Transformation of Christoffel symbol
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
I don't quite get the result that I should get.
We have $$Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright).$$
Furthermore we find
$$partial_baralphag_barbetabarnu=g_epsilontauleft( x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpharight)+x^epsilon_,barbetax^tau_,barnux^lambda_,barbetapartial_lambda g_epsilontau.$$
Here, I've written $x^tau_barnu=partial_barnu x^tau.$
Substituting the partial derivatives of the metric in the Christoffel symbol I get two terms. One is
$$partial_lambda g_epsilontau left(x^epsilon_, barbetax^tau_, barnu x^lambda_,baralpha+x^epsilon_, baralphax^tau_, barnu x^lambda_,barbeta-x^epsilon_, baralphax^tau_, barbeta x^lambda_,barnuright). $$
By renaming the indices I obtain
$$x^epsilon_, barbetax^tau_, barnu x^lambda_,baralphaleft(partial_lambda g_epsilontau+partial_epsilon g_lambdatau-partial_tau g_lambdaepsilonright) .$$
Now, for the second term I get $2g_epsilontaux^epsilon_,barbetabaralphax^tau_,barnu$ after using the interchangeability if the second derivatives, the symmetry of the metric tensor and switching dummy variables in one term.
So, at the end I have $$Gamma^barmu_baralphabarbeta=g^barmubarnu g_epsilontaux^epsilon_,barbetabaralphax^tau_,barnu+frac12g^barmubarnux^epsilon_, barbetax^tau_, barnu x^lambda_,baralphaleft(partial_lambda g_epsilontau+partial_epsilon g_lambdatau-partial_tau g_lambdaepsilonright).$$
However, this deviates what I read in most forums and books. In the first and second term the co- and contravariant metrics should share one dummy variable. Does anyone have a clue?
riemannian-geometry
add a comment |Â
up vote
0
down vote
favorite
I don't quite get the result that I should get.
We have $$Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright).$$
Furthermore we find
$$partial_baralphag_barbetabarnu=g_epsilontauleft( x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpharight)+x^epsilon_,barbetax^tau_,barnux^lambda_,barbetapartial_lambda g_epsilontau.$$
Here, I've written $x^tau_barnu=partial_barnu x^tau.$
Substituting the partial derivatives of the metric in the Christoffel symbol I get two terms. One is
$$partial_lambda g_epsilontau left(x^epsilon_, barbetax^tau_, barnu x^lambda_,baralpha+x^epsilon_, baralphax^tau_, barnu x^lambda_,barbeta-x^epsilon_, baralphax^tau_, barbeta x^lambda_,barnuright). $$
By renaming the indices I obtain
$$x^epsilon_, barbetax^tau_, barnu x^lambda_,baralphaleft(partial_lambda g_epsilontau+partial_epsilon g_lambdatau-partial_tau g_lambdaepsilonright) .$$
Now, for the second term I get $2g_epsilontaux^epsilon_,barbetabaralphax^tau_,barnu$ after using the interchangeability if the second derivatives, the symmetry of the metric tensor and switching dummy variables in one term.
So, at the end I have $$Gamma^barmu_baralphabarbeta=g^barmubarnu g_epsilontaux^epsilon_,barbetabaralphax^tau_,barnu+frac12g^barmubarnux^epsilon_, barbetax^tau_, barnu x^lambda_,baralphaleft(partial_lambda g_epsilontau+partial_epsilon g_lambdatau-partial_tau g_lambdaepsilonright).$$
However, this deviates what I read in most forums and books. In the first and second term the co- and contravariant metrics should share one dummy variable. Does anyone have a clue?
riemannian-geometry
Your very first formula (for the Christoffel symbol) already has a mistake, that leads to the indices disbalance. It has to be as $Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright).$
â Yuri Vyatkin
Sep 8 at 0:29
Whoops, that was more of a typo as I was writing this on a cell phone. In my calculations on paper the brackets were set correctly.
â Thomas Wening
Sep 8 at 16:01
All right, now you have a disbalance with indices $epsilon$ and $tau$ in the second equation. Can you please elaborate on how you obtain it?
â Yuri Vyatkin
Sep 9 at 2:49
Wrong brackets again. I'm sorry for my clumsiness. I think I have worked it out now, though. Take a look at my answer. :)
â Thomas Wening
Sep 9 at 11:54
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I don't quite get the result that I should get.
We have $$Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright).$$
Furthermore we find
$$partial_baralphag_barbetabarnu=g_epsilontauleft( x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpharight)+x^epsilon_,barbetax^tau_,barnux^lambda_,barbetapartial_lambda g_epsilontau.$$
Here, I've written $x^tau_barnu=partial_barnu x^tau.$
Substituting the partial derivatives of the metric in the Christoffel symbol I get two terms. One is
$$partial_lambda g_epsilontau left(x^epsilon_, barbetax^tau_, barnu x^lambda_,baralpha+x^epsilon_, baralphax^tau_, barnu x^lambda_,barbeta-x^epsilon_, baralphax^tau_, barbeta x^lambda_,barnuright). $$
By renaming the indices I obtain
$$x^epsilon_, barbetax^tau_, barnu x^lambda_,baralphaleft(partial_lambda g_epsilontau+partial_epsilon g_lambdatau-partial_tau g_lambdaepsilonright) .$$
Now, for the second term I get $2g_epsilontaux^epsilon_,barbetabaralphax^tau_,barnu$ after using the interchangeability if the second derivatives, the symmetry of the metric tensor and switching dummy variables in one term.
So, at the end I have $$Gamma^barmu_baralphabarbeta=g^barmubarnu g_epsilontaux^epsilon_,barbetabaralphax^tau_,barnu+frac12g^barmubarnux^epsilon_, barbetax^tau_, barnu x^lambda_,baralphaleft(partial_lambda g_epsilontau+partial_epsilon g_lambdatau-partial_tau g_lambdaepsilonright).$$
However, this deviates what I read in most forums and books. In the first and second term the co- and contravariant metrics should share one dummy variable. Does anyone have a clue?
riemannian-geometry
I don't quite get the result that I should get.
We have $$Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright).$$
Furthermore we find
$$partial_baralphag_barbetabarnu=g_epsilontauleft( x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpharight)+x^epsilon_,barbetax^tau_,barnux^lambda_,barbetapartial_lambda g_epsilontau.$$
Here, I've written $x^tau_barnu=partial_barnu x^tau.$
Substituting the partial derivatives of the metric in the Christoffel symbol I get two terms. One is
$$partial_lambda g_epsilontau left(x^epsilon_, barbetax^tau_, barnu x^lambda_,baralpha+x^epsilon_, baralphax^tau_, barnu x^lambda_,barbeta-x^epsilon_, baralphax^tau_, barbeta x^lambda_,barnuright). $$
By renaming the indices I obtain
$$x^epsilon_, barbetax^tau_, barnu x^lambda_,baralphaleft(partial_lambda g_epsilontau+partial_epsilon g_lambdatau-partial_tau g_lambdaepsilonright) .$$
Now, for the second term I get $2g_epsilontaux^epsilon_,barbetabaralphax^tau_,barnu$ after using the interchangeability if the second derivatives, the symmetry of the metric tensor and switching dummy variables in one term.
So, at the end I have $$Gamma^barmu_baralphabarbeta=g^barmubarnu g_epsilontaux^epsilon_,barbetabaralphax^tau_,barnu+frac12g^barmubarnux^epsilon_, barbetax^tau_, barnu x^lambda_,baralphaleft(partial_lambda g_epsilontau+partial_epsilon g_lambdatau-partial_tau g_lambdaepsilonright).$$
However, this deviates what I read in most forums and books. In the first and second term the co- and contravariant metrics should share one dummy variable. Does anyone have a clue?
riemannian-geometry
riemannian-geometry
edited Sep 9 at 12:52
asked Sep 5 at 12:10
Thomas Wening
1009
1009
Your very first formula (for the Christoffel symbol) already has a mistake, that leads to the indices disbalance. It has to be as $Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright).$
â Yuri Vyatkin
Sep 8 at 0:29
Whoops, that was more of a typo as I was writing this on a cell phone. In my calculations on paper the brackets were set correctly.
â Thomas Wening
Sep 8 at 16:01
All right, now you have a disbalance with indices $epsilon$ and $tau$ in the second equation. Can you please elaborate on how you obtain it?
â Yuri Vyatkin
Sep 9 at 2:49
Wrong brackets again. I'm sorry for my clumsiness. I think I have worked it out now, though. Take a look at my answer. :)
â Thomas Wening
Sep 9 at 11:54
add a comment |Â
Your very first formula (for the Christoffel symbol) already has a mistake, that leads to the indices disbalance. It has to be as $Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright).$
â Yuri Vyatkin
Sep 8 at 0:29
Whoops, that was more of a typo as I was writing this on a cell phone. In my calculations on paper the brackets were set correctly.
â Thomas Wening
Sep 8 at 16:01
All right, now you have a disbalance with indices $epsilon$ and $tau$ in the second equation. Can you please elaborate on how you obtain it?
â Yuri Vyatkin
Sep 9 at 2:49
Wrong brackets again. I'm sorry for my clumsiness. I think I have worked it out now, though. Take a look at my answer. :)
â Thomas Wening
Sep 9 at 11:54
Your very first formula (for the Christoffel symbol) already has a mistake, that leads to the indices disbalance. It has to be as $Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright).$
â Yuri Vyatkin
Sep 8 at 0:29
Your very first formula (for the Christoffel symbol) already has a mistake, that leads to the indices disbalance. It has to be as $Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright).$
â Yuri Vyatkin
Sep 8 at 0:29
Whoops, that was more of a typo as I was writing this on a cell phone. In my calculations on paper the brackets were set correctly.
â Thomas Wening
Sep 8 at 16:01
Whoops, that was more of a typo as I was writing this on a cell phone. In my calculations on paper the brackets were set correctly.
â Thomas Wening
Sep 8 at 16:01
All right, now you have a disbalance with indices $epsilon$ and $tau$ in the second equation. Can you please elaborate on how you obtain it?
â Yuri Vyatkin
Sep 9 at 2:49
All right, now you have a disbalance with indices $epsilon$ and $tau$ in the second equation. Can you please elaborate on how you obtain it?
â Yuri Vyatkin
Sep 9 at 2:49
Wrong brackets again. I'm sorry for my clumsiness. I think I have worked it out now, though. Take a look at my answer. :)
â Thomas Wening
Sep 9 at 11:54
Wrong brackets again. I'm sorry for my clumsiness. I think I have worked it out now, though. Take a look at my answer. :)
â Thomas Wening
Sep 9 at 11:54
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
2
down vote
Starting with $$Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright),$$
we have $$partial_baralphag_barbetabarnu=g_epsilontauleft( x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpharight)+x^epsilon_,barbetax^tau_,barnux^lambda_,baralphapartial_lambda g_epsilontau,$$
$$partial_barbetag_baralphabarnu=g_epsilontauleft( x^epsilon_, baralpha barbeta x^tau_,barnu+x^epsilon_, baralpha x^tau_,barnubarbetaright)+x^epsilon_,baralphax^tau_,barnux^lambda_,barbetapartial_lambda g_epsilontau,$$
$$partial_barnug_baralphabarbeta=g_epsilontauleft( x^epsilon_, baralpha barnu x^tau_,barbeta+x^epsilon_, baralpha x^tau_,barbetabarnuright)+x^epsilon_,baralphax^tau_,barbetax^lambda_,barnupartial_lambda g_epsilontau.$$
Substitution gives us $$Gamma^barmu_baralphabarbeta
=frac12g^barmubarnug_epsilontauleft(x^epsilon_, barbeta baralpha x^tau_,barnu
+x^epsilon_, barbeta x^tau_,barnubaralpha
+x^epsilon_, baralpha barbeta x^tau_,barnu
+x^epsilon_, baralpha x^tau_,barnubarbeta
-x^epsilon_, baralpha barnu x^tau_,barbeta
-x^epsilon_, baralpha x^tau_,barbetabarnuright)$$
$$+frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
+x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
-x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright).$$
Using the interchangeability of the second derivatives, the first term becomes:
$$frac12g^barmubarnug_epsilontauleft(2x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpha-x^epsilon_, baralpha barnu x^tau_,barbetaright)$$
$$=g^barmubarnug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu+frac12g^barmubarnug_epsilontaux^epsilon_, barbeta x^tau_,barnubaralpha-frac12g^barmubarnug_epsilontaux^epsilon_, baralpha barnu x^tau_,barbeta.$$
Switching the indices $epsilon,tau$ in the last term cancels both last terms out because of the metric's symmetry. We are then left with: $$g^barmubarnug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu
=g^munux^barmu_,mux^barnu_,nug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu
=g^munudelta^tau_nu x^barmu_,mug_epsilontaux^epsilon_, barbeta baralpha
=g^mutaug_epsilontaux^barmu_,mux^epsilon_, barbeta baralpha
=delta^mu_epsilonx^barmu_,mux^epsilon_, barbeta baralpha
=x^barmu_,mux^mu_, barbeta baralpha.$$
Now we have obtained the following: $$Gamma^barmu_baralphabarbeta
=x^barmu_,mux^mu_, barbeta baralpha
+frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
+x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
-x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright).$$
Switching the indices $epsilonleftrightarrow lambda$ in the second term of the remaining bracket and $epsilonrightarrowlambdarightarrowtaurightarrowepsilon$ in the third term, we find: $$frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
+x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
-x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright)$$
$$=frac12g^barmubarnux^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
left(partial_lambda g_epsilontau
+partial_epsilon g_lambdatau
-partial_tau g_epsilonlambdaright).$$
As before, we now introduce the barless indices: $$g^munux^barmu_,mux^barnu_,nux^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
=frac12g^munudelta^tau_nu x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
=x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
cdotfrac12g^mutau.$$
At last, we are left with: $$x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
cdotfrac12g^mutauleft(partial_lambda g_epsilontau
+partial_epsilon g_lambdatau
-partial_tau g_epsilonlambdaright)
=x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
cdotGamma^mu_lambdaepsilon.$$
Now we have obtained the following: $$Gamma^barmu_baralphabarbeta
=x^barmu_,mux^mu_, baralphabarbeta
+x^barmu_,mux^lambda_,baralphax^epsilon_,barbeta
cdotGamma^mu_lambdaepsilon.$$
This is the sought result.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
Starting with $$Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright),$$
we have $$partial_baralphag_barbetabarnu=g_epsilontauleft( x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpharight)+x^epsilon_,barbetax^tau_,barnux^lambda_,baralphapartial_lambda g_epsilontau,$$
$$partial_barbetag_baralphabarnu=g_epsilontauleft( x^epsilon_, baralpha barbeta x^tau_,barnu+x^epsilon_, baralpha x^tau_,barnubarbetaright)+x^epsilon_,baralphax^tau_,barnux^lambda_,barbetapartial_lambda g_epsilontau,$$
$$partial_barnug_baralphabarbeta=g_epsilontauleft( x^epsilon_, baralpha barnu x^tau_,barbeta+x^epsilon_, baralpha x^tau_,barbetabarnuright)+x^epsilon_,baralphax^tau_,barbetax^lambda_,barnupartial_lambda g_epsilontau.$$
Substitution gives us $$Gamma^barmu_baralphabarbeta
=frac12g^barmubarnug_epsilontauleft(x^epsilon_, barbeta baralpha x^tau_,barnu
+x^epsilon_, barbeta x^tau_,barnubaralpha
+x^epsilon_, baralpha barbeta x^tau_,barnu
+x^epsilon_, baralpha x^tau_,barnubarbeta
-x^epsilon_, baralpha barnu x^tau_,barbeta
-x^epsilon_, baralpha x^tau_,barbetabarnuright)$$
$$+frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
+x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
-x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright).$$
Using the interchangeability of the second derivatives, the first term becomes:
$$frac12g^barmubarnug_epsilontauleft(2x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpha-x^epsilon_, baralpha barnu x^tau_,barbetaright)$$
$$=g^barmubarnug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu+frac12g^barmubarnug_epsilontaux^epsilon_, barbeta x^tau_,barnubaralpha-frac12g^barmubarnug_epsilontaux^epsilon_, baralpha barnu x^tau_,barbeta.$$
Switching the indices $epsilon,tau$ in the last term cancels both last terms out because of the metric's symmetry. We are then left with: $$g^barmubarnug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu
=g^munux^barmu_,mux^barnu_,nug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu
=g^munudelta^tau_nu x^barmu_,mug_epsilontaux^epsilon_, barbeta baralpha
=g^mutaug_epsilontaux^barmu_,mux^epsilon_, barbeta baralpha
=delta^mu_epsilonx^barmu_,mux^epsilon_, barbeta baralpha
=x^barmu_,mux^mu_, barbeta baralpha.$$
Now we have obtained the following: $$Gamma^barmu_baralphabarbeta
=x^barmu_,mux^mu_, barbeta baralpha
+frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
+x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
-x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright).$$
Switching the indices $epsilonleftrightarrow lambda$ in the second term of the remaining bracket and $epsilonrightarrowlambdarightarrowtaurightarrowepsilon$ in the third term, we find: $$frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
+x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
-x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright)$$
$$=frac12g^barmubarnux^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
left(partial_lambda g_epsilontau
+partial_epsilon g_lambdatau
-partial_tau g_epsilonlambdaright).$$
As before, we now introduce the barless indices: $$g^munux^barmu_,mux^barnu_,nux^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
=frac12g^munudelta^tau_nu x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
=x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
cdotfrac12g^mutau.$$
At last, we are left with: $$x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
cdotfrac12g^mutauleft(partial_lambda g_epsilontau
+partial_epsilon g_lambdatau
-partial_tau g_epsilonlambdaright)
=x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
cdotGamma^mu_lambdaepsilon.$$
Now we have obtained the following: $$Gamma^barmu_baralphabarbeta
=x^barmu_,mux^mu_, baralphabarbeta
+x^barmu_,mux^lambda_,baralphax^epsilon_,barbeta
cdotGamma^mu_lambdaepsilon.$$
This is the sought result.
add a comment |Â
up vote
2
down vote
Starting with $$Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright),$$
we have $$partial_baralphag_barbetabarnu=g_epsilontauleft( x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpharight)+x^epsilon_,barbetax^tau_,barnux^lambda_,baralphapartial_lambda g_epsilontau,$$
$$partial_barbetag_baralphabarnu=g_epsilontauleft( x^epsilon_, baralpha barbeta x^tau_,barnu+x^epsilon_, baralpha x^tau_,barnubarbetaright)+x^epsilon_,baralphax^tau_,barnux^lambda_,barbetapartial_lambda g_epsilontau,$$
$$partial_barnug_baralphabarbeta=g_epsilontauleft( x^epsilon_, baralpha barnu x^tau_,barbeta+x^epsilon_, baralpha x^tau_,barbetabarnuright)+x^epsilon_,baralphax^tau_,barbetax^lambda_,barnupartial_lambda g_epsilontau.$$
Substitution gives us $$Gamma^barmu_baralphabarbeta
=frac12g^barmubarnug_epsilontauleft(x^epsilon_, barbeta baralpha x^tau_,barnu
+x^epsilon_, barbeta x^tau_,barnubaralpha
+x^epsilon_, baralpha barbeta x^tau_,barnu
+x^epsilon_, baralpha x^tau_,barnubarbeta
-x^epsilon_, baralpha barnu x^tau_,barbeta
-x^epsilon_, baralpha x^tau_,barbetabarnuright)$$
$$+frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
+x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
-x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright).$$
Using the interchangeability of the second derivatives, the first term becomes:
$$frac12g^barmubarnug_epsilontauleft(2x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpha-x^epsilon_, baralpha barnu x^tau_,barbetaright)$$
$$=g^barmubarnug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu+frac12g^barmubarnug_epsilontaux^epsilon_, barbeta x^tau_,barnubaralpha-frac12g^barmubarnug_epsilontaux^epsilon_, baralpha barnu x^tau_,barbeta.$$
Switching the indices $epsilon,tau$ in the last term cancels both last terms out because of the metric's symmetry. We are then left with: $$g^barmubarnug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu
=g^munux^barmu_,mux^barnu_,nug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu
=g^munudelta^tau_nu x^barmu_,mug_epsilontaux^epsilon_, barbeta baralpha
=g^mutaug_epsilontaux^barmu_,mux^epsilon_, barbeta baralpha
=delta^mu_epsilonx^barmu_,mux^epsilon_, barbeta baralpha
=x^barmu_,mux^mu_, barbeta baralpha.$$
Now we have obtained the following: $$Gamma^barmu_baralphabarbeta
=x^barmu_,mux^mu_, barbeta baralpha
+frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
+x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
-x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright).$$
Switching the indices $epsilonleftrightarrow lambda$ in the second term of the remaining bracket and $epsilonrightarrowlambdarightarrowtaurightarrowepsilon$ in the third term, we find: $$frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
+x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
-x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright)$$
$$=frac12g^barmubarnux^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
left(partial_lambda g_epsilontau
+partial_epsilon g_lambdatau
-partial_tau g_epsilonlambdaright).$$
As before, we now introduce the barless indices: $$g^munux^barmu_,mux^barnu_,nux^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
=frac12g^munudelta^tau_nu x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
=x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
cdotfrac12g^mutau.$$
At last, we are left with: $$x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
cdotfrac12g^mutauleft(partial_lambda g_epsilontau
+partial_epsilon g_lambdatau
-partial_tau g_epsilonlambdaright)
=x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
cdotGamma^mu_lambdaepsilon.$$
Now we have obtained the following: $$Gamma^barmu_baralphabarbeta
=x^barmu_,mux^mu_, baralphabarbeta
+x^barmu_,mux^lambda_,baralphax^epsilon_,barbeta
cdotGamma^mu_lambdaepsilon.$$
This is the sought result.
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Starting with $$Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright),$$
we have $$partial_baralphag_barbetabarnu=g_epsilontauleft( x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpharight)+x^epsilon_,barbetax^tau_,barnux^lambda_,baralphapartial_lambda g_epsilontau,$$
$$partial_barbetag_baralphabarnu=g_epsilontauleft( x^epsilon_, baralpha barbeta x^tau_,barnu+x^epsilon_, baralpha x^tau_,barnubarbetaright)+x^epsilon_,baralphax^tau_,barnux^lambda_,barbetapartial_lambda g_epsilontau,$$
$$partial_barnug_baralphabarbeta=g_epsilontauleft( x^epsilon_, baralpha barnu x^tau_,barbeta+x^epsilon_, baralpha x^tau_,barbetabarnuright)+x^epsilon_,baralphax^tau_,barbetax^lambda_,barnupartial_lambda g_epsilontau.$$
Substitution gives us $$Gamma^barmu_baralphabarbeta
=frac12g^barmubarnug_epsilontauleft(x^epsilon_, barbeta baralpha x^tau_,barnu
+x^epsilon_, barbeta x^tau_,barnubaralpha
+x^epsilon_, baralpha barbeta x^tau_,barnu
+x^epsilon_, baralpha x^tau_,barnubarbeta
-x^epsilon_, baralpha barnu x^tau_,barbeta
-x^epsilon_, baralpha x^tau_,barbetabarnuright)$$
$$+frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
+x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
-x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright).$$
Using the interchangeability of the second derivatives, the first term becomes:
$$frac12g^barmubarnug_epsilontauleft(2x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpha-x^epsilon_, baralpha barnu x^tau_,barbetaright)$$
$$=g^barmubarnug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu+frac12g^barmubarnug_epsilontaux^epsilon_, barbeta x^tau_,barnubaralpha-frac12g^barmubarnug_epsilontaux^epsilon_, baralpha barnu x^tau_,barbeta.$$
Switching the indices $epsilon,tau$ in the last term cancels both last terms out because of the metric's symmetry. We are then left with: $$g^barmubarnug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu
=g^munux^barmu_,mux^barnu_,nug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu
=g^munudelta^tau_nu x^barmu_,mug_epsilontaux^epsilon_, barbeta baralpha
=g^mutaug_epsilontaux^barmu_,mux^epsilon_, barbeta baralpha
=delta^mu_epsilonx^barmu_,mux^epsilon_, barbeta baralpha
=x^barmu_,mux^mu_, barbeta baralpha.$$
Now we have obtained the following: $$Gamma^barmu_baralphabarbeta
=x^barmu_,mux^mu_, barbeta baralpha
+frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
+x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
-x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright).$$
Switching the indices $epsilonleftrightarrow lambda$ in the second term of the remaining bracket and $epsilonrightarrowlambdarightarrowtaurightarrowepsilon$ in the third term, we find: $$frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
+x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
-x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright)$$
$$=frac12g^barmubarnux^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
left(partial_lambda g_epsilontau
+partial_epsilon g_lambdatau
-partial_tau g_epsilonlambdaright).$$
As before, we now introduce the barless indices: $$g^munux^barmu_,mux^barnu_,nux^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
=frac12g^munudelta^tau_nu x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
=x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
cdotfrac12g^mutau.$$
At last, we are left with: $$x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
cdotfrac12g^mutauleft(partial_lambda g_epsilontau
+partial_epsilon g_lambdatau
-partial_tau g_epsilonlambdaright)
=x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
cdotGamma^mu_lambdaepsilon.$$
Now we have obtained the following: $$Gamma^barmu_baralphabarbeta
=x^barmu_,mux^mu_, baralphabarbeta
+x^barmu_,mux^lambda_,baralphax^epsilon_,barbeta
cdotGamma^mu_lambdaepsilon.$$
This is the sought result.
Starting with $$Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright),$$
we have $$partial_baralphag_barbetabarnu=g_epsilontauleft( x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpharight)+x^epsilon_,barbetax^tau_,barnux^lambda_,baralphapartial_lambda g_epsilontau,$$
$$partial_barbetag_baralphabarnu=g_epsilontauleft( x^epsilon_, baralpha barbeta x^tau_,barnu+x^epsilon_, baralpha x^tau_,barnubarbetaright)+x^epsilon_,baralphax^tau_,barnux^lambda_,barbetapartial_lambda g_epsilontau,$$
$$partial_barnug_baralphabarbeta=g_epsilontauleft( x^epsilon_, baralpha barnu x^tau_,barbeta+x^epsilon_, baralpha x^tau_,barbetabarnuright)+x^epsilon_,baralphax^tau_,barbetax^lambda_,barnupartial_lambda g_epsilontau.$$
Substitution gives us $$Gamma^barmu_baralphabarbeta
=frac12g^barmubarnug_epsilontauleft(x^epsilon_, barbeta baralpha x^tau_,barnu
+x^epsilon_, barbeta x^tau_,barnubaralpha
+x^epsilon_, baralpha barbeta x^tau_,barnu
+x^epsilon_, baralpha x^tau_,barnubarbeta
-x^epsilon_, baralpha barnu x^tau_,barbeta
-x^epsilon_, baralpha x^tau_,barbetabarnuright)$$
$$+frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
+x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
-x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright).$$
Using the interchangeability of the second derivatives, the first term becomes:
$$frac12g^barmubarnug_epsilontauleft(2x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpha-x^epsilon_, baralpha barnu x^tau_,barbetaright)$$
$$=g^barmubarnug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu+frac12g^barmubarnug_epsilontaux^epsilon_, barbeta x^tau_,barnubaralpha-frac12g^barmubarnug_epsilontaux^epsilon_, baralpha barnu x^tau_,barbeta.$$
Switching the indices $epsilon,tau$ in the last term cancels both last terms out because of the metric's symmetry. We are then left with: $$g^barmubarnug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu
=g^munux^barmu_,mux^barnu_,nug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu
=g^munudelta^tau_nu x^barmu_,mug_epsilontaux^epsilon_, barbeta baralpha
=g^mutaug_epsilontaux^barmu_,mux^epsilon_, barbeta baralpha
=delta^mu_epsilonx^barmu_,mux^epsilon_, barbeta baralpha
=x^barmu_,mux^mu_, barbeta baralpha.$$
Now we have obtained the following: $$Gamma^barmu_baralphabarbeta
=x^barmu_,mux^mu_, barbeta baralpha
+frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
+x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
-x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright).$$
Switching the indices $epsilonleftrightarrow lambda$ in the second term of the remaining bracket and $epsilonrightarrowlambdarightarrowtaurightarrowepsilon$ in the third term, we find: $$frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
+x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
-x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright)$$
$$=frac12g^barmubarnux^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
left(partial_lambda g_epsilontau
+partial_epsilon g_lambdatau
-partial_tau g_epsilonlambdaright).$$
As before, we now introduce the barless indices: $$g^munux^barmu_,mux^barnu_,nux^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
=frac12g^munudelta^tau_nu x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
=x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
cdotfrac12g^mutau.$$
At last, we are left with: $$x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
cdotfrac12g^mutauleft(partial_lambda g_epsilontau
+partial_epsilon g_lambdatau
-partial_tau g_epsilonlambdaright)
=x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
cdotGamma^mu_lambdaepsilon.$$
Now we have obtained the following: $$Gamma^barmu_baralphabarbeta
=x^barmu_,mux^mu_, baralphabarbeta
+x^barmu_,mux^lambda_,baralphax^epsilon_,barbeta
cdotGamma^mu_lambdaepsilon.$$
This is the sought result.
answered Sep 9 at 12:51
Thomas Wening
1009
1009
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2906180%2ftransformation-of-christoffel-symbol%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Your very first formula (for the Christoffel symbol) already has a mistake, that leads to the indices disbalance. It has to be as $Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright).$
â Yuri Vyatkin
Sep 8 at 0:29
Whoops, that was more of a typo as I was writing this on a cell phone. In my calculations on paper the brackets were set correctly.
â Thomas Wening
Sep 8 at 16:01
All right, now you have a disbalance with indices $epsilon$ and $tau$ in the second equation. Can you please elaborate on how you obtain it?
â Yuri Vyatkin
Sep 9 at 2:49
Wrong brackets again. I'm sorry for my clumsiness. I think I have worked it out now, though. Take a look at my answer. :)
â Thomas Wening
Sep 9 at 11:54