Clarification on prove regarding Continuous, increasing functions and $limsup$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite













For every continuous increasing function $u:mathbb R_+tomathbb R_+$ and every nonnegative sequence $(x_n)$, $$limsuplimits_nu(x_n)=uleft(limsuplimits_nx_nright).$$




let $x_n_i rightarrow limsuplimits_nx_n$



Hence $limsuplimits_nu(x_n)geqlim u(x_n_i)=u(limsuplimits_nx_n) $, since $u$ is continuous.



Let $u(x_n_j)rightarrow limsuplimits_nu(x_n) $



$forall epsilon>0$ $exists J$ $forall jgeq J$ $ x_n_j< limsuplimits_nx_n + epsilon $



Since $u$ is increasing,



$u(x_n_j)leq u(limsuplimits_nx_n + epsilon)$



Hence, $limsuplimits_nu(x_n)= lim u(x_n_j)leq u(limsuplimits_nx_n + epsilon) $ for all $epsilon$



Since $u$ is continuous let $epsilon rightarrow 0$



Hence $limsuplimits_nu(x_n)leq u(limsuplimits_nx_n) $







share|cite|improve this question


























    up vote
    0
    down vote

    favorite













    For every continuous increasing function $u:mathbb R_+tomathbb R_+$ and every nonnegative sequence $(x_n)$, $$limsuplimits_nu(x_n)=uleft(limsuplimits_nx_nright).$$




    let $x_n_i rightarrow limsuplimits_nx_n$



    Hence $limsuplimits_nu(x_n)geqlim u(x_n_i)=u(limsuplimits_nx_n) $, since $u$ is continuous.



    Let $u(x_n_j)rightarrow limsuplimits_nu(x_n) $



    $forall epsilon>0$ $exists J$ $forall jgeq J$ $ x_n_j< limsuplimits_nx_n + epsilon $



    Since $u$ is increasing,



    $u(x_n_j)leq u(limsuplimits_nx_n + epsilon)$



    Hence, $limsuplimits_nu(x_n)= lim u(x_n_j)leq u(limsuplimits_nx_n + epsilon) $ for all $epsilon$



    Since $u$ is continuous let $epsilon rightarrow 0$



    Hence $limsuplimits_nu(x_n)leq u(limsuplimits_nx_n) $







    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite












      For every continuous increasing function $u:mathbb R_+tomathbb R_+$ and every nonnegative sequence $(x_n)$, $$limsuplimits_nu(x_n)=uleft(limsuplimits_nx_nright).$$




      let $x_n_i rightarrow limsuplimits_nx_n$



      Hence $limsuplimits_nu(x_n)geqlim u(x_n_i)=u(limsuplimits_nx_n) $, since $u$ is continuous.



      Let $u(x_n_j)rightarrow limsuplimits_nu(x_n) $



      $forall epsilon>0$ $exists J$ $forall jgeq J$ $ x_n_j< limsuplimits_nx_n + epsilon $



      Since $u$ is increasing,



      $u(x_n_j)leq u(limsuplimits_nx_n + epsilon)$



      Hence, $limsuplimits_nu(x_n)= lim u(x_n_j)leq u(limsuplimits_nx_n + epsilon) $ for all $epsilon$



      Since $u$ is continuous let $epsilon rightarrow 0$



      Hence $limsuplimits_nu(x_n)leq u(limsuplimits_nx_n) $







      share|cite|improve this question















      For every continuous increasing function $u:mathbb R_+tomathbb R_+$ and every nonnegative sequence $(x_n)$, $$limsuplimits_nu(x_n)=uleft(limsuplimits_nx_nright).$$




      let $x_n_i rightarrow limsuplimits_nx_n$



      Hence $limsuplimits_nu(x_n)geqlim u(x_n_i)=u(limsuplimits_nx_n) $, since $u$ is continuous.



      Let $u(x_n_j)rightarrow limsuplimits_nu(x_n) $



      $forall epsilon>0$ $exists J$ $forall jgeq J$ $ x_n_j< limsuplimits_nx_n + epsilon $



      Since $u$ is increasing,



      $u(x_n_j)leq u(limsuplimits_nx_n + epsilon)$



      Hence, $limsuplimits_nu(x_n)= lim u(x_n_j)leq u(limsuplimits_nx_n + epsilon) $ for all $epsilon$



      Since $u$ is continuous let $epsilon rightarrow 0$



      Hence $limsuplimits_nu(x_n)leq u(limsuplimits_nx_n) $









      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Aug 16 at 9:49

























      asked Aug 16 at 9:43









      Jhon Doe

      397211




      397211

























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2884602%2fclarification-on-prove-regarding-continuous-increasing-functions-and-limsup%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes










           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2884602%2fclarification-on-prove-regarding-continuous-increasing-functions-and-limsup%23new-answer', 'question_page');

          );

          Post as a guest













































































          這個網誌中的熱門文章

          How to combine Bézier curves to a surface?

          Mutual Information Always Non-negative

          Why am i infinitely getting the same tweet with the Twitter Search API?