12right)left(tfrac11+tfrac11+tfrac11+tfrac11right)$$
leading to
$$ sum_k=1^nfrac1sqrt[n]k!leq sqrt[n]prod_h=0^n-1left(h+H_n-hright).tagU$$
On the other hand Holder's inequality can be used also for producing a lower bound:
$$ left(sum_k=1^nfrac11right)left(sum_k=1^nfrac1sqrt[n]k!right)^n geq left(sum_k=1^nfrac1sqrt[n+1]k!right)^n+1$$
$$ left(sum_k=1^nfrac11right)left(sum_k=1^nfrac1sqrt[n+1]k!right)^n+1 geq left(sum_k=1^nfrac1sqrt[n+2]k!right)^n+2$$
lead to
$$ sum_k=1^nfrac1sqrt[n]k!geq frac1n^1/nleft(sum_k=1^nfrac1sqrt[n+1]k!right)^fracn+1ngeq frac1n^2/nleft(sum_k=1^nfrac1sqrt[n+2]k!right)^fracn+2ngeqldotsgeqfrac1nleft(sum_k=1^nfrac1sqrt[2n]k!right)^2,$$
$$ sum_k=1^nfrac1sqrt[n]k!geqfrac1n^nleft(sum_k=1^nfrac1sqrt[n^2]k!right)^n+1tagL$$
and for any $kin[1,n]$ the distance between $sqrt[2n]k!$ and $1$ is $Oleft(fraclog nnright)$ by Stirling's approximation.
The asymptotic behaviour of your sum should now follow by comparing the accurate upper bound $(U)$ and the accurate lower bound $(L)$.
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
9
down vote
Using the stirling formula and partial integration we get:
$displaystylefracln nnsumlimits_k=1^n frac1k!^1/n sim fracln nnintlimits_1^nfracdxGamma(1+x)^1/n = (ln n)intlimits_1/n^1fracdxGamma(1+nx)^1/n
sim (ln n)intlimits_1/n^1fracdx(nx/e)^x$
$displaystyle = left(fracln n(x/e)^xfracn^-x-ln nright)bigg|_1/n^1 + intlimits_1/n^1fracln frac1x(nx/e)^xdx enspace$ with
$enspacedisplaystyle left(fracln n(x/e)^xfracn^-x-ln nright)bigg|_1/n^1 sim 1$
$displaystyle 0< intlimits_1/n^1fracln frac1x(nx/e)^xdx < eintlimits_0^1fracln frac1xn^xdx =fraceln nleft(gamma+lnln n+intlimits_ln n^inftyfracdtte^tright)simfracelnln nln nsim 0$
with the Euler-Mascheroni constant $,gamma,$
It follows $enspacedisplaystylefracln nnsumlimits_k=1^n frac1k!^1/n sim 1enspace$ and therefore the claim.
Note:
$displaystyle intlimits_0^1fracln frac1xe^axdx=fracln a + gamma + Gamma(0,a)asim fracln aaenspace$ with the incomplete Gamma function $,Gamma(.,.)$
How can you get 0 after partial integration?I have tried,the part is$nint_frac1n^1fracn^-x-ln ncdot Big(fracexBig)^xln frac1xdx$,and since $1 leqslant Big(fracexBig)^x leqslant e$,so if that part tend to 0,we must have $int_frac1n^1fracnln n n^-xln frac1xdxto 0$,$nto infty$,but it's impossible ,for in fact we can see $int_frac1n^1fracnln n n^-xln frac1xdxto +infty$!
â mbfkk
Aug 23 at 13:09
@mbfkk : In my first version of my answer I simply forgot $n$ . Hope it's better now. :) I'm sorry about the inconvenience and misunderstandings. I've done the calculation of the last integral of my answer with the help of WolframAlpha. It was necessary to show, that the divergence of the last integral of your comment above is irrelevant regarding $n/ln n$ .
â user90369
Aug 25 at 12:54
Nice done!Thanks!
â mbfkk
Aug 25 at 23:15
@mbfkk: You are welcome. :)
â user90369
Aug 25 at 23:34
add a comment |Â
up vote
9
down vote
Using the stirling formula and partial integration we get:
$displaystylefracln nnsumlimits_k=1^n frac1k!^1/n sim fracln nnintlimits_1^nfracdxGamma(1+x)^1/n = (ln n)intlimits_1/n^1fracdxGamma(1+nx)^1/n
sim (ln n)intlimits_1/n^1fracdx(nx/e)^x$
$displaystyle = left(fracln n(x/e)^xfracn^-x-ln nright)bigg|_1/n^1 + intlimits_1/n^1fracln frac1x(nx/e)^xdx enspace$ with
$enspacedisplaystyle left(fracln n(x/e)^xfracn^-x-ln nright)bigg|_1/n^1 sim 1$
$displaystyle 0< intlimits_1/n^1fracln frac1x(nx/e)^xdx < eintlimits_0^1fracln frac1xn^xdx =fraceln nleft(gamma+lnln n+intlimits_ln n^inftyfracdtte^tright)simfracelnln nln nsim 0$
with the Euler-Mascheroni constant $,gamma,$
It follows $enspacedisplaystylefracln nnsumlimits_k=1^n frac1k!^1/n sim 1enspace$ and therefore the claim.
Note:
$displaystyle intlimits_0^1fracln frac1xe^axdx=fracln a + gamma + Gamma(0,a)asim fracln aaenspace$ with the incomplete Gamma function $,Gamma(.,.)$
How can you get 0 after partial integration?I have tried,the part is$nint_frac1n^1fracn^-x-ln ncdot Big(fracexBig)^xln frac1xdx$,and since $1 leqslant Big(fracexBig)^x leqslant e$,so if that part tend to 0,we must have $int_frac1n^1fracnln n n^-xln frac1xdxto 0$,$nto infty$,but it's impossible ,for in fact we can see $int_frac1n^1fracnln n n^-xln frac1xdxto +infty$!
â mbfkk
Aug 23 at 13:09
@mbfkk : In my first version of my answer I simply forgot $n$ . Hope it's better now. :) I'm sorry about the inconvenience and misunderstandings. I've done the calculation of the last integral of my answer with the help of WolframAlpha. It was necessary to show, that the divergence of the last integral of your comment above is irrelevant regarding $n/ln n$ .
â user90369
Aug 25 at 12:54
Nice done!Thanks!
â mbfkk
Aug 25 at 23:15
@mbfkk: You are welcome. :)
â user90369
Aug 25 at 23:34
add a comment |Â
up vote
9
down vote
up vote
9
down vote
Using the stirling formula and partial integration we get:
$displaystylefracln nnsumlimits_k=1^n frac1k!^1/n sim fracln nnintlimits_1^nfracdxGamma(1+x)^1/n = (ln n)intlimits_1/n^1fracdxGamma(1+nx)^1/n
sim (ln n)intlimits_1/n^1fracdx(nx/e)^x$
$displaystyle = left(fracln n(x/e)^xfracn^-x-ln nright)bigg|_1/n^1 + intlimits_1/n^1fracln frac1x(nx/e)^xdx enspace$ with
$enspacedisplaystyle left(fracln n(x/e)^xfracn^-x-ln nright)bigg|_1/n^1 sim 1$
$displaystyle 0< intlimits_1/n^1fracln frac1x(nx/e)^xdx < eintlimits_0^1fracln frac1xn^xdx =fraceln nleft(gamma+lnln n+intlimits_ln n^inftyfracdtte^tright)simfracelnln nln nsim 0$
with the Euler-Mascheroni constant $,gamma,$
It follows $enspacedisplaystylefracln nnsumlimits_k=1^n frac1k!^1/n sim 1enspace$ and therefore the claim.
Note:
$displaystyle intlimits_0^1fracln frac1xe^axdx=fracln a + gamma + Gamma(0,a)asim fracln aaenspace$ with the incomplete Gamma function $,Gamma(.,.)$
Using the stirling formula and partial integration we get:
$displaystylefracln nnsumlimits_k=1^n frac1k!^1/n sim fracln nnintlimits_1^nfracdxGamma(1+x)^1/n = (ln n)intlimits_1/n^1fracdxGamma(1+nx)^1/n
sim (ln n)intlimits_1/n^1fracdx(nx/e)^x$
$displaystyle = left(fracln n(x/e)^xfracn^-x-ln nright)bigg|_1/n^1 + intlimits_1/n^1fracln frac1x(nx/e)^xdx enspace$ with
$enspacedisplaystyle left(fracln n(x/e)^xfracn^-x-ln nright)bigg|_1/n^1 sim 1$
$displaystyle 0< intlimits_1/n^1fracln frac1x(nx/e)^xdx < eintlimits_0^1fracln frac1xn^xdx =fraceln nleft(gamma+lnln n+intlimits_ln n^inftyfracdtte^tright)simfracelnln nln nsim 0$
with the Euler-Mascheroni constant $,gamma,$
It follows $enspacedisplaystylefracln nnsumlimits_k=1^n frac1k!^1/n sim 1enspace$ and therefore the claim.
Note:
$displaystyle intlimits_0^1fracln frac1xe^axdx=fracln a + gamma + Gamma(0,a)asim fracln aaenspace$ with the incomplete Gamma function $,Gamma(.,.)$
edited Aug 25 at 19:52
answered Aug 21 at 16:11
user90369
7,891925
7,891925
How can you get 0 after partial integration?I have tried,the part is$nint_frac1n^1fracn^-x-ln ncdot Big(fracexBig)^xln frac1xdx$,and since $1 leqslant Big(fracexBig)^x leqslant e$,so if that part tend to 0,we must have $int_frac1n^1fracnln n n^-xln frac1xdxto 0$,$nto infty$,but it's impossible ,for in fact we can see $int_frac1n^1fracnln n n^-xln frac1xdxto +infty$!
â mbfkk
Aug 23 at 13:09
@mbfkk : In my first version of my answer I simply forgot $n$ . Hope it's better now. :) I'm sorry about the inconvenience and misunderstandings. I've done the calculation of the last integral of my answer with the help of WolframAlpha. It was necessary to show, that the divergence of the last integral of your comment above is irrelevant regarding $n/ln n$ .
â user90369
Aug 25 at 12:54
Nice done!Thanks!
â mbfkk
Aug 25 at 23:15
@mbfkk: You are welcome. :)
â user90369
Aug 25 at 23:34
add a comment |Â
How can you get 0 after partial integration?I have tried,the part is$nint_frac1n^1fracn^-x-ln ncdot Big(fracexBig)^xln frac1xdx$,and since $1 leqslant Big(fracexBig)^x leqslant e$,so if that part tend to 0,we must have $int_frac1n^1fracnln n n^-xln frac1xdxto 0$,$nto infty$,but it's impossible ,for in fact we can see $int_frac1n^1fracnln n n^-xln frac1xdxto +infty$!
â mbfkk
Aug 23 at 13:09
@mbfkk : In my first version of my answer I simply forgot $n$ . Hope it's better now. :) I'm sorry about the inconvenience and misunderstandings. I've done the calculation of the last integral of my answer with the help of WolframAlpha. It was necessary to show, that the divergence of the last integral of your comment above is irrelevant regarding $n/ln n$ .
â user90369
Aug 25 at 12:54
Nice done!Thanks!
â mbfkk
Aug 25 at 23:15
@mbfkk: You are welcome. :)
â user90369
Aug 25 at 23:34
How can you get 0 after partial integration?I have tried,the part is$nint_frac1n^1fracn^-x-ln ncdot Big(fracexBig)^xln frac1xdx$,and since $1 leqslant Big(fracexBig)^x leqslant e$,so if that part tend to 0,we must have $int_frac1n^1fracnln n n^-xln frac1xdxto 0$,$nto infty$,but it's impossible ,for in fact we can see $int_frac1n^1fracnln n n^-xln frac1xdxto +infty$!
â mbfkk
Aug 23 at 13:09
How can you get 0 after partial integration?I have tried,the part is$nint_frac1n^1fracn^-x-ln ncdot Big(fracexBig)^xln frac1xdx$,and since $1 leqslant Big(fracexBig)^x leqslant e$,so if that part tend to 0,we must have $int_frac1n^1fracnln n n^-xln frac1xdxto 0$,$nto infty$,but it's impossible ,for in fact we can see $int_frac1n^1fracnln n n^-xln frac1xdxto +infty$!
â mbfkk
Aug 23 at 13:09
@mbfkk : In my first version of my answer I simply forgot $n$ . Hope it's better now. :) I'm sorry about the inconvenience and misunderstandings. I've done the calculation of the last integral of my answer with the help of WolframAlpha. It was necessary to show, that the divergence of the last integral of your comment above is irrelevant regarding $n/ln n$ .
â user90369
Aug 25 at 12:54
@mbfkk : In my first version of my answer I simply forgot $n$ . Hope it's better now. :) I'm sorry about the inconvenience and misunderstandings. I've done the calculation of the last integral of my answer with the help of WolframAlpha. It was necessary to show, that the divergence of the last integral of your comment above is irrelevant regarding $n/ln n$ .
â user90369
Aug 25 at 12:54
Nice done!Thanks!
â mbfkk
Aug 25 at 23:15
Nice done!Thanks!
â mbfkk
Aug 25 at 23:15
@mbfkk: You are welcome. :)
â user90369
Aug 25 at 23:34
@mbfkk: You are welcome. :)
â user90369
Aug 25 at 23:34
add a comment |Â
up vote
7
down vote
For any $x>0$, $$c_1,x^x+frac12e^-xleq Gamma(x+1)leq c_2,x^x+frac12e^-x$$ for some $c_1,c_2>0$ (see for example the Wikipedia page). Therefore, $$frac1sqrt[n]c_2int_1^nx^-x/nx^-frac12ne^x/n,dxleq int_1^nfrac1sqrt[n]Gamma(x+1),dxleqfrac1sqrt[n]c_1int_1^nx^-x/nx^-frac12ne^x/n,dx.$$ Next, note that $$n^-frac12nint_1^nx^-x/ne^x/n,dxleqint_1^nx^-x/nx^-frac12ne^x/n,dxleq int_1^nx^-x/ne^x/n,dx,$$ so it suffices to find the asymptotics of the last integral.
1
... which can be done through Laplace method. Nice approach, (+1).
â Jack D'Aurizioâ¦
Aug 21 at 15:57
Thanks for your reply! I'm still puzzled at how to get the asymptotics of $int_1^nx^-x/ne^x/n,dx$.Can you give any clearer hint?
â mbfkk
Aug 23 at 13:16
add a comment |Â
up vote
7
down vote
For any $x>0$, $$c_1,x^x+frac12e^-xleq Gamma(x+1)leq c_2,x^x+frac12e^-x$$ for some $c_1,c_2>0$ (see for example the Wikipedia page). Therefore, $$frac1sqrt[n]c_2int_1^nx^-x/nx^-frac12ne^x/n,dxleq int_1^nfrac1sqrt[n]Gamma(x+1),dxleqfrac1sqrt[n]c_1int_1^nx^-x/nx^-frac12ne^x/n,dx.$$ Next, note that $$n^-frac12nint_1^nx^-x/ne^x/n,dxleqint_1^nx^-x/nx^-frac12ne^x/n,dxleq int_1^nx^-x/ne^x/n,dx,$$ so it suffices to find the asymptotics of the last integral.
1
... which can be done through Laplace method. Nice approach, (+1).
â Jack D'Aurizioâ¦
Aug 21 at 15:57
Thanks for your reply! I'm still puzzled at how to get the asymptotics of $int_1^nx^-x/ne^x/n,dx$.Can you give any clearer hint?
â mbfkk
Aug 23 at 13:16
add a comment |Â
up vote
7
down vote
up vote
7
down vote
For any $x>0$, $$c_1,x^x+frac12e^-xleq Gamma(x+1)leq c_2,x^x+frac12e^-x$$ for some $c_1,c_2>0$ (see for example the Wikipedia page). Therefore, $$frac1sqrt[n]c_2int_1^nx^-x/nx^-frac12ne^x/n,dxleq int_1^nfrac1sqrt[n]Gamma(x+1),dxleqfrac1sqrt[n]c_1int_1^nx^-x/nx^-frac12ne^x/n,dx.$$ Next, note that $$n^-frac12nint_1^nx^-x/ne^x/n,dxleqint_1^nx^-x/nx^-frac12ne^x/n,dxleq int_1^nx^-x/ne^x/n,dx,$$ so it suffices to find the asymptotics of the last integral.
For any $x>0$, $$c_1,x^x+frac12e^-xleq Gamma(x+1)leq c_2,x^x+frac12e^-x$$ for some $c_1,c_2>0$ (see for example the Wikipedia page). Therefore, $$frac1sqrt[n]c_2int_1^nx^-x/nx^-frac12ne^x/n,dxleq int_1^nfrac1sqrt[n]Gamma(x+1),dxleqfrac1sqrt[n]c_1int_1^nx^-x/nx^-frac12ne^x/n,dx.$$ Next, note that $$n^-frac12nint_1^nx^-x/ne^x/n,dxleqint_1^nx^-x/nx^-frac12ne^x/n,dxleq int_1^nx^-x/ne^x/n,dx,$$ so it suffices to find the asymptotics of the last integral.
answered Aug 21 at 14:54
detnvvp
6,7441018
6,7441018
1
... which can be done through Laplace method. Nice approach, (+1).
â Jack D'Aurizioâ¦
Aug 21 at 15:57
Thanks for your reply! I'm still puzzled at how to get the asymptotics of $int_1^nx^-x/ne^x/n,dx$.Can you give any clearer hint?
â mbfkk
Aug 23 at 13:16
add a comment |Â
1
... which can be done through Laplace method. Nice approach, (+1).
â Jack D'Aurizioâ¦
Aug 21 at 15:57
Thanks for your reply! I'm still puzzled at how to get the asymptotics of $int_1^nx^-x/ne^x/n,dx$.Can you give any clearer hint?
â mbfkk
Aug 23 at 13:16
1
1
... which can be done through Laplace method. Nice approach, (+1).
â Jack D'Aurizioâ¦
Aug 21 at 15:57
... which can be done through Laplace method. Nice approach, (+1).
â Jack D'Aurizioâ¦
Aug 21 at 15:57
Thanks for your reply! I'm still puzzled at how to get the asymptotics of $int_1^nx^-x/ne^x/n,dx$.Can you give any clearer hint?
â mbfkk
Aug 23 at 13:16
Thanks for your reply! I'm still puzzled at how to get the asymptotics of $int_1^nx^-x/ne^x/n,dx$.Can you give any clearer hint?
â mbfkk
Aug 23 at 13:16
add a comment |Â
up vote
3
down vote
The terms $frac1sqrt[n]k!$, for $kin[1,n]$, are roughly of the same size, hence the upper bound provided by Holder's inequality
$$ sum_k=1^nfrac1sqrt[n]k!leq sqrt[n]n^n-1sum_k=1^nfrac1k!leq fracnsqrt[n]n/e$$
is expected to be close to the asymptotic behaviour of the RHS.
It can be improved via (I am going to outline the case $n=4$ for simplicity)
$$sum_k=1^4frac1sqrt[4]k!leq sqrt[4]left(tfrac11+tfrac12+tfrac13+tfrac14right)left(tfrac11+tfrac11+tfrac12+tfrac13right)left(tfrac11+tfrac11+tfrac11+tfrac12right)left(tfrac11+tfrac11+tfrac11+tfrac11right)$$
leading to
$$ sum_k=1^nfrac1sqrt[n]k!leq sqrt[n]prod_h=0^n-1left(h+H_n-hright).tagU$$
On the other hand Holder's inequality can be used also for producing a lower bound:
$$ left(sum_k=1^nfrac11right)left(sum_k=1^nfrac1sqrt[n]k!right)^n geq left(sum_k=1^nfrac1sqrt[n+1]k!right)^n+1$$
$$ left(sum_k=1^nfrac11right)left(sum_k=1^nfrac1sqrt[n+1]k!right)^n+1 geq left(sum_k=1^nfrac1sqrt[n+2]k!right)^n+2$$
lead to
$$ sum_k=1^nfrac1sqrt[n]k!geq frac1n^1/nleft(sum_k=1^nfrac1sqrt[n+1]k!right)^fracn+1ngeq frac1n^2/nleft(sum_k=1^nfrac1sqrt[n+2]k!right)^fracn+2ngeqldotsgeqfrac1nleft(sum_k=1^nfrac1sqrt[2n]k!right)^2,$$
$$ sum_k=1^nfrac1sqrt[n]k!geqfrac1n^nleft(sum_k=1^nfrac1sqrt[n^2]k!right)^n+1tagL$$
and for any $kin[1,n]$ the distance between $sqrt[2n]k!$ and $1$ is $Oleft(fraclog nnright)$ by Stirling's approximation.
The asymptotic behaviour of your sum should now follow by comparing the accurate upper bound $(U)$ and the accurate lower bound $(L)$.
add a comment |Â
up vote
3
down vote
The terms $frac1sqrt[n]k!$, for $kin[1,n]$, are roughly of the same size, hence the upper bound provided by Holder's inequality
$$ sum_k=1^nfrac1sqrt[n]k!leq sqrt[n]n^n-1sum_k=1^nfrac1k!leq fracnsqrt[n]n/e$$
is expected to be close to the asymptotic behaviour of the RHS.
It can be improved via (I am going to outline the case $n=4$ for simplicity)
$$sum_k=1^4frac1sqrt[4]k!leq sqrt[4]left(tfrac11+tfrac12+tfrac13+tfrac14right)left(tfrac11+tfrac11+tfrac12+tfrac13right)left(tfrac11+tfrac11+tfrac11+tfrac12right)left(tfrac11+tfrac11+tfrac11+tfrac11right)$$
leading to
$$ sum_k=1^nfrac1sqrt[n]k!leq sqrt[n]prod_h=0^n-1left(h+H_n-hright).tagU$$
On the other hand Holder's inequality can be used also for producing a lower bound:
$$ left(sum_k=1^nfrac11right)left(sum_k=1^nfrac1sqrt[n]k!right)^n geq left(sum_k=1^nfrac1sqrt[n+1]k!right)^n+1$$
$$ left(sum_k=1^nfrac11right)left(sum_k=1^nfrac1sqrt[n+1]k!right)^n+1 geq left(sum_k=1^nfrac1sqrt[n+2]k!right)^n+2$$
lead to
$$ sum_k=1^nfrac1sqrt[n]k!geq frac1n^1/nleft(sum_k=1^nfrac1sqrt[n+1]k!right)^fracn+1ngeq frac1n^2/nleft(sum_k=1^nfrac1sqrt[n+2]k!right)^fracn+2ngeqldotsgeqfrac1nleft(sum_k=1^nfrac1sqrt[2n]k!right)^2,$$
$$ sum_k=1^nfrac1sqrt[n]k!geqfrac1n^nleft(sum_k=1^nfrac1sqrt[n^2]k!right)^n+1tagL$$
and for any $kin[1,n]$ the distance between $sqrt[2n]k!$ and $1$ is $Oleft(fraclog nnright)$ by Stirling's approximation.
The asymptotic behaviour of your sum should now follow by comparing the accurate upper bound $(U)$ and the accurate lower bound $(L)$.
add a comment |Â
up vote
3
down vote
up vote
3
down vote
The terms $frac1sqrt[n]k!$, for $kin[1,n]$, are roughly of the same size, hence the upper bound provided by Holder's inequality
$$ sum_k=1^nfrac1sqrt[n]k!leq sqrt[n]n^n-1sum_k=1^nfrac1k!leq fracnsqrt[n]n/e$$
is expected to be close to the asymptotic behaviour of the RHS.
It can be improved via (I am going to outline the case $n=4$ for simplicity)
$$sum_k=1^4frac1sqrt[4]k!leq sqrt[4]left(tfrac11+tfrac12+tfrac13+tfrac14right)left(tfrac11+tfrac11+tfrac12+tfrac13right)left(tfrac11+tfrac11+tfrac11+tfrac12right)left(tfrac11+tfrac11+tfrac11+tfrac11right)$$
leading to
$$ sum_k=1^nfrac1sqrt[n]k!leq sqrt[n]prod_h=0^n-1left(h+H_n-hright).tagU$$
On the other hand Holder's inequality can be used also for producing a lower bound:
$$ left(sum_k=1^nfrac11right)left(sum_k=1^nfrac1sqrt[n]k!right)^n geq left(sum_k=1^nfrac1sqrt[n+1]k!right)^n+1$$
$$ left(sum_k=1^nfrac11right)left(sum_k=1^nfrac1sqrt[n+1]k!right)^n+1 geq left(sum_k=1^nfrac1sqrt[n+2]k!right)^n+2$$
lead to
$$ sum_k=1^nfrac1sqrt[n]k!geq frac1n^1/nleft(sum_k=1^nfrac1sqrt[n+1]k!right)^fracn+1ngeq frac1n^2/nleft(sum_k=1^nfrac1sqrt[n+2]k!right)^fracn+2ngeqldotsgeqfrac1nleft(sum_k=1^nfrac1sqrt[2n]k!right)^2,$$
$$ sum_k=1^nfrac1sqrt[n]k!geqfrac1n^nleft(sum_k=1^nfrac1sqrt[n^2]k!right)^n+1tagL$$
and for any $kin[1,n]$ the distance between $sqrt[2n]k!$ and $1$ is $Oleft(fraclog nnright)$ by Stirling's approximation.
The asymptotic behaviour of your sum should now follow by comparing the accurate upper bound $(U)$ and the accurate lower bound $(L)$.
The terms $frac1sqrt[n]k!$, for $kin[1,n]$, are roughly of the same size, hence the upper bound provided by Holder's inequality
$$ sum_k=1^nfrac1sqrt[n]k!leq sqrt[n]n^n-1sum_k=1^nfrac1k!leq fracnsqrt[n]n/e$$
is expected to be close to the asymptotic behaviour of the RHS.
It can be improved via (I am going to outline the case $n=4$ for simplicity)
$$sum_k=1^4frac1sqrt[4]k!leq sqrt[4]left(tfrac11+tfrac12+tfrac13+tfrac14right)left(tfrac11+tfrac11+tfrac12+tfrac13right)left(tfrac11+tfrac11+tfrac11+tfrac12right)left(tfrac11+tfrac11+tfrac11+tfrac11right)$$
leading to
$$ sum_k=1^nfrac1sqrt[n]k!leq sqrt[n]prod_h=0^n-1left(h+H_n-hright).tagU$$
On the other hand Holder's inequality can be used also for producing a lower bound:
$$ left(sum_k=1^nfrac11right)left(sum_k=1^nfrac1sqrt[n]k!right)^n geq left(sum_k=1^nfrac1sqrt[n+1]k!right)^n+1$$
$$ left(sum_k=1^nfrac11right)left(sum_k=1^nfrac1sqrt[n+1]k!right)^n+1 geq left(sum_k=1^nfrac1sqrt[n+2]k!right)^n+2$$
lead to
$$ sum_k=1^nfrac1sqrt[n]k!geq frac1n^1/nleft(sum_k=1^nfrac1sqrt[n+1]k!right)^fracn+1ngeq frac1n^2/nleft(sum_k=1^nfrac1sqrt[n+2]k!right)^fracn+2ngeqldotsgeqfrac1nleft(sum_k=1^nfrac1sqrt[2n]k!right)^2,$$
$$ sum_k=1^nfrac1sqrt[n]k!geqfrac1n^nleft(sum_k=1^nfrac1sqrt[n^2]k!right)^n+1tagL$$
and for any $kin[1,n]$ the distance between $sqrt[2n]k!$ and $1$ is $Oleft(fraclog nnright)$ by Stirling's approximation.
The asymptotic behaviour of your sum should now follow by comparing the accurate upper bound $(U)$ and the accurate lower bound $(L)$.
answered Aug 21 at 14:38
Jack D'Aurizioâ¦
272k32267634
272k32267634
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2889768%2fhow-to-prove-that-sum-k-1n-frac1-sqrtnk-sim-fracn-ln-n%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Maybe you can use the stirling approximation again?
â orion
Aug 21 at 11:55
My computer shows that $fracln nnsum(sth)to0neq1$. Where did you find the result?
â Aforest
Aug 21 at 13:46
Is your question answered or is something still unclear? ;)
â user90369
Aug 27 at 8:26