Transformation of Christoffel symbol

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite
1












I don't quite get the result that I should get.



We have $$Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright).$$



Furthermore we find
$$partial_baralphag_barbetabarnu=g_epsilontauleft( x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpharight)+x^epsilon_,barbetax^tau_,barnux^lambda_,barbetapartial_lambda g_epsilontau.$$



Here, I've written $x^tau_barnu=partial_barnu x^tau.$



Substituting the partial derivatives of the metric in the Christoffel symbol I get two terms. One is
$$partial_lambda g_epsilontau left(x^epsilon_, barbetax^tau_, barnu x^lambda_,baralpha+x^epsilon_, baralphax^tau_, barnu x^lambda_,barbeta-x^epsilon_, baralphax^tau_, barbeta x^lambda_,barnuright). $$
By renaming the indices I obtain
$$x^epsilon_, barbetax^tau_, barnu x^lambda_,baralphaleft(partial_lambda g_epsilontau+partial_epsilon g_lambdatau-partial_tau g_lambdaepsilonright) .$$



Now, for the second term I get $2g_epsilontaux^epsilon_,barbetabaralphax^tau_,barnu$ after using the interchangeability if the second derivatives, the symmetry of the metric tensor and switching dummy variables in one term.



So, at the end I have $$Gamma^barmu_baralphabarbeta=g^barmubarnu g_epsilontaux^epsilon_,barbetabaralphax^tau_,barnu+frac12g^barmubarnux^epsilon_, barbetax^tau_, barnu x^lambda_,baralphaleft(partial_lambda g_epsilontau+partial_epsilon g_lambdatau-partial_tau g_lambdaepsilonright).$$



However, this deviates what I read in most forums and books. In the first and second term the co- and contravariant metrics should share one dummy variable. Does anyone have a clue?










share|cite|improve this question























  • Your very first formula (for the Christoffel symbol) already has a mistake, that leads to the indices disbalance. It has to be as $Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright).$
    – Yuri Vyatkin
    Sep 8 at 0:29










  • Whoops, that was more of a typo as I was writing this on a cell phone. In my calculations on paper the brackets were set correctly.
    – Thomas Wening
    Sep 8 at 16:01










  • All right, now you have a disbalance with indices $epsilon$ and $tau$ in the second equation. Can you please elaborate on how you obtain it?
    – Yuri Vyatkin
    Sep 9 at 2:49










  • Wrong brackets again. I'm sorry for my clumsiness. I think I have worked it out now, though. Take a look at my answer. :)
    – Thomas Wening
    Sep 9 at 11:54














up vote
0
down vote

favorite
1












I don't quite get the result that I should get.



We have $$Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright).$$



Furthermore we find
$$partial_baralphag_barbetabarnu=g_epsilontauleft( x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpharight)+x^epsilon_,barbetax^tau_,barnux^lambda_,barbetapartial_lambda g_epsilontau.$$



Here, I've written $x^tau_barnu=partial_barnu x^tau.$



Substituting the partial derivatives of the metric in the Christoffel symbol I get two terms. One is
$$partial_lambda g_epsilontau left(x^epsilon_, barbetax^tau_, barnu x^lambda_,baralpha+x^epsilon_, baralphax^tau_, barnu x^lambda_,barbeta-x^epsilon_, baralphax^tau_, barbeta x^lambda_,barnuright). $$
By renaming the indices I obtain
$$x^epsilon_, barbetax^tau_, barnu x^lambda_,baralphaleft(partial_lambda g_epsilontau+partial_epsilon g_lambdatau-partial_tau g_lambdaepsilonright) .$$



Now, for the second term I get $2g_epsilontaux^epsilon_,barbetabaralphax^tau_,barnu$ after using the interchangeability if the second derivatives, the symmetry of the metric tensor and switching dummy variables in one term.



So, at the end I have $$Gamma^barmu_baralphabarbeta=g^barmubarnu g_epsilontaux^epsilon_,barbetabaralphax^tau_,barnu+frac12g^barmubarnux^epsilon_, barbetax^tau_, barnu x^lambda_,baralphaleft(partial_lambda g_epsilontau+partial_epsilon g_lambdatau-partial_tau g_lambdaepsilonright).$$



However, this deviates what I read in most forums and books. In the first and second term the co- and contravariant metrics should share one dummy variable. Does anyone have a clue?










share|cite|improve this question























  • Your very first formula (for the Christoffel symbol) already has a mistake, that leads to the indices disbalance. It has to be as $Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright).$
    – Yuri Vyatkin
    Sep 8 at 0:29










  • Whoops, that was more of a typo as I was writing this on a cell phone. In my calculations on paper the brackets were set correctly.
    – Thomas Wening
    Sep 8 at 16:01










  • All right, now you have a disbalance with indices $epsilon$ and $tau$ in the second equation. Can you please elaborate on how you obtain it?
    – Yuri Vyatkin
    Sep 9 at 2:49










  • Wrong brackets again. I'm sorry for my clumsiness. I think I have worked it out now, though. Take a look at my answer. :)
    – Thomas Wening
    Sep 9 at 11:54












up vote
0
down vote

favorite
1









up vote
0
down vote

favorite
1






1





I don't quite get the result that I should get.



We have $$Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright).$$



Furthermore we find
$$partial_baralphag_barbetabarnu=g_epsilontauleft( x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpharight)+x^epsilon_,barbetax^tau_,barnux^lambda_,barbetapartial_lambda g_epsilontau.$$



Here, I've written $x^tau_barnu=partial_barnu x^tau.$



Substituting the partial derivatives of the metric in the Christoffel symbol I get two terms. One is
$$partial_lambda g_epsilontau left(x^epsilon_, barbetax^tau_, barnu x^lambda_,baralpha+x^epsilon_, baralphax^tau_, barnu x^lambda_,barbeta-x^epsilon_, baralphax^tau_, barbeta x^lambda_,barnuright). $$
By renaming the indices I obtain
$$x^epsilon_, barbetax^tau_, barnu x^lambda_,baralphaleft(partial_lambda g_epsilontau+partial_epsilon g_lambdatau-partial_tau g_lambdaepsilonright) .$$



Now, for the second term I get $2g_epsilontaux^epsilon_,barbetabaralphax^tau_,barnu$ after using the interchangeability if the second derivatives, the symmetry of the metric tensor and switching dummy variables in one term.



So, at the end I have $$Gamma^barmu_baralphabarbeta=g^barmubarnu g_epsilontaux^epsilon_,barbetabaralphax^tau_,barnu+frac12g^barmubarnux^epsilon_, barbetax^tau_, barnu x^lambda_,baralphaleft(partial_lambda g_epsilontau+partial_epsilon g_lambdatau-partial_tau g_lambdaepsilonright).$$



However, this deviates what I read in most forums and books. In the first and second term the co- and contravariant metrics should share one dummy variable. Does anyone have a clue?










share|cite|improve this question















I don't quite get the result that I should get.



We have $$Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright).$$



Furthermore we find
$$partial_baralphag_barbetabarnu=g_epsilontauleft( x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpharight)+x^epsilon_,barbetax^tau_,barnux^lambda_,barbetapartial_lambda g_epsilontau.$$



Here, I've written $x^tau_barnu=partial_barnu x^tau.$



Substituting the partial derivatives of the metric in the Christoffel symbol I get two terms. One is
$$partial_lambda g_epsilontau left(x^epsilon_, barbetax^tau_, barnu x^lambda_,baralpha+x^epsilon_, baralphax^tau_, barnu x^lambda_,barbeta-x^epsilon_, baralphax^tau_, barbeta x^lambda_,barnuright). $$
By renaming the indices I obtain
$$x^epsilon_, barbetax^tau_, barnu x^lambda_,baralphaleft(partial_lambda g_epsilontau+partial_epsilon g_lambdatau-partial_tau g_lambdaepsilonright) .$$



Now, for the second term I get $2g_epsilontaux^epsilon_,barbetabaralphax^tau_,barnu$ after using the interchangeability if the second derivatives, the symmetry of the metric tensor and switching dummy variables in one term.



So, at the end I have $$Gamma^barmu_baralphabarbeta=g^barmubarnu g_epsilontaux^epsilon_,barbetabaralphax^tau_,barnu+frac12g^barmubarnux^epsilon_, barbetax^tau_, barnu x^lambda_,baralphaleft(partial_lambda g_epsilontau+partial_epsilon g_lambdatau-partial_tau g_lambdaepsilonright).$$



However, this deviates what I read in most forums and books. In the first and second term the co- and contravariant metrics should share one dummy variable. Does anyone have a clue?







riemannian-geometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Sep 9 at 12:52

























asked Sep 5 at 12:10









Thomas Wening

1009




1009











  • Your very first formula (for the Christoffel symbol) already has a mistake, that leads to the indices disbalance. It has to be as $Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright).$
    – Yuri Vyatkin
    Sep 8 at 0:29










  • Whoops, that was more of a typo as I was writing this on a cell phone. In my calculations on paper the brackets were set correctly.
    – Thomas Wening
    Sep 8 at 16:01










  • All right, now you have a disbalance with indices $epsilon$ and $tau$ in the second equation. Can you please elaborate on how you obtain it?
    – Yuri Vyatkin
    Sep 9 at 2:49










  • Wrong brackets again. I'm sorry for my clumsiness. I think I have worked it out now, though. Take a look at my answer. :)
    – Thomas Wening
    Sep 9 at 11:54
















  • Your very first formula (for the Christoffel symbol) already has a mistake, that leads to the indices disbalance. It has to be as $Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright).$
    – Yuri Vyatkin
    Sep 8 at 0:29










  • Whoops, that was more of a typo as I was writing this on a cell phone. In my calculations on paper the brackets were set correctly.
    – Thomas Wening
    Sep 8 at 16:01










  • All right, now you have a disbalance with indices $epsilon$ and $tau$ in the second equation. Can you please elaborate on how you obtain it?
    – Yuri Vyatkin
    Sep 9 at 2:49










  • Wrong brackets again. I'm sorry for my clumsiness. I think I have worked it out now, though. Take a look at my answer. :)
    – Thomas Wening
    Sep 9 at 11:54















Your very first formula (for the Christoffel symbol) already has a mistake, that leads to the indices disbalance. It has to be as $Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright).$
– Yuri Vyatkin
Sep 8 at 0:29




Your very first formula (for the Christoffel symbol) already has a mistake, that leads to the indices disbalance. It has to be as $Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright).$
– Yuri Vyatkin
Sep 8 at 0:29












Whoops, that was more of a typo as I was writing this on a cell phone. In my calculations on paper the brackets were set correctly.
– Thomas Wening
Sep 8 at 16:01




Whoops, that was more of a typo as I was writing this on a cell phone. In my calculations on paper the brackets were set correctly.
– Thomas Wening
Sep 8 at 16:01












All right, now you have a disbalance with indices $epsilon$ and $tau$ in the second equation. Can you please elaborate on how you obtain it?
– Yuri Vyatkin
Sep 9 at 2:49




All right, now you have a disbalance with indices $epsilon$ and $tau$ in the second equation. Can you please elaborate on how you obtain it?
– Yuri Vyatkin
Sep 9 at 2:49












Wrong brackets again. I'm sorry for my clumsiness. I think I have worked it out now, though. Take a look at my answer. :)
– Thomas Wening
Sep 9 at 11:54




Wrong brackets again. I'm sorry for my clumsiness. I think I have worked it out now, though. Take a look at my answer. :)
– Thomas Wening
Sep 9 at 11:54










1 Answer
1






active

oldest

votes

















up vote
2
down vote













Starting with $$Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright),$$



we have $$partial_baralphag_barbetabarnu=g_epsilontauleft( x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpharight)+x^epsilon_,barbetax^tau_,barnux^lambda_,baralphapartial_lambda g_epsilontau,$$



$$partial_barbetag_baralphabarnu=g_epsilontauleft( x^epsilon_, baralpha barbeta x^tau_,barnu+x^epsilon_, baralpha x^tau_,barnubarbetaright)+x^epsilon_,baralphax^tau_,barnux^lambda_,barbetapartial_lambda g_epsilontau,$$



$$partial_barnug_baralphabarbeta=g_epsilontauleft( x^epsilon_, baralpha barnu x^tau_,barbeta+x^epsilon_, baralpha x^tau_,barbetabarnuright)+x^epsilon_,baralphax^tau_,barbetax^lambda_,barnupartial_lambda g_epsilontau.$$



Substitution gives us $$Gamma^barmu_baralphabarbeta
=frac12g^barmubarnug_epsilontauleft(x^epsilon_, barbeta baralpha x^tau_,barnu
+x^epsilon_, barbeta x^tau_,barnubaralpha
+x^epsilon_, baralpha barbeta x^tau_,barnu
+x^epsilon_, baralpha x^tau_,barnubarbeta
-x^epsilon_, baralpha barnu x^tau_,barbeta
-x^epsilon_, baralpha x^tau_,barbetabarnuright)$$
$$+frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
+x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
-x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright).$$



Using the interchangeability of the second derivatives, the first term becomes:
$$frac12g^barmubarnug_epsilontauleft(2x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpha-x^epsilon_, baralpha barnu x^tau_,barbetaright)$$
$$=g^barmubarnug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu+frac12g^barmubarnug_epsilontaux^epsilon_, barbeta x^tau_,barnubaralpha-frac12g^barmubarnug_epsilontaux^epsilon_, baralpha barnu x^tau_,barbeta.$$



Switching the indices $epsilon,tau$ in the last term cancels both last terms out because of the metric's symmetry. We are then left with: $$g^barmubarnug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu
=g^munux^barmu_,mux^barnu_,nug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu
=g^munudelta^tau_nu x^barmu_,mug_epsilontaux^epsilon_, barbeta baralpha
=g^mutaug_epsilontaux^barmu_,mux^epsilon_, barbeta baralpha
=delta^mu_epsilonx^barmu_,mux^epsilon_, barbeta baralpha
=x^barmu_,mux^mu_, barbeta baralpha.$$



Now we have obtained the following: $$Gamma^barmu_baralphabarbeta
=x^barmu_,mux^mu_, barbeta baralpha
+frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
+x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
-x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright).$$



Switching the indices $epsilonleftrightarrow lambda$ in the second term of the remaining bracket and $epsilonrightarrowlambdarightarrowtaurightarrowepsilon$ in the third term, we find: $$frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
+x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
-x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright)$$
$$=frac12g^barmubarnux^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
left(partial_lambda g_epsilontau
+partial_epsilon g_lambdatau
-partial_tau g_epsilonlambdaright).$$



As before, we now introduce the barless indices: $$g^munux^barmu_,mux^barnu_,nux^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
=frac12g^munudelta^tau_nu x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
=x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
cdotfrac12g^mutau.$$



At last, we are left with: $$x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
cdotfrac12g^mutauleft(partial_lambda g_epsilontau
+partial_epsilon g_lambdatau
-partial_tau g_epsilonlambdaright)
=x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
cdotGamma^mu_lambdaepsilon.$$



Now we have obtained the following: $$Gamma^barmu_baralphabarbeta
=x^barmu_,mux^mu_, baralphabarbeta
+x^barmu_,mux^lambda_,baralphax^epsilon_,barbeta
cdotGamma^mu_lambdaepsilon.$$



This is the sought result.






share|cite|improve this answer




















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2906180%2ftransformation-of-christoffel-symbol%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    2
    down vote













    Starting with $$Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright),$$



    we have $$partial_baralphag_barbetabarnu=g_epsilontauleft( x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpharight)+x^epsilon_,barbetax^tau_,barnux^lambda_,baralphapartial_lambda g_epsilontau,$$



    $$partial_barbetag_baralphabarnu=g_epsilontauleft( x^epsilon_, baralpha barbeta x^tau_,barnu+x^epsilon_, baralpha x^tau_,barnubarbetaright)+x^epsilon_,baralphax^tau_,barnux^lambda_,barbetapartial_lambda g_epsilontau,$$



    $$partial_barnug_baralphabarbeta=g_epsilontauleft( x^epsilon_, baralpha barnu x^tau_,barbeta+x^epsilon_, baralpha x^tau_,barbetabarnuright)+x^epsilon_,baralphax^tau_,barbetax^lambda_,barnupartial_lambda g_epsilontau.$$



    Substitution gives us $$Gamma^barmu_baralphabarbeta
    =frac12g^barmubarnug_epsilontauleft(x^epsilon_, barbeta baralpha x^tau_,barnu
    +x^epsilon_, barbeta x^tau_,barnubaralpha
    +x^epsilon_, baralpha barbeta x^tau_,barnu
    +x^epsilon_, baralpha x^tau_,barnubarbeta
    -x^epsilon_, baralpha barnu x^tau_,barbeta
    -x^epsilon_, baralpha x^tau_,barbetabarnuright)$$
    $$+frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
    +x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
    -x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright).$$



    Using the interchangeability of the second derivatives, the first term becomes:
    $$frac12g^barmubarnug_epsilontauleft(2x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpha-x^epsilon_, baralpha barnu x^tau_,barbetaright)$$
    $$=g^barmubarnug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu+frac12g^barmubarnug_epsilontaux^epsilon_, barbeta x^tau_,barnubaralpha-frac12g^barmubarnug_epsilontaux^epsilon_, baralpha barnu x^tau_,barbeta.$$



    Switching the indices $epsilon,tau$ in the last term cancels both last terms out because of the metric's symmetry. We are then left with: $$g^barmubarnug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu
    =g^munux^barmu_,mux^barnu_,nug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu
    =g^munudelta^tau_nu x^barmu_,mug_epsilontaux^epsilon_, barbeta baralpha
    =g^mutaug_epsilontaux^barmu_,mux^epsilon_, barbeta baralpha
    =delta^mu_epsilonx^barmu_,mux^epsilon_, barbeta baralpha
    =x^barmu_,mux^mu_, barbeta baralpha.$$



    Now we have obtained the following: $$Gamma^barmu_baralphabarbeta
    =x^barmu_,mux^mu_, barbeta baralpha
    +frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
    +x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
    -x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright).$$



    Switching the indices $epsilonleftrightarrow lambda$ in the second term of the remaining bracket and $epsilonrightarrowlambdarightarrowtaurightarrowepsilon$ in the third term, we find: $$frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
    +x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
    -x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright)$$
    $$=frac12g^barmubarnux^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
    left(partial_lambda g_epsilontau
    +partial_epsilon g_lambdatau
    -partial_tau g_epsilonlambdaright).$$



    As before, we now introduce the barless indices: $$g^munux^barmu_,mux^barnu_,nux^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
    =frac12g^munudelta^tau_nu x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
    =x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
    cdotfrac12g^mutau.$$



    At last, we are left with: $$x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
    cdotfrac12g^mutauleft(partial_lambda g_epsilontau
    +partial_epsilon g_lambdatau
    -partial_tau g_epsilonlambdaright)
    =x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
    cdotGamma^mu_lambdaepsilon.$$



    Now we have obtained the following: $$Gamma^barmu_baralphabarbeta
    =x^barmu_,mux^mu_, baralphabarbeta
    +x^barmu_,mux^lambda_,baralphax^epsilon_,barbeta
    cdotGamma^mu_lambdaepsilon.$$



    This is the sought result.






    share|cite|improve this answer
























      up vote
      2
      down vote













      Starting with $$Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright),$$



      we have $$partial_baralphag_barbetabarnu=g_epsilontauleft( x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpharight)+x^epsilon_,barbetax^tau_,barnux^lambda_,baralphapartial_lambda g_epsilontau,$$



      $$partial_barbetag_baralphabarnu=g_epsilontauleft( x^epsilon_, baralpha barbeta x^tau_,barnu+x^epsilon_, baralpha x^tau_,barnubarbetaright)+x^epsilon_,baralphax^tau_,barnux^lambda_,barbetapartial_lambda g_epsilontau,$$



      $$partial_barnug_baralphabarbeta=g_epsilontauleft( x^epsilon_, baralpha barnu x^tau_,barbeta+x^epsilon_, baralpha x^tau_,barbetabarnuright)+x^epsilon_,baralphax^tau_,barbetax^lambda_,barnupartial_lambda g_epsilontau.$$



      Substitution gives us $$Gamma^barmu_baralphabarbeta
      =frac12g^barmubarnug_epsilontauleft(x^epsilon_, barbeta baralpha x^tau_,barnu
      +x^epsilon_, barbeta x^tau_,barnubaralpha
      +x^epsilon_, baralpha barbeta x^tau_,barnu
      +x^epsilon_, baralpha x^tau_,barnubarbeta
      -x^epsilon_, baralpha barnu x^tau_,barbeta
      -x^epsilon_, baralpha x^tau_,barbetabarnuright)$$
      $$+frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
      +x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
      -x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright).$$



      Using the interchangeability of the second derivatives, the first term becomes:
      $$frac12g^barmubarnug_epsilontauleft(2x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpha-x^epsilon_, baralpha barnu x^tau_,barbetaright)$$
      $$=g^barmubarnug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu+frac12g^barmubarnug_epsilontaux^epsilon_, barbeta x^tau_,barnubaralpha-frac12g^barmubarnug_epsilontaux^epsilon_, baralpha barnu x^tau_,barbeta.$$



      Switching the indices $epsilon,tau$ in the last term cancels both last terms out because of the metric's symmetry. We are then left with: $$g^barmubarnug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu
      =g^munux^barmu_,mux^barnu_,nug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu
      =g^munudelta^tau_nu x^barmu_,mug_epsilontaux^epsilon_, barbeta baralpha
      =g^mutaug_epsilontaux^barmu_,mux^epsilon_, barbeta baralpha
      =delta^mu_epsilonx^barmu_,mux^epsilon_, barbeta baralpha
      =x^barmu_,mux^mu_, barbeta baralpha.$$



      Now we have obtained the following: $$Gamma^barmu_baralphabarbeta
      =x^barmu_,mux^mu_, barbeta baralpha
      +frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
      +x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
      -x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright).$$



      Switching the indices $epsilonleftrightarrow lambda$ in the second term of the remaining bracket and $epsilonrightarrowlambdarightarrowtaurightarrowepsilon$ in the third term, we find: $$frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
      +x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
      -x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright)$$
      $$=frac12g^barmubarnux^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
      left(partial_lambda g_epsilontau
      +partial_epsilon g_lambdatau
      -partial_tau g_epsilonlambdaright).$$



      As before, we now introduce the barless indices: $$g^munux^barmu_,mux^barnu_,nux^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
      =frac12g^munudelta^tau_nu x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
      =x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
      cdotfrac12g^mutau.$$



      At last, we are left with: $$x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
      cdotfrac12g^mutauleft(partial_lambda g_epsilontau
      +partial_epsilon g_lambdatau
      -partial_tau g_epsilonlambdaright)
      =x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
      cdotGamma^mu_lambdaepsilon.$$



      Now we have obtained the following: $$Gamma^barmu_baralphabarbeta
      =x^barmu_,mux^mu_, baralphabarbeta
      +x^barmu_,mux^lambda_,baralphax^epsilon_,barbeta
      cdotGamma^mu_lambdaepsilon.$$



      This is the sought result.






      share|cite|improve this answer






















        up vote
        2
        down vote










        up vote
        2
        down vote









        Starting with $$Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright),$$



        we have $$partial_baralphag_barbetabarnu=g_epsilontauleft( x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpharight)+x^epsilon_,barbetax^tau_,barnux^lambda_,baralphapartial_lambda g_epsilontau,$$



        $$partial_barbetag_baralphabarnu=g_epsilontauleft( x^epsilon_, baralpha barbeta x^tau_,barnu+x^epsilon_, baralpha x^tau_,barnubarbetaright)+x^epsilon_,baralphax^tau_,barnux^lambda_,barbetapartial_lambda g_epsilontau,$$



        $$partial_barnug_baralphabarbeta=g_epsilontauleft( x^epsilon_, baralpha barnu x^tau_,barbeta+x^epsilon_, baralpha x^tau_,barbetabarnuright)+x^epsilon_,baralphax^tau_,barbetax^lambda_,barnupartial_lambda g_epsilontau.$$



        Substitution gives us $$Gamma^barmu_baralphabarbeta
        =frac12g^barmubarnug_epsilontauleft(x^epsilon_, barbeta baralpha x^tau_,barnu
        +x^epsilon_, barbeta x^tau_,barnubaralpha
        +x^epsilon_, baralpha barbeta x^tau_,barnu
        +x^epsilon_, baralpha x^tau_,barnubarbeta
        -x^epsilon_, baralpha barnu x^tau_,barbeta
        -x^epsilon_, baralpha x^tau_,barbetabarnuright)$$
        $$+frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
        +x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
        -x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright).$$



        Using the interchangeability of the second derivatives, the first term becomes:
        $$frac12g^barmubarnug_epsilontauleft(2x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpha-x^epsilon_, baralpha barnu x^tau_,barbetaright)$$
        $$=g^barmubarnug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu+frac12g^barmubarnug_epsilontaux^epsilon_, barbeta x^tau_,barnubaralpha-frac12g^barmubarnug_epsilontaux^epsilon_, baralpha barnu x^tau_,barbeta.$$



        Switching the indices $epsilon,tau$ in the last term cancels both last terms out because of the metric's symmetry. We are then left with: $$g^barmubarnug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu
        =g^munux^barmu_,mux^barnu_,nug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu
        =g^munudelta^tau_nu x^barmu_,mug_epsilontaux^epsilon_, barbeta baralpha
        =g^mutaug_epsilontaux^barmu_,mux^epsilon_, barbeta baralpha
        =delta^mu_epsilonx^barmu_,mux^epsilon_, barbeta baralpha
        =x^barmu_,mux^mu_, barbeta baralpha.$$



        Now we have obtained the following: $$Gamma^barmu_baralphabarbeta
        =x^barmu_,mux^mu_, barbeta baralpha
        +frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
        +x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
        -x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright).$$



        Switching the indices $epsilonleftrightarrow lambda$ in the second term of the remaining bracket and $epsilonrightarrowlambdarightarrowtaurightarrowepsilon$ in the third term, we find: $$frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
        +x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
        -x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright)$$
        $$=frac12g^barmubarnux^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
        left(partial_lambda g_epsilontau
        +partial_epsilon g_lambdatau
        -partial_tau g_epsilonlambdaright).$$



        As before, we now introduce the barless indices: $$g^munux^barmu_,mux^barnu_,nux^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
        =frac12g^munudelta^tau_nu x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
        =x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
        cdotfrac12g^mutau.$$



        At last, we are left with: $$x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
        cdotfrac12g^mutauleft(partial_lambda g_epsilontau
        +partial_epsilon g_lambdatau
        -partial_tau g_epsilonlambdaright)
        =x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
        cdotGamma^mu_lambdaepsilon.$$



        Now we have obtained the following: $$Gamma^barmu_baralphabarbeta
        =x^barmu_,mux^mu_, baralphabarbeta
        +x^barmu_,mux^lambda_,baralphax^epsilon_,barbeta
        cdotGamma^mu_lambdaepsilon.$$



        This is the sought result.






        share|cite|improve this answer












        Starting with $$Gamma^barmu_baralphabarbeta=frac12g^barmubarnuleft(partial_baralphag_barbetabarnu+partial_barbetag_baralphabarnu-partial_barnug_baralphabarbetaright),$$



        we have $$partial_baralphag_barbetabarnu=g_epsilontauleft( x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpharight)+x^epsilon_,barbetax^tau_,barnux^lambda_,baralphapartial_lambda g_epsilontau,$$



        $$partial_barbetag_baralphabarnu=g_epsilontauleft( x^epsilon_, baralpha barbeta x^tau_,barnu+x^epsilon_, baralpha x^tau_,barnubarbetaright)+x^epsilon_,baralphax^tau_,barnux^lambda_,barbetapartial_lambda g_epsilontau,$$



        $$partial_barnug_baralphabarbeta=g_epsilontauleft( x^epsilon_, baralpha barnu x^tau_,barbeta+x^epsilon_, baralpha x^tau_,barbetabarnuright)+x^epsilon_,baralphax^tau_,barbetax^lambda_,barnupartial_lambda g_epsilontau.$$



        Substitution gives us $$Gamma^barmu_baralphabarbeta
        =frac12g^barmubarnug_epsilontauleft(x^epsilon_, barbeta baralpha x^tau_,barnu
        +x^epsilon_, barbeta x^tau_,barnubaralpha
        +x^epsilon_, baralpha barbeta x^tau_,barnu
        +x^epsilon_, baralpha x^tau_,barnubarbeta
        -x^epsilon_, baralpha barnu x^tau_,barbeta
        -x^epsilon_, baralpha x^tau_,barbetabarnuright)$$
        $$+frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
        +x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
        -x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright).$$



        Using the interchangeability of the second derivatives, the first term becomes:
        $$frac12g^barmubarnug_epsilontauleft(2x^epsilon_, barbeta baralpha x^tau_,barnu+x^epsilon_, barbeta x^tau_,barnubaralpha-x^epsilon_, baralpha barnu x^tau_,barbetaright)$$
        $$=g^barmubarnug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu+frac12g^barmubarnug_epsilontaux^epsilon_, barbeta x^tau_,barnubaralpha-frac12g^barmubarnug_epsilontaux^epsilon_, baralpha barnu x^tau_,barbeta.$$



        Switching the indices $epsilon,tau$ in the last term cancels both last terms out because of the metric's symmetry. We are then left with: $$g^barmubarnug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu
        =g^munux^barmu_,mux^barnu_,nug_epsilontaux^epsilon_, barbeta baralpha x^tau_,barnu
        =g^munudelta^tau_nu x^barmu_,mug_epsilontaux^epsilon_, barbeta baralpha
        =g^mutaug_epsilontaux^barmu_,mux^epsilon_, barbeta baralpha
        =delta^mu_epsilonx^barmu_,mux^epsilon_, barbeta baralpha
        =x^barmu_,mux^mu_, barbeta baralpha.$$



        Now we have obtained the following: $$Gamma^barmu_baralphabarbeta
        =x^barmu_,mux^mu_, barbeta baralpha
        +frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
        +x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
        -x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright).$$



        Switching the indices $epsilonleftrightarrow lambda$ in the second term of the remaining bracket and $epsilonrightarrowlambdarightarrowtaurightarrowepsilon$ in the third term, we find: $$frac12g^barmubarnupartial_lambda g_epsilontauleft(x^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
        +x^epsilon_,baralphax^tau_,barnux^lambda_,barbeta
        -x^epsilon_,baralphax^tau_,barbetax^lambda_,barnuright)$$
        $$=frac12g^barmubarnux^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
        left(partial_lambda g_epsilontau
        +partial_epsilon g_lambdatau
        -partial_tau g_epsilonlambdaright).$$



        As before, we now introduce the barless indices: $$g^munux^barmu_,mux^barnu_,nux^epsilon_,barbetax^tau_,barnux^lambda_,baralpha
        =frac12g^munudelta^tau_nu x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
        =x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
        cdotfrac12g^mutau.$$



        At last, we are left with: $$x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
        cdotfrac12g^mutauleft(partial_lambda g_epsilontau
        +partial_epsilon g_lambdatau
        -partial_tau g_epsilonlambdaright)
        =x^barmu_,mu x^epsilon_,barbetax^lambda_,baralpha
        cdotGamma^mu_lambdaepsilon.$$



        Now we have obtained the following: $$Gamma^barmu_baralphabarbeta
        =x^barmu_,mux^mu_, baralphabarbeta
        +x^barmu_,mux^lambda_,baralphax^epsilon_,barbeta
        cdotGamma^mu_lambdaepsilon.$$



        This is the sought result.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Sep 9 at 12:51









        Thomas Wening

        1009




        1009



























             

            draft saved


            draft discarded















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2906180%2ftransformation-of-christoffel-symbol%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            How to combine Bézier curves to a surface?

            Mutual Information Always Non-negative

            Why am i infinitely getting the same tweet with the Twitter Search API?