find the limit of $lim limits_ xto 0 frac sin ^ -1 x sin3x $ without using l'Hopital's rule

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












I'm new to calculus and i'm not sure how to deal with the inverse sin here



$$lim limits_ xto 0 leftfrac sin ^ -1 x sin3x right$$







share|cite|improve this question






















  • Equivalent infinitesimals.
    – xbh
    Aug 16 at 9:20














up vote
1
down vote

favorite












I'm new to calculus and i'm not sure how to deal with the inverse sin here



$$lim limits_ xto 0 leftfrac sin ^ -1 x sin3x right$$







share|cite|improve this question






















  • Equivalent infinitesimals.
    – xbh
    Aug 16 at 9:20












up vote
1
down vote

favorite









up vote
1
down vote

favorite











I'm new to calculus and i'm not sure how to deal with the inverse sin here



$$lim limits_ xto 0 leftfrac sin ^ -1 x sin3x right$$







share|cite|improve this question














I'm new to calculus and i'm not sure how to deal with the inverse sin here



$$lim limits_ xto 0 leftfrac sin ^ -1 x sin3x right$$









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 16 at 9:35









mathreadler

13.7k71957




13.7k71957










asked Aug 16 at 9:17









S113

143




143











  • Equivalent infinitesimals.
    – xbh
    Aug 16 at 9:20
















  • Equivalent infinitesimals.
    – xbh
    Aug 16 at 9:20















Equivalent infinitesimals.
– xbh
Aug 16 at 9:20




Equivalent infinitesimals.
– xbh
Aug 16 at 9:20










4 Answers
4






active

oldest

votes

















up vote
4
down vote



accepted










Hint



$$lim_xto 0 dfracarcsin xx=lim_xto 0 dfracxsin x=1.$$






share|cite|improve this answer



























    up vote
    3
    down vote













    $$lim limits_ xto 0 frac sin ^ -1 (x) sin(3x) =\$$
    We substitute $x$ by $sin (t)$. This is possible because $sin$ is a strict increasing continous function near $0$ and $sin(0)=0$ and get
    $$=lim limits_ tto 0 frac sin ^ -1 (sin(t) )sin(3sin(t)) =\$$
    $$=lim limits_ tto 0 frac tsin(3sin(t)) = $$
    $$=lim limits_ tto 0 frac tsin(t)frac sin(t)sin(3sin(t)) = $$
    $$=lim limits_ tto 0 frac tsin(t)lim limits_ tto 0 frac sin(t)sin(3sin(t)) = $$
    $$=lim limits_ tto 0 frac tsin(t)frac13lim limits_ tto 0 frac 3sin(t)sin(3sin(t)) = $$
    and if we substitute $3 sin t$ by $u$ then we get
    $$=lim limits_ tto 0 frac tsin(t)frac13lim limits_ uto 0 frac usin(u) = $$
    $$=frac13$$



    because $$lim limits_ yto 0 frac ysin(y)=1$$






    share|cite|improve this answer



























      up vote
      2
      down vote













      With substitution $xtosin t$ you have
      $$lim_xto 0fracsin^-1xsin3x=lim_tto 0fractsin(3sin t)=lim_tto 0frac3sin tsin(3sin t)cdotfract3sin t=colorbluedfrac13$$






      share|cite|improve this answer






















      • parenthesis could be used to avoid confusion here.
        – mathreadler
        Aug 16 at 9:36










      • sure . . . . . .
        – Nosrati
        Aug 16 at 9:36

















      up vote
      1
      down vote













      $sin ^-1x= t$



      $limlimits_x→0sin 3t→ 3t$



      Therefore:



      $limlimits_x→0 dfracsin^-1 xsin 3x=dfract3t=dfrac13$






      share|cite|improve this answer


















      • 1




        I think the notation and the format should be improved.
        – miracle173
        Aug 16 at 9:48











      • Indeed, $$limlimits_x→0sin 3t→ 3t$$ and $$limlimits_x→0 dfracsin^-1 xsin 3x=dfract3t$$ are not suitable to any decent answer.
        – Did
        Aug 16 at 11:12










      Your Answer




      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );








       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2884575%2ffind-the-limit-of-lim-limits-x-to-0-frac-sin-1-x-sin3x%23new-answer', 'question_page');

      );

      Post as a guest






























      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      4
      down vote



      accepted










      Hint



      $$lim_xto 0 dfracarcsin xx=lim_xto 0 dfracxsin x=1.$$






      share|cite|improve this answer
























        up vote
        4
        down vote



        accepted










        Hint



        $$lim_xto 0 dfracarcsin xx=lim_xto 0 dfracxsin x=1.$$






        share|cite|improve this answer






















          up vote
          4
          down vote



          accepted







          up vote
          4
          down vote



          accepted






          Hint



          $$lim_xto 0 dfracarcsin xx=lim_xto 0 dfracxsin x=1.$$






          share|cite|improve this answer












          Hint



          $$lim_xto 0 dfracarcsin xx=lim_xto 0 dfracxsin x=1.$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Aug 16 at 9:23









          mfl

          24.7k12040




          24.7k12040




















              up vote
              3
              down vote













              $$lim limits_ xto 0 frac sin ^ -1 (x) sin(3x) =\$$
              We substitute $x$ by $sin (t)$. This is possible because $sin$ is a strict increasing continous function near $0$ and $sin(0)=0$ and get
              $$=lim limits_ tto 0 frac sin ^ -1 (sin(t) )sin(3sin(t)) =\$$
              $$=lim limits_ tto 0 frac tsin(3sin(t)) = $$
              $$=lim limits_ tto 0 frac tsin(t)frac sin(t)sin(3sin(t)) = $$
              $$=lim limits_ tto 0 frac tsin(t)lim limits_ tto 0 frac sin(t)sin(3sin(t)) = $$
              $$=lim limits_ tto 0 frac tsin(t)frac13lim limits_ tto 0 frac 3sin(t)sin(3sin(t)) = $$
              and if we substitute $3 sin t$ by $u$ then we get
              $$=lim limits_ tto 0 frac tsin(t)frac13lim limits_ uto 0 frac usin(u) = $$
              $$=frac13$$



              because $$lim limits_ yto 0 frac ysin(y)=1$$






              share|cite|improve this answer
























                up vote
                3
                down vote













                $$lim limits_ xto 0 frac sin ^ -1 (x) sin(3x) =\$$
                We substitute $x$ by $sin (t)$. This is possible because $sin$ is a strict increasing continous function near $0$ and $sin(0)=0$ and get
                $$=lim limits_ tto 0 frac sin ^ -1 (sin(t) )sin(3sin(t)) =\$$
                $$=lim limits_ tto 0 frac tsin(3sin(t)) = $$
                $$=lim limits_ tto 0 frac tsin(t)frac sin(t)sin(3sin(t)) = $$
                $$=lim limits_ tto 0 frac tsin(t)lim limits_ tto 0 frac sin(t)sin(3sin(t)) = $$
                $$=lim limits_ tto 0 frac tsin(t)frac13lim limits_ tto 0 frac 3sin(t)sin(3sin(t)) = $$
                and if we substitute $3 sin t$ by $u$ then we get
                $$=lim limits_ tto 0 frac tsin(t)frac13lim limits_ uto 0 frac usin(u) = $$
                $$=frac13$$



                because $$lim limits_ yto 0 frac ysin(y)=1$$






                share|cite|improve this answer






















                  up vote
                  3
                  down vote










                  up vote
                  3
                  down vote









                  $$lim limits_ xto 0 frac sin ^ -1 (x) sin(3x) =\$$
                  We substitute $x$ by $sin (t)$. This is possible because $sin$ is a strict increasing continous function near $0$ and $sin(0)=0$ and get
                  $$=lim limits_ tto 0 frac sin ^ -1 (sin(t) )sin(3sin(t)) =\$$
                  $$=lim limits_ tto 0 frac tsin(3sin(t)) = $$
                  $$=lim limits_ tto 0 frac tsin(t)frac sin(t)sin(3sin(t)) = $$
                  $$=lim limits_ tto 0 frac tsin(t)lim limits_ tto 0 frac sin(t)sin(3sin(t)) = $$
                  $$=lim limits_ tto 0 frac tsin(t)frac13lim limits_ tto 0 frac 3sin(t)sin(3sin(t)) = $$
                  and if we substitute $3 sin t$ by $u$ then we get
                  $$=lim limits_ tto 0 frac tsin(t)frac13lim limits_ uto 0 frac usin(u) = $$
                  $$=frac13$$



                  because $$lim limits_ yto 0 frac ysin(y)=1$$






                  share|cite|improve this answer












                  $$lim limits_ xto 0 frac sin ^ -1 (x) sin(3x) =\$$
                  We substitute $x$ by $sin (t)$. This is possible because $sin$ is a strict increasing continous function near $0$ and $sin(0)=0$ and get
                  $$=lim limits_ tto 0 frac sin ^ -1 (sin(t) )sin(3sin(t)) =\$$
                  $$=lim limits_ tto 0 frac tsin(3sin(t)) = $$
                  $$=lim limits_ tto 0 frac tsin(t)frac sin(t)sin(3sin(t)) = $$
                  $$=lim limits_ tto 0 frac tsin(t)lim limits_ tto 0 frac sin(t)sin(3sin(t)) = $$
                  $$=lim limits_ tto 0 frac tsin(t)frac13lim limits_ tto 0 frac 3sin(t)sin(3sin(t)) = $$
                  and if we substitute $3 sin t$ by $u$ then we get
                  $$=lim limits_ tto 0 frac tsin(t)frac13lim limits_ uto 0 frac usin(u) = $$
                  $$=frac13$$



                  because $$lim limits_ yto 0 frac ysin(y)=1$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Aug 16 at 10:07









                  miracle173

                  7,16922247




                  7,16922247




















                      up vote
                      2
                      down vote













                      With substitution $xtosin t$ you have
                      $$lim_xto 0fracsin^-1xsin3x=lim_tto 0fractsin(3sin t)=lim_tto 0frac3sin tsin(3sin t)cdotfract3sin t=colorbluedfrac13$$






                      share|cite|improve this answer






















                      • parenthesis could be used to avoid confusion here.
                        – mathreadler
                        Aug 16 at 9:36










                      • sure . . . . . .
                        – Nosrati
                        Aug 16 at 9:36














                      up vote
                      2
                      down vote













                      With substitution $xtosin t$ you have
                      $$lim_xto 0fracsin^-1xsin3x=lim_tto 0fractsin(3sin t)=lim_tto 0frac3sin tsin(3sin t)cdotfract3sin t=colorbluedfrac13$$






                      share|cite|improve this answer






















                      • parenthesis could be used to avoid confusion here.
                        – mathreadler
                        Aug 16 at 9:36










                      • sure . . . . . .
                        – Nosrati
                        Aug 16 at 9:36












                      up vote
                      2
                      down vote










                      up vote
                      2
                      down vote









                      With substitution $xtosin t$ you have
                      $$lim_xto 0fracsin^-1xsin3x=lim_tto 0fractsin(3sin t)=lim_tto 0frac3sin tsin(3sin t)cdotfract3sin t=colorbluedfrac13$$






                      share|cite|improve this answer














                      With substitution $xtosin t$ you have
                      $$lim_xto 0fracsin^-1xsin3x=lim_tto 0fractsin(3sin t)=lim_tto 0frac3sin tsin(3sin t)cdotfract3sin t=colorbluedfrac13$$







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Aug 16 at 9:44

























                      answered Aug 16 at 9:29









                      Nosrati

                      20.6k41644




                      20.6k41644











                      • parenthesis could be used to avoid confusion here.
                        – mathreadler
                        Aug 16 at 9:36










                      • sure . . . . . .
                        – Nosrati
                        Aug 16 at 9:36
















                      • parenthesis could be used to avoid confusion here.
                        – mathreadler
                        Aug 16 at 9:36










                      • sure . . . . . .
                        – Nosrati
                        Aug 16 at 9:36















                      parenthesis could be used to avoid confusion here.
                      – mathreadler
                      Aug 16 at 9:36




                      parenthesis could be used to avoid confusion here.
                      – mathreadler
                      Aug 16 at 9:36












                      sure . . . . . .
                      – Nosrati
                      Aug 16 at 9:36




                      sure . . . . . .
                      – Nosrati
                      Aug 16 at 9:36










                      up vote
                      1
                      down vote













                      $sin ^-1x= t$



                      $limlimits_x→0sin 3t→ 3t$



                      Therefore:



                      $limlimits_x→0 dfracsin^-1 xsin 3x=dfract3t=dfrac13$






                      share|cite|improve this answer


















                      • 1




                        I think the notation and the format should be improved.
                        – miracle173
                        Aug 16 at 9:48











                      • Indeed, $$limlimits_x→0sin 3t→ 3t$$ and $$limlimits_x→0 dfracsin^-1 xsin 3x=dfract3t$$ are not suitable to any decent answer.
                        – Did
                        Aug 16 at 11:12














                      up vote
                      1
                      down vote













                      $sin ^-1x= t$



                      $limlimits_x→0sin 3t→ 3t$



                      Therefore:



                      $limlimits_x→0 dfracsin^-1 xsin 3x=dfract3t=dfrac13$






                      share|cite|improve this answer


















                      • 1




                        I think the notation and the format should be improved.
                        – miracle173
                        Aug 16 at 9:48











                      • Indeed, $$limlimits_x→0sin 3t→ 3t$$ and $$limlimits_x→0 dfracsin^-1 xsin 3x=dfract3t$$ are not suitable to any decent answer.
                        – Did
                        Aug 16 at 11:12












                      up vote
                      1
                      down vote










                      up vote
                      1
                      down vote









                      $sin ^-1x= t$



                      $limlimits_x→0sin 3t→ 3t$



                      Therefore:



                      $limlimits_x→0 dfracsin^-1 xsin 3x=dfract3t=dfrac13$






                      share|cite|improve this answer














                      $sin ^-1x= t$



                      $limlimits_x→0sin 3t→ 3t$



                      Therefore:



                      $limlimits_x→0 dfracsin^-1 xsin 3x=dfract3t=dfrac13$







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Aug 16 at 10:09









                      miracle173

                      7,16922247




                      7,16922247










                      answered Aug 16 at 9:43









                      sirous

                      876511




                      876511







                      • 1




                        I think the notation and the format should be improved.
                        – miracle173
                        Aug 16 at 9:48











                      • Indeed, $$limlimits_x→0sin 3t→ 3t$$ and $$limlimits_x→0 dfracsin^-1 xsin 3x=dfract3t$$ are not suitable to any decent answer.
                        – Did
                        Aug 16 at 11:12












                      • 1




                        I think the notation and the format should be improved.
                        – miracle173
                        Aug 16 at 9:48











                      • Indeed, $$limlimits_x→0sin 3t→ 3t$$ and $$limlimits_x→0 dfracsin^-1 xsin 3x=dfract3t$$ are not suitable to any decent answer.
                        – Did
                        Aug 16 at 11:12







                      1




                      1




                      I think the notation and the format should be improved.
                      – miracle173
                      Aug 16 at 9:48





                      I think the notation and the format should be improved.
                      – miracle173
                      Aug 16 at 9:48













                      Indeed, $$limlimits_x→0sin 3t→ 3t$$ and $$limlimits_x→0 dfracsin^-1 xsin 3x=dfract3t$$ are not suitable to any decent answer.
                      – Did
                      Aug 16 at 11:12




                      Indeed, $$limlimits_x→0sin 3t→ 3t$$ and $$limlimits_x→0 dfracsin^-1 xsin 3x=dfract3t$$ are not suitable to any decent answer.
                      – Did
                      Aug 16 at 11:12












                       

                      draft saved


                      draft discarded


























                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2884575%2ffind-the-limit-of-lim-limits-x-to-0-frac-sin-1-x-sin3x%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      這個網誌中的熱門文章

                      How to combine Bézier curves to a surface?

                      Mutual Information Always Non-negative

                      Why am i infinitely getting the same tweet with the Twitter Search API?