How to calculate the limit $limlimits_ntoinfty dfracx_ny_n$ where $0<x_0<y_0<dfracpi2$ and $x_n+1=sinx_n, y_n+1=siny_n$?
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
How to calculate the limit $limlimits_ntoinfty dfracx_ny_n$ where $0<x_0<y_0<dfracpi2$ and $x_n+1=sinx_n, y_n+1=siny_n$?
I have proved that the limit exists because $sinx$ is monotonically increasing over $(0,dfracpi2]$ and
$dfracsinx_nsiny_n>dfracx_ny_n Leftrightarrow dfracsinx_nx_n>dfracsiny_ny_n Leftrightarrow dfracsinxx$ is strictly monotonically decreasing over $(0,dfracpi2]$
Then the sequence $leftdfracx_ny_nright$ is monotonically increasing and bounded, thus converges.
However, I cannot find a recurrence relation to let $ntoinfty$ and then calculate the limit.
calculus
add a comment |Â
up vote
1
down vote
favorite
How to calculate the limit $limlimits_ntoinfty dfracx_ny_n$ where $0<x_0<y_0<dfracpi2$ and $x_n+1=sinx_n, y_n+1=siny_n$?
I have proved that the limit exists because $sinx$ is monotonically increasing over $(0,dfracpi2]$ and
$dfracsinx_nsiny_n>dfracx_ny_n Leftrightarrow dfracsinx_nx_n>dfracsiny_ny_n Leftrightarrow dfracsinxx$ is strictly monotonically decreasing over $(0,dfracpi2]$
Then the sequence $leftdfracx_ny_nright$ is monotonically increasing and bounded, thus converges.
However, I cannot find a recurrence relation to let $ntoinfty$ and then calculate the limit.
calculus
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
How to calculate the limit $limlimits_ntoinfty dfracx_ny_n$ where $0<x_0<y_0<dfracpi2$ and $x_n+1=sinx_n, y_n+1=siny_n$?
I have proved that the limit exists because $sinx$ is monotonically increasing over $(0,dfracpi2]$ and
$dfracsinx_nsiny_n>dfracx_ny_n Leftrightarrow dfracsinx_nx_n>dfracsiny_ny_n Leftrightarrow dfracsinxx$ is strictly monotonically decreasing over $(0,dfracpi2]$
Then the sequence $leftdfracx_ny_nright$ is monotonically increasing and bounded, thus converges.
However, I cannot find a recurrence relation to let $ntoinfty$ and then calculate the limit.
calculus
How to calculate the limit $limlimits_ntoinfty dfracx_ny_n$ where $0<x_0<y_0<dfracpi2$ and $x_n+1=sinx_n, y_n+1=siny_n$?
I have proved that the limit exists because $sinx$ is monotonically increasing over $(0,dfracpi2]$ and
$dfracsinx_nsiny_n>dfracx_ny_n Leftrightarrow dfracsinx_nx_n>dfracsiny_ny_n Leftrightarrow dfracsinxx$ is strictly monotonically decreasing over $(0,dfracpi2]$
Then the sequence $leftdfracx_ny_nright$ is monotonically increasing and bounded, thus converges.
However, I cannot find a recurrence relation to let $ntoinfty$ and then calculate the limit.
calculus
asked Aug 16 at 9:57
é«åÂÂç¦
535111
535111
add a comment |Â
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
0
down vote
accepted
Using Stolz theorem and Taylor expansion of sine, assuming that the limit is not $0$ (which it can't, because sequence $x_n/y_n$ is increasing):
$$lim fracx_ny_n = lim fracfrac1y_nfrac1x_n = lim fracfrac1y_n_1-frac1y_nfrac1x_n+1-frac1x_n = lim fracy_n-sin(y_n)x_n-sin(x_n) fracx_nx_n+1y_ny_n+1 =\ (lim fracx_ny_n)^2 limfracy_n^3/6+o(y_n^5)x_n^3/6+o(x_n^5) = (lim fracx_ny_n)^-1 $$
From this
$$lim fracx_ny_n = 1,lor limfracx_ny_n = -1 $$
but it obviously cannot be negative.
add a comment |Â
up vote
1
down vote
Hint Another way to answer the question would be to first show that $ undersetnrightarrow inftylim x_n = 0$. After that you could try to find an equivalent of $(x_n)$, for example by considering the sequence $z$ defined such as :
$$ z_n = x_n+1^-2 - x_n^-2 $$
Doing the same for $y$ would lead you to the result.
add a comment |Â
up vote
0
down vote
First, you can see easily that: $x_nto 0$ adn $y_nto 0$.
By Stolz theorem, we can get:$$x_nsimsqrtfrac3nsim y_n, textas ntoinfty.$$
So use this result, $$limlimits_ntoinfty dfracx_ny_n=1.$$
For details, it need to prove $limlimits_ntoinftynx^2_n=3.$
By Stolz theorem:$$lim_ntoinftynx^2_n=lim_ntoinftyfracnfrac1x^2_n=
lim_ntoinftyfrac1frac1x^2_n+1-frac1x^2_n=lim_ntoinftyfracx^2_nx^2_n+1x^2_n-x^2_n+1$$
$$=
lim_ntoinftyfracx^2_nsin^2x_nx^2_n-sin^2x_n=
lim_xto 0fracx^2sin^2xx^2-sin^2x=3.$$
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
Using Stolz theorem and Taylor expansion of sine, assuming that the limit is not $0$ (which it can't, because sequence $x_n/y_n$ is increasing):
$$lim fracx_ny_n = lim fracfrac1y_nfrac1x_n = lim fracfrac1y_n_1-frac1y_nfrac1x_n+1-frac1x_n = lim fracy_n-sin(y_n)x_n-sin(x_n) fracx_nx_n+1y_ny_n+1 =\ (lim fracx_ny_n)^2 limfracy_n^3/6+o(y_n^5)x_n^3/6+o(x_n^5) = (lim fracx_ny_n)^-1 $$
From this
$$lim fracx_ny_n = 1,lor limfracx_ny_n = -1 $$
but it obviously cannot be negative.
add a comment |Â
up vote
0
down vote
accepted
Using Stolz theorem and Taylor expansion of sine, assuming that the limit is not $0$ (which it can't, because sequence $x_n/y_n$ is increasing):
$$lim fracx_ny_n = lim fracfrac1y_nfrac1x_n = lim fracfrac1y_n_1-frac1y_nfrac1x_n+1-frac1x_n = lim fracy_n-sin(y_n)x_n-sin(x_n) fracx_nx_n+1y_ny_n+1 =\ (lim fracx_ny_n)^2 limfracy_n^3/6+o(y_n^5)x_n^3/6+o(x_n^5) = (lim fracx_ny_n)^-1 $$
From this
$$lim fracx_ny_n = 1,lor limfracx_ny_n = -1 $$
but it obviously cannot be negative.
add a comment |Â
up vote
0
down vote
accepted
up vote
0
down vote
accepted
Using Stolz theorem and Taylor expansion of sine, assuming that the limit is not $0$ (which it can't, because sequence $x_n/y_n$ is increasing):
$$lim fracx_ny_n = lim fracfrac1y_nfrac1x_n = lim fracfrac1y_n_1-frac1y_nfrac1x_n+1-frac1x_n = lim fracy_n-sin(y_n)x_n-sin(x_n) fracx_nx_n+1y_ny_n+1 =\ (lim fracx_ny_n)^2 limfracy_n^3/6+o(y_n^5)x_n^3/6+o(x_n^5) = (lim fracx_ny_n)^-1 $$
From this
$$lim fracx_ny_n = 1,lor limfracx_ny_n = -1 $$
but it obviously cannot be negative.
Using Stolz theorem and Taylor expansion of sine, assuming that the limit is not $0$ (which it can't, because sequence $x_n/y_n$ is increasing):
$$lim fracx_ny_n = lim fracfrac1y_nfrac1x_n = lim fracfrac1y_n_1-frac1y_nfrac1x_n+1-frac1x_n = lim fracy_n-sin(y_n)x_n-sin(x_n) fracx_nx_n+1y_ny_n+1 =\ (lim fracx_ny_n)^2 limfracy_n^3/6+o(y_n^5)x_n^3/6+o(x_n^5) = (lim fracx_ny_n)^-1 $$
From this
$$lim fracx_ny_n = 1,lor limfracx_ny_n = -1 $$
but it obviously cannot be negative.
edited Aug 16 at 10:29
answered Aug 16 at 10:23
Rumpelstiltskin
1,604315
1,604315
add a comment |Â
add a comment |Â
up vote
1
down vote
Hint Another way to answer the question would be to first show that $ undersetnrightarrow inftylim x_n = 0$. After that you could try to find an equivalent of $(x_n)$, for example by considering the sequence $z$ defined such as :
$$ z_n = x_n+1^-2 - x_n^-2 $$
Doing the same for $y$ would lead you to the result.
add a comment |Â
up vote
1
down vote
Hint Another way to answer the question would be to first show that $ undersetnrightarrow inftylim x_n = 0$. After that you could try to find an equivalent of $(x_n)$, for example by considering the sequence $z$ defined such as :
$$ z_n = x_n+1^-2 - x_n^-2 $$
Doing the same for $y$ would lead you to the result.
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Hint Another way to answer the question would be to first show that $ undersetnrightarrow inftylim x_n = 0$. After that you could try to find an equivalent of $(x_n)$, for example by considering the sequence $z$ defined such as :
$$ z_n = x_n+1^-2 - x_n^-2 $$
Doing the same for $y$ would lead you to the result.
Hint Another way to answer the question would be to first show that $ undersetnrightarrow inftylim x_n = 0$. After that you could try to find an equivalent of $(x_n)$, for example by considering the sequence $z$ defined such as :
$$ z_n = x_n+1^-2 - x_n^-2 $$
Doing the same for $y$ would lead you to the result.
answered Aug 16 at 10:22
tmaths
1,332113
1,332113
add a comment |Â
add a comment |Â
up vote
0
down vote
First, you can see easily that: $x_nto 0$ adn $y_nto 0$.
By Stolz theorem, we can get:$$x_nsimsqrtfrac3nsim y_n, textas ntoinfty.$$
So use this result, $$limlimits_ntoinfty dfracx_ny_n=1.$$
For details, it need to prove $limlimits_ntoinftynx^2_n=3.$
By Stolz theorem:$$lim_ntoinftynx^2_n=lim_ntoinftyfracnfrac1x^2_n=
lim_ntoinftyfrac1frac1x^2_n+1-frac1x^2_n=lim_ntoinftyfracx^2_nx^2_n+1x^2_n-x^2_n+1$$
$$=
lim_ntoinftyfracx^2_nsin^2x_nx^2_n-sin^2x_n=
lim_xto 0fracx^2sin^2xx^2-sin^2x=3.$$
add a comment |Â
up vote
0
down vote
First, you can see easily that: $x_nto 0$ adn $y_nto 0$.
By Stolz theorem, we can get:$$x_nsimsqrtfrac3nsim y_n, textas ntoinfty.$$
So use this result, $$limlimits_ntoinfty dfracx_ny_n=1.$$
For details, it need to prove $limlimits_ntoinftynx^2_n=3.$
By Stolz theorem:$$lim_ntoinftynx^2_n=lim_ntoinftyfracnfrac1x^2_n=
lim_ntoinftyfrac1frac1x^2_n+1-frac1x^2_n=lim_ntoinftyfracx^2_nx^2_n+1x^2_n-x^2_n+1$$
$$=
lim_ntoinftyfracx^2_nsin^2x_nx^2_n-sin^2x_n=
lim_xto 0fracx^2sin^2xx^2-sin^2x=3.$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
First, you can see easily that: $x_nto 0$ adn $y_nto 0$.
By Stolz theorem, we can get:$$x_nsimsqrtfrac3nsim y_n, textas ntoinfty.$$
So use this result, $$limlimits_ntoinfty dfracx_ny_n=1.$$
For details, it need to prove $limlimits_ntoinftynx^2_n=3.$
By Stolz theorem:$$lim_ntoinftynx^2_n=lim_ntoinftyfracnfrac1x^2_n=
lim_ntoinftyfrac1frac1x^2_n+1-frac1x^2_n=lim_ntoinftyfracx^2_nx^2_n+1x^2_n-x^2_n+1$$
$$=
lim_ntoinftyfracx^2_nsin^2x_nx^2_n-sin^2x_n=
lim_xto 0fracx^2sin^2xx^2-sin^2x=3.$$
First, you can see easily that: $x_nto 0$ adn $y_nto 0$.
By Stolz theorem, we can get:$$x_nsimsqrtfrac3nsim y_n, textas ntoinfty.$$
So use this result, $$limlimits_ntoinfty dfracx_ny_n=1.$$
For details, it need to prove $limlimits_ntoinftynx^2_n=3.$
By Stolz theorem:$$lim_ntoinftynx^2_n=lim_ntoinftyfracnfrac1x^2_n=
lim_ntoinftyfrac1frac1x^2_n+1-frac1x^2_n=lim_ntoinftyfracx^2_nx^2_n+1x^2_n-x^2_n+1$$
$$=
lim_ntoinftyfracx^2_nsin^2x_nx^2_n-sin^2x_n=
lim_xto 0fracx^2sin^2xx^2-sin^2x=3.$$
edited Aug 16 at 10:37
answered Aug 16 at 10:24
Riemann
2,4811219
2,4811219
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2884613%2fhow-to-calculate-the-limit-lim-limits-n-to-infty-dfracx-ny-n-where-0%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password