Closed-form of a special value dilogarithm identity

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
5
down vote

favorite
1












Let $c$ be the following.



$$c = frac1+isqrt 33operatornameLi_2left(1-fracisqrt 33right)+operatornameLi_2left(frac 34 + fracisqrt 34right) + frac1-isqrt33operatornameLi_2left(frac12+fracisqrt 36right),$$



where $operatornameLi_2$ is the dilogarithm function.



This $c$ appeared while combining answers to this question. Results from there we know that



$$Re(c) = -fracpi^254-frac12ln^2 2+fracpi,sqrt36 ln 2 - fracpi,sqrt39 ln 3 + frac16 ln 2 ln 3 + frac14psi_1left(frac13right)+frac16operatornameLi_2left(-frac13right),$$



where $psi_1$ is the trigamma function.



My questions.



  • $1^textst$ Question. Could we evaluate $Re(c)$ also via some dilogarithm identity?


  • $2^textnd$ Question. Could we specify a closed-form of $Im(c)$ too?



Edit. From the analysis by @David H we have more results. Let



$$beginalign
c_1 & = frac1+isqrt 33operatornameLi_2left(1-fracisqrt 33right)\
c_2 & = operatornameLi_2left(frac 34 + fracisqrt 34right)\
c_3 & = frac1-isqrt33operatornameLi_2left(frac12+fracisqrt 36right).
endalign$$



Therefore of course $c=c_1+c_2+c_3$. David H has shown that



$$Re(c_2) = frac7pi^272+fracln^2(3)8-fracln^2left(2right)2+frac14operatornameLi_2left(-frac13right).$$



From here it's easy to see, that



$$Re(c_1+c_3) = -frac25,pi^2216-frac18ln^2 3 + fracpi,sqrt36ln 2 - fracpi,sqrt39 ln 3 + frac16 ln 2 ln 3 + frac14 psi_1left(frac13right) - frac112 operatornameLi_2 left( - frac13 right).$$










share|cite|improve this question



























    up vote
    5
    down vote

    favorite
    1












    Let $c$ be the following.



    $$c = frac1+isqrt 33operatornameLi_2left(1-fracisqrt 33right)+operatornameLi_2left(frac 34 + fracisqrt 34right) + frac1-isqrt33operatornameLi_2left(frac12+fracisqrt 36right),$$



    where $operatornameLi_2$ is the dilogarithm function.



    This $c$ appeared while combining answers to this question. Results from there we know that



    $$Re(c) = -fracpi^254-frac12ln^2 2+fracpi,sqrt36 ln 2 - fracpi,sqrt39 ln 3 + frac16 ln 2 ln 3 + frac14psi_1left(frac13right)+frac16operatornameLi_2left(-frac13right),$$



    where $psi_1$ is the trigamma function.



    My questions.



    • $1^textst$ Question. Could we evaluate $Re(c)$ also via some dilogarithm identity?


    • $2^textnd$ Question. Could we specify a closed-form of $Im(c)$ too?



    Edit. From the analysis by @David H we have more results. Let



    $$beginalign
    c_1 & = frac1+isqrt 33operatornameLi_2left(1-fracisqrt 33right)\
    c_2 & = operatornameLi_2left(frac 34 + fracisqrt 34right)\
    c_3 & = frac1-isqrt33operatornameLi_2left(frac12+fracisqrt 36right).
    endalign$$



    Therefore of course $c=c_1+c_2+c_3$. David H has shown that



    $$Re(c_2) = frac7pi^272+fracln^2(3)8-fracln^2left(2right)2+frac14operatornameLi_2left(-frac13right).$$



    From here it's easy to see, that



    $$Re(c_1+c_3) = -frac25,pi^2216-frac18ln^2 3 + fracpi,sqrt36ln 2 - fracpi,sqrt39 ln 3 + frac16 ln 2 ln 3 + frac14 psi_1left(frac13right) - frac112 operatornameLi_2 left( - frac13 right).$$










    share|cite|improve this question

























      up vote
      5
      down vote

      favorite
      1









      up vote
      5
      down vote

      favorite
      1






      1





      Let $c$ be the following.



      $$c = frac1+isqrt 33operatornameLi_2left(1-fracisqrt 33right)+operatornameLi_2left(frac 34 + fracisqrt 34right) + frac1-isqrt33operatornameLi_2left(frac12+fracisqrt 36right),$$



      where $operatornameLi_2$ is the dilogarithm function.



      This $c$ appeared while combining answers to this question. Results from there we know that



      $$Re(c) = -fracpi^254-frac12ln^2 2+fracpi,sqrt36 ln 2 - fracpi,sqrt39 ln 3 + frac16 ln 2 ln 3 + frac14psi_1left(frac13right)+frac16operatornameLi_2left(-frac13right),$$



      where $psi_1$ is the trigamma function.



      My questions.



      • $1^textst$ Question. Could we evaluate $Re(c)$ also via some dilogarithm identity?


      • $2^textnd$ Question. Could we specify a closed-form of $Im(c)$ too?



      Edit. From the analysis by @David H we have more results. Let



      $$beginalign
      c_1 & = frac1+isqrt 33operatornameLi_2left(1-fracisqrt 33right)\
      c_2 & = operatornameLi_2left(frac 34 + fracisqrt 34right)\
      c_3 & = frac1-isqrt33operatornameLi_2left(frac12+fracisqrt 36right).
      endalign$$



      Therefore of course $c=c_1+c_2+c_3$. David H has shown that



      $$Re(c_2) = frac7pi^272+fracln^2(3)8-fracln^2left(2right)2+frac14operatornameLi_2left(-frac13right).$$



      From here it's easy to see, that



      $$Re(c_1+c_3) = -frac25,pi^2216-frac18ln^2 3 + fracpi,sqrt36ln 2 - fracpi,sqrt39 ln 3 + frac16 ln 2 ln 3 + frac14 psi_1left(frac13right) - frac112 operatornameLi_2 left( - frac13 right).$$










      share|cite|improve this question















      Let $c$ be the following.



      $$c = frac1+isqrt 33operatornameLi_2left(1-fracisqrt 33right)+operatornameLi_2left(frac 34 + fracisqrt 34right) + frac1-isqrt33operatornameLi_2left(frac12+fracisqrt 36right),$$



      where $operatornameLi_2$ is the dilogarithm function.



      This $c$ appeared while combining answers to this question. Results from there we know that



      $$Re(c) = -fracpi^254-frac12ln^2 2+fracpi,sqrt36 ln 2 - fracpi,sqrt39 ln 3 + frac16 ln 2 ln 3 + frac14psi_1left(frac13right)+frac16operatornameLi_2left(-frac13right),$$



      where $psi_1$ is the trigamma function.



      My questions.



      • $1^textst$ Question. Could we evaluate $Re(c)$ also via some dilogarithm identity?


      • $2^textnd$ Question. Could we specify a closed-form of $Im(c)$ too?



      Edit. From the analysis by @David H we have more results. Let



      $$beginalign
      c_1 & = frac1+isqrt 33operatornameLi_2left(1-fracisqrt 33right)\
      c_2 & = operatornameLi_2left(frac 34 + fracisqrt 34right)\
      c_3 & = frac1-isqrt33operatornameLi_2left(frac12+fracisqrt 36right).
      endalign$$



      Therefore of course $c=c_1+c_2+c_3$. David H has shown that



      $$Re(c_2) = frac7pi^272+fracln^2(3)8-fracln^2left(2right)2+frac14operatornameLi_2left(-frac13right).$$



      From here it's easy to see, that



      $$Re(c_1+c_3) = -frac25,pi^2216-frac18ln^2 3 + fracpi,sqrt36ln 2 - fracpi,sqrt39 ln 3 + frac16 ln 2 ln 3 + frac14 psi_1left(frac13right) - frac112 operatornameLi_2 left( - frac13 right).$$







      calculus special-functions closed-form polylogarithm






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Apr 13 '17 at 12:20









      Community♦

      1




      1










      asked Oct 19 '14 at 0:01









      user153012

      6,09522277




      6,09522277




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          7
          down vote













          The following is a partial answer to the first question.



          For any real number $ainmathbbR$ and any two complex numers $z_1,z_2inmathbbC$, the operations $Re(cdot)$ and $Im(cdot)$ obey the following algebraic properties:



          $$begincases
          Re(z_1):=fracz_1+barz_12\
          Im(z_1):=fracz_1-barz_12i\
          Re(z_1+z_2)=Re(z_1)+Re(z_2)\
          Im(z_1+z_2)=Im(z_1)+Im(z_2)\
          Re(az_1)=a,Re(z_1)\
          Im(az_1)=a,Im(z_1)\
          Re(iz_1)=-Im(z_1)\
          Im(iz_1)=Re(z_1).\
          endcases$$



          Using the above properties, we may simplify $Re(c)$ as follows:



          $$beginalign
          Re(c)
          &=Releft[operatornameLi_2left(frac34+ifracsqrt34right)+frac1+isqrt33operatornameLi_2left(1-ifracsqrt33right)+frac1-isqrt33operatornameLi_2left(frac12+ifracsqrt36right)right]\
          &=Releft[operatornameLi_2left(frac34+ifracsqrt34right)right]+Releft[frac1+isqrt33operatornameLi_2left(1-ifracsqrt33right)right]\
          &~~~~~ +Releft[frac1-isqrt33operatornameLi_2left(frac12+ifracsqrt36right)right]\
          &=Releft[operatornameLi_2left(frac34+ifracsqrt34right)right]+frac13Releft[operatornameLi_2left(1-ifracsqrt33right)right]-frac1sqrt3Imleft[operatornameLi_2left(1-ifracsqrt33right)right]\
          &~~~~~ +frac13Releft[operatornameLi_2left(frac12+ifracsqrt36right)right]+frac1sqrt3Imleft[operatornameLi_2left(frac12+ifracsqrt36right)right].\
          endalign$$



          Now, Landen's dilogarithm identity states:



          $$operatornameLi_2left(zright)=-operatornameLi_2left(fraczz-1right)-frac12ln^2left(1-zright);~znotin[1,infty).$$



          Then, letting $z=frac34+ifracsqrt34$ we have $fraczz-1=-i,sqrt3$, and thus:



          $$beginalign
          operatornameLi_2left(frac34+ifracsqrt34right)
          &=-operatornameLi_2left(-i,sqrt3right)-frac12ln^2left(frac14-ifracsqrt34right)\
          &=-operatornameLi_2left(-i,sqrt3right)-frac12ln^2left(frac12e^-fracipi3right)\
          &=-operatornameLi_2left(-i,sqrt3right)-frac12left(lnleft(frac12right)-fracipi3right)^2\
          &=-operatornameLi_2left(-i,sqrt3right)-frac12left(-lnleft(2right)-fracipi3right)^2\
          &=-operatornameLi_2left(-i,sqrt3right)-frac12left(-fracpi^29+ln^2left(2right)+frac2ipiln(2)3right)\
          &=-operatornameLi_2left(-i,sqrt3right)+fracpi^218-fracln^2left(2right)2-fracipiln(2)3\
          &=fracpi^218-fracln^2left(2right)2-fracipiln(2)3-operatornameLi_2left(-i,sqrt3right).\
          endalign$$



          Taking the real component of this dilogarithmic term yields:



          $$beginalign
          Releft[operatornameLi_2left(frac34+ifracsqrt34right)right]
          &=Releft[fracpi^218-fracln^2left(2right)2-fracipiln(2)3-operatornameLi_2left(-i,sqrt3right)right]\
          &=fracpi^218-fracln^2left(2right)2-Releft[operatornameLi_2left(-i,sqrt3right)right]\
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-i,sqrt3right)+overlineoperatornameLi_2left(-i,sqrt3right)2\
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-i,sqrt3right)+operatornameLi_2left(overline-i,sqrt3right)2\
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-i,sqrt3right)+operatornameLi_2left(i,sqrt3right)2\
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-3right)4,\
          endalign$$



          where in going from the third to the fourth line we've used the mirror symmetry of the dilogarithm, and to obtain the last line we've used the dilogarithmic identity,



          $$operatornameLi_2left(zright)+operatornameLi_2left(-zright)=frac12operatornameLi_2left(z^2right).$$



          One more dilogarithmic identity we shall need relates the dilogarithms of reciprocal arguments:



          $$operatornameLi_2left(zright)=-operatornameLi_2left(frac1zright)-frac12ln^2(-z)-fracpi^26;~znotin[0,1].$$



          Hence,



          $$beginalign
          Releft[operatornameLi_2left(frac34+ifracsqrt34right)right]
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-3right)4\
          &=fracpi^218-fracln^2left(2right)2-frac-operatornameLi_2left(-frac13right)-frac12ln^2(3)-fracpi^264\
          &=frac7pi^272+fracln^2(3)8-fracln^2left(2right)2+frac14operatornameLi_2left(-frac13right).\
          endalign$$






          share|cite|improve this answer




















          • Nice answer David H again! Thank you! +1.
            – user153012
            Oct 19 '14 at 8:49






          • 1




            Impressive! +1 for the answer and +1 for the OP @user153012. I am really too kind for upvoting post so easily (っ^▿^)💨
            – Anastasiya-Romanova 秀
            Oct 19 '14 at 9:24






          • 1




            Thank you @Anastasiya-Romanova and with this, yes, you really have a really nice expression to your hypergeom series there. Finally. ;>
            – user153012
            Oct 19 '14 at 9:26






          • 2




            @Anastasiya-Romanova $$_3F_2left(frac13,frac13,frac13;frac43,frac43; frac12 right)$$ equals to $$fracsqrt[3]23left( -frac5,pi^272 - fracpi,sqrt39ln 2 + fracpi,sqrt36ln 3+frac18ln^2 3 - frac16 ln^2 2 + frac14 psi_1left(frac13right) + frac13operatornameLi_2left(-frac13right) right)$$
            – user153012
            Oct 19 '14 at 10:00






          • 1




            @Anastasiya-Romanova The proof comes from the answers by M.N.C.E. and David H here, and the analysis by David H of this question.
            – user153012
            Oct 19 '14 at 10:07










          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f980179%2fclosed-form-of-a-special-value-dilogarithm-identity%23new-answer', 'question_page');

          );

          Post as a guest






























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          7
          down vote













          The following is a partial answer to the first question.



          For any real number $ainmathbbR$ and any two complex numers $z_1,z_2inmathbbC$, the operations $Re(cdot)$ and $Im(cdot)$ obey the following algebraic properties:



          $$begincases
          Re(z_1):=fracz_1+barz_12\
          Im(z_1):=fracz_1-barz_12i\
          Re(z_1+z_2)=Re(z_1)+Re(z_2)\
          Im(z_1+z_2)=Im(z_1)+Im(z_2)\
          Re(az_1)=a,Re(z_1)\
          Im(az_1)=a,Im(z_1)\
          Re(iz_1)=-Im(z_1)\
          Im(iz_1)=Re(z_1).\
          endcases$$



          Using the above properties, we may simplify $Re(c)$ as follows:



          $$beginalign
          Re(c)
          &=Releft[operatornameLi_2left(frac34+ifracsqrt34right)+frac1+isqrt33operatornameLi_2left(1-ifracsqrt33right)+frac1-isqrt33operatornameLi_2left(frac12+ifracsqrt36right)right]\
          &=Releft[operatornameLi_2left(frac34+ifracsqrt34right)right]+Releft[frac1+isqrt33operatornameLi_2left(1-ifracsqrt33right)right]\
          &~~~~~ +Releft[frac1-isqrt33operatornameLi_2left(frac12+ifracsqrt36right)right]\
          &=Releft[operatornameLi_2left(frac34+ifracsqrt34right)right]+frac13Releft[operatornameLi_2left(1-ifracsqrt33right)right]-frac1sqrt3Imleft[operatornameLi_2left(1-ifracsqrt33right)right]\
          &~~~~~ +frac13Releft[operatornameLi_2left(frac12+ifracsqrt36right)right]+frac1sqrt3Imleft[operatornameLi_2left(frac12+ifracsqrt36right)right].\
          endalign$$



          Now, Landen's dilogarithm identity states:



          $$operatornameLi_2left(zright)=-operatornameLi_2left(fraczz-1right)-frac12ln^2left(1-zright);~znotin[1,infty).$$



          Then, letting $z=frac34+ifracsqrt34$ we have $fraczz-1=-i,sqrt3$, and thus:



          $$beginalign
          operatornameLi_2left(frac34+ifracsqrt34right)
          &=-operatornameLi_2left(-i,sqrt3right)-frac12ln^2left(frac14-ifracsqrt34right)\
          &=-operatornameLi_2left(-i,sqrt3right)-frac12ln^2left(frac12e^-fracipi3right)\
          &=-operatornameLi_2left(-i,sqrt3right)-frac12left(lnleft(frac12right)-fracipi3right)^2\
          &=-operatornameLi_2left(-i,sqrt3right)-frac12left(-lnleft(2right)-fracipi3right)^2\
          &=-operatornameLi_2left(-i,sqrt3right)-frac12left(-fracpi^29+ln^2left(2right)+frac2ipiln(2)3right)\
          &=-operatornameLi_2left(-i,sqrt3right)+fracpi^218-fracln^2left(2right)2-fracipiln(2)3\
          &=fracpi^218-fracln^2left(2right)2-fracipiln(2)3-operatornameLi_2left(-i,sqrt3right).\
          endalign$$



          Taking the real component of this dilogarithmic term yields:



          $$beginalign
          Releft[operatornameLi_2left(frac34+ifracsqrt34right)right]
          &=Releft[fracpi^218-fracln^2left(2right)2-fracipiln(2)3-operatornameLi_2left(-i,sqrt3right)right]\
          &=fracpi^218-fracln^2left(2right)2-Releft[operatornameLi_2left(-i,sqrt3right)right]\
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-i,sqrt3right)+overlineoperatornameLi_2left(-i,sqrt3right)2\
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-i,sqrt3right)+operatornameLi_2left(overline-i,sqrt3right)2\
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-i,sqrt3right)+operatornameLi_2left(i,sqrt3right)2\
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-3right)4,\
          endalign$$



          where in going from the third to the fourth line we've used the mirror symmetry of the dilogarithm, and to obtain the last line we've used the dilogarithmic identity,



          $$operatornameLi_2left(zright)+operatornameLi_2left(-zright)=frac12operatornameLi_2left(z^2right).$$



          One more dilogarithmic identity we shall need relates the dilogarithms of reciprocal arguments:



          $$operatornameLi_2left(zright)=-operatornameLi_2left(frac1zright)-frac12ln^2(-z)-fracpi^26;~znotin[0,1].$$



          Hence,



          $$beginalign
          Releft[operatornameLi_2left(frac34+ifracsqrt34right)right]
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-3right)4\
          &=fracpi^218-fracln^2left(2right)2-frac-operatornameLi_2left(-frac13right)-frac12ln^2(3)-fracpi^264\
          &=frac7pi^272+fracln^2(3)8-fracln^2left(2right)2+frac14operatornameLi_2left(-frac13right).\
          endalign$$






          share|cite|improve this answer




















          • Nice answer David H again! Thank you! +1.
            – user153012
            Oct 19 '14 at 8:49






          • 1




            Impressive! +1 for the answer and +1 for the OP @user153012. I am really too kind for upvoting post so easily (っ^▿^)💨
            – Anastasiya-Romanova 秀
            Oct 19 '14 at 9:24






          • 1




            Thank you @Anastasiya-Romanova and with this, yes, you really have a really nice expression to your hypergeom series there. Finally. ;>
            – user153012
            Oct 19 '14 at 9:26






          • 2




            @Anastasiya-Romanova $$_3F_2left(frac13,frac13,frac13;frac43,frac43; frac12 right)$$ equals to $$fracsqrt[3]23left( -frac5,pi^272 - fracpi,sqrt39ln 2 + fracpi,sqrt36ln 3+frac18ln^2 3 - frac16 ln^2 2 + frac14 psi_1left(frac13right) + frac13operatornameLi_2left(-frac13right) right)$$
            – user153012
            Oct 19 '14 at 10:00






          • 1




            @Anastasiya-Romanova The proof comes from the answers by M.N.C.E. and David H here, and the analysis by David H of this question.
            – user153012
            Oct 19 '14 at 10:07














          up vote
          7
          down vote













          The following is a partial answer to the first question.



          For any real number $ainmathbbR$ and any two complex numers $z_1,z_2inmathbbC$, the operations $Re(cdot)$ and $Im(cdot)$ obey the following algebraic properties:



          $$begincases
          Re(z_1):=fracz_1+barz_12\
          Im(z_1):=fracz_1-barz_12i\
          Re(z_1+z_2)=Re(z_1)+Re(z_2)\
          Im(z_1+z_2)=Im(z_1)+Im(z_2)\
          Re(az_1)=a,Re(z_1)\
          Im(az_1)=a,Im(z_1)\
          Re(iz_1)=-Im(z_1)\
          Im(iz_1)=Re(z_1).\
          endcases$$



          Using the above properties, we may simplify $Re(c)$ as follows:



          $$beginalign
          Re(c)
          &=Releft[operatornameLi_2left(frac34+ifracsqrt34right)+frac1+isqrt33operatornameLi_2left(1-ifracsqrt33right)+frac1-isqrt33operatornameLi_2left(frac12+ifracsqrt36right)right]\
          &=Releft[operatornameLi_2left(frac34+ifracsqrt34right)right]+Releft[frac1+isqrt33operatornameLi_2left(1-ifracsqrt33right)right]\
          &~~~~~ +Releft[frac1-isqrt33operatornameLi_2left(frac12+ifracsqrt36right)right]\
          &=Releft[operatornameLi_2left(frac34+ifracsqrt34right)right]+frac13Releft[operatornameLi_2left(1-ifracsqrt33right)right]-frac1sqrt3Imleft[operatornameLi_2left(1-ifracsqrt33right)right]\
          &~~~~~ +frac13Releft[operatornameLi_2left(frac12+ifracsqrt36right)right]+frac1sqrt3Imleft[operatornameLi_2left(frac12+ifracsqrt36right)right].\
          endalign$$



          Now, Landen's dilogarithm identity states:



          $$operatornameLi_2left(zright)=-operatornameLi_2left(fraczz-1right)-frac12ln^2left(1-zright);~znotin[1,infty).$$



          Then, letting $z=frac34+ifracsqrt34$ we have $fraczz-1=-i,sqrt3$, and thus:



          $$beginalign
          operatornameLi_2left(frac34+ifracsqrt34right)
          &=-operatornameLi_2left(-i,sqrt3right)-frac12ln^2left(frac14-ifracsqrt34right)\
          &=-operatornameLi_2left(-i,sqrt3right)-frac12ln^2left(frac12e^-fracipi3right)\
          &=-operatornameLi_2left(-i,sqrt3right)-frac12left(lnleft(frac12right)-fracipi3right)^2\
          &=-operatornameLi_2left(-i,sqrt3right)-frac12left(-lnleft(2right)-fracipi3right)^2\
          &=-operatornameLi_2left(-i,sqrt3right)-frac12left(-fracpi^29+ln^2left(2right)+frac2ipiln(2)3right)\
          &=-operatornameLi_2left(-i,sqrt3right)+fracpi^218-fracln^2left(2right)2-fracipiln(2)3\
          &=fracpi^218-fracln^2left(2right)2-fracipiln(2)3-operatornameLi_2left(-i,sqrt3right).\
          endalign$$



          Taking the real component of this dilogarithmic term yields:



          $$beginalign
          Releft[operatornameLi_2left(frac34+ifracsqrt34right)right]
          &=Releft[fracpi^218-fracln^2left(2right)2-fracipiln(2)3-operatornameLi_2left(-i,sqrt3right)right]\
          &=fracpi^218-fracln^2left(2right)2-Releft[operatornameLi_2left(-i,sqrt3right)right]\
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-i,sqrt3right)+overlineoperatornameLi_2left(-i,sqrt3right)2\
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-i,sqrt3right)+operatornameLi_2left(overline-i,sqrt3right)2\
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-i,sqrt3right)+operatornameLi_2left(i,sqrt3right)2\
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-3right)4,\
          endalign$$



          where in going from the third to the fourth line we've used the mirror symmetry of the dilogarithm, and to obtain the last line we've used the dilogarithmic identity,



          $$operatornameLi_2left(zright)+operatornameLi_2left(-zright)=frac12operatornameLi_2left(z^2right).$$



          One more dilogarithmic identity we shall need relates the dilogarithms of reciprocal arguments:



          $$operatornameLi_2left(zright)=-operatornameLi_2left(frac1zright)-frac12ln^2(-z)-fracpi^26;~znotin[0,1].$$



          Hence,



          $$beginalign
          Releft[operatornameLi_2left(frac34+ifracsqrt34right)right]
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-3right)4\
          &=fracpi^218-fracln^2left(2right)2-frac-operatornameLi_2left(-frac13right)-frac12ln^2(3)-fracpi^264\
          &=frac7pi^272+fracln^2(3)8-fracln^2left(2right)2+frac14operatornameLi_2left(-frac13right).\
          endalign$$






          share|cite|improve this answer




















          • Nice answer David H again! Thank you! +1.
            – user153012
            Oct 19 '14 at 8:49






          • 1




            Impressive! +1 for the answer and +1 for the OP @user153012. I am really too kind for upvoting post so easily (っ^▿^)💨
            – Anastasiya-Romanova 秀
            Oct 19 '14 at 9:24






          • 1




            Thank you @Anastasiya-Romanova and with this, yes, you really have a really nice expression to your hypergeom series there. Finally. ;>
            – user153012
            Oct 19 '14 at 9:26






          • 2




            @Anastasiya-Romanova $$_3F_2left(frac13,frac13,frac13;frac43,frac43; frac12 right)$$ equals to $$fracsqrt[3]23left( -frac5,pi^272 - fracpi,sqrt39ln 2 + fracpi,sqrt36ln 3+frac18ln^2 3 - frac16 ln^2 2 + frac14 psi_1left(frac13right) + frac13operatornameLi_2left(-frac13right) right)$$
            – user153012
            Oct 19 '14 at 10:00






          • 1




            @Anastasiya-Romanova The proof comes from the answers by M.N.C.E. and David H here, and the analysis by David H of this question.
            – user153012
            Oct 19 '14 at 10:07












          up vote
          7
          down vote










          up vote
          7
          down vote









          The following is a partial answer to the first question.



          For any real number $ainmathbbR$ and any two complex numers $z_1,z_2inmathbbC$, the operations $Re(cdot)$ and $Im(cdot)$ obey the following algebraic properties:



          $$begincases
          Re(z_1):=fracz_1+barz_12\
          Im(z_1):=fracz_1-barz_12i\
          Re(z_1+z_2)=Re(z_1)+Re(z_2)\
          Im(z_1+z_2)=Im(z_1)+Im(z_2)\
          Re(az_1)=a,Re(z_1)\
          Im(az_1)=a,Im(z_1)\
          Re(iz_1)=-Im(z_1)\
          Im(iz_1)=Re(z_1).\
          endcases$$



          Using the above properties, we may simplify $Re(c)$ as follows:



          $$beginalign
          Re(c)
          &=Releft[operatornameLi_2left(frac34+ifracsqrt34right)+frac1+isqrt33operatornameLi_2left(1-ifracsqrt33right)+frac1-isqrt33operatornameLi_2left(frac12+ifracsqrt36right)right]\
          &=Releft[operatornameLi_2left(frac34+ifracsqrt34right)right]+Releft[frac1+isqrt33operatornameLi_2left(1-ifracsqrt33right)right]\
          &~~~~~ +Releft[frac1-isqrt33operatornameLi_2left(frac12+ifracsqrt36right)right]\
          &=Releft[operatornameLi_2left(frac34+ifracsqrt34right)right]+frac13Releft[operatornameLi_2left(1-ifracsqrt33right)right]-frac1sqrt3Imleft[operatornameLi_2left(1-ifracsqrt33right)right]\
          &~~~~~ +frac13Releft[operatornameLi_2left(frac12+ifracsqrt36right)right]+frac1sqrt3Imleft[operatornameLi_2left(frac12+ifracsqrt36right)right].\
          endalign$$



          Now, Landen's dilogarithm identity states:



          $$operatornameLi_2left(zright)=-operatornameLi_2left(fraczz-1right)-frac12ln^2left(1-zright);~znotin[1,infty).$$



          Then, letting $z=frac34+ifracsqrt34$ we have $fraczz-1=-i,sqrt3$, and thus:



          $$beginalign
          operatornameLi_2left(frac34+ifracsqrt34right)
          &=-operatornameLi_2left(-i,sqrt3right)-frac12ln^2left(frac14-ifracsqrt34right)\
          &=-operatornameLi_2left(-i,sqrt3right)-frac12ln^2left(frac12e^-fracipi3right)\
          &=-operatornameLi_2left(-i,sqrt3right)-frac12left(lnleft(frac12right)-fracipi3right)^2\
          &=-operatornameLi_2left(-i,sqrt3right)-frac12left(-lnleft(2right)-fracipi3right)^2\
          &=-operatornameLi_2left(-i,sqrt3right)-frac12left(-fracpi^29+ln^2left(2right)+frac2ipiln(2)3right)\
          &=-operatornameLi_2left(-i,sqrt3right)+fracpi^218-fracln^2left(2right)2-fracipiln(2)3\
          &=fracpi^218-fracln^2left(2right)2-fracipiln(2)3-operatornameLi_2left(-i,sqrt3right).\
          endalign$$



          Taking the real component of this dilogarithmic term yields:



          $$beginalign
          Releft[operatornameLi_2left(frac34+ifracsqrt34right)right]
          &=Releft[fracpi^218-fracln^2left(2right)2-fracipiln(2)3-operatornameLi_2left(-i,sqrt3right)right]\
          &=fracpi^218-fracln^2left(2right)2-Releft[operatornameLi_2left(-i,sqrt3right)right]\
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-i,sqrt3right)+overlineoperatornameLi_2left(-i,sqrt3right)2\
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-i,sqrt3right)+operatornameLi_2left(overline-i,sqrt3right)2\
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-i,sqrt3right)+operatornameLi_2left(i,sqrt3right)2\
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-3right)4,\
          endalign$$



          where in going from the third to the fourth line we've used the mirror symmetry of the dilogarithm, and to obtain the last line we've used the dilogarithmic identity,



          $$operatornameLi_2left(zright)+operatornameLi_2left(-zright)=frac12operatornameLi_2left(z^2right).$$



          One more dilogarithmic identity we shall need relates the dilogarithms of reciprocal arguments:



          $$operatornameLi_2left(zright)=-operatornameLi_2left(frac1zright)-frac12ln^2(-z)-fracpi^26;~znotin[0,1].$$



          Hence,



          $$beginalign
          Releft[operatornameLi_2left(frac34+ifracsqrt34right)right]
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-3right)4\
          &=fracpi^218-fracln^2left(2right)2-frac-operatornameLi_2left(-frac13right)-frac12ln^2(3)-fracpi^264\
          &=frac7pi^272+fracln^2(3)8-fracln^2left(2right)2+frac14operatornameLi_2left(-frac13right).\
          endalign$$






          share|cite|improve this answer












          The following is a partial answer to the first question.



          For any real number $ainmathbbR$ and any two complex numers $z_1,z_2inmathbbC$, the operations $Re(cdot)$ and $Im(cdot)$ obey the following algebraic properties:



          $$begincases
          Re(z_1):=fracz_1+barz_12\
          Im(z_1):=fracz_1-barz_12i\
          Re(z_1+z_2)=Re(z_1)+Re(z_2)\
          Im(z_1+z_2)=Im(z_1)+Im(z_2)\
          Re(az_1)=a,Re(z_1)\
          Im(az_1)=a,Im(z_1)\
          Re(iz_1)=-Im(z_1)\
          Im(iz_1)=Re(z_1).\
          endcases$$



          Using the above properties, we may simplify $Re(c)$ as follows:



          $$beginalign
          Re(c)
          &=Releft[operatornameLi_2left(frac34+ifracsqrt34right)+frac1+isqrt33operatornameLi_2left(1-ifracsqrt33right)+frac1-isqrt33operatornameLi_2left(frac12+ifracsqrt36right)right]\
          &=Releft[operatornameLi_2left(frac34+ifracsqrt34right)right]+Releft[frac1+isqrt33operatornameLi_2left(1-ifracsqrt33right)right]\
          &~~~~~ +Releft[frac1-isqrt33operatornameLi_2left(frac12+ifracsqrt36right)right]\
          &=Releft[operatornameLi_2left(frac34+ifracsqrt34right)right]+frac13Releft[operatornameLi_2left(1-ifracsqrt33right)right]-frac1sqrt3Imleft[operatornameLi_2left(1-ifracsqrt33right)right]\
          &~~~~~ +frac13Releft[operatornameLi_2left(frac12+ifracsqrt36right)right]+frac1sqrt3Imleft[operatornameLi_2left(frac12+ifracsqrt36right)right].\
          endalign$$



          Now, Landen's dilogarithm identity states:



          $$operatornameLi_2left(zright)=-operatornameLi_2left(fraczz-1right)-frac12ln^2left(1-zright);~znotin[1,infty).$$



          Then, letting $z=frac34+ifracsqrt34$ we have $fraczz-1=-i,sqrt3$, and thus:



          $$beginalign
          operatornameLi_2left(frac34+ifracsqrt34right)
          &=-operatornameLi_2left(-i,sqrt3right)-frac12ln^2left(frac14-ifracsqrt34right)\
          &=-operatornameLi_2left(-i,sqrt3right)-frac12ln^2left(frac12e^-fracipi3right)\
          &=-operatornameLi_2left(-i,sqrt3right)-frac12left(lnleft(frac12right)-fracipi3right)^2\
          &=-operatornameLi_2left(-i,sqrt3right)-frac12left(-lnleft(2right)-fracipi3right)^2\
          &=-operatornameLi_2left(-i,sqrt3right)-frac12left(-fracpi^29+ln^2left(2right)+frac2ipiln(2)3right)\
          &=-operatornameLi_2left(-i,sqrt3right)+fracpi^218-fracln^2left(2right)2-fracipiln(2)3\
          &=fracpi^218-fracln^2left(2right)2-fracipiln(2)3-operatornameLi_2left(-i,sqrt3right).\
          endalign$$



          Taking the real component of this dilogarithmic term yields:



          $$beginalign
          Releft[operatornameLi_2left(frac34+ifracsqrt34right)right]
          &=Releft[fracpi^218-fracln^2left(2right)2-fracipiln(2)3-operatornameLi_2left(-i,sqrt3right)right]\
          &=fracpi^218-fracln^2left(2right)2-Releft[operatornameLi_2left(-i,sqrt3right)right]\
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-i,sqrt3right)+overlineoperatornameLi_2left(-i,sqrt3right)2\
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-i,sqrt3right)+operatornameLi_2left(overline-i,sqrt3right)2\
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-i,sqrt3right)+operatornameLi_2left(i,sqrt3right)2\
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-3right)4,\
          endalign$$



          where in going from the third to the fourth line we've used the mirror symmetry of the dilogarithm, and to obtain the last line we've used the dilogarithmic identity,



          $$operatornameLi_2left(zright)+operatornameLi_2left(-zright)=frac12operatornameLi_2left(z^2right).$$



          One more dilogarithmic identity we shall need relates the dilogarithms of reciprocal arguments:



          $$operatornameLi_2left(zright)=-operatornameLi_2left(frac1zright)-frac12ln^2(-z)-fracpi^26;~znotin[0,1].$$



          Hence,



          $$beginalign
          Releft[operatornameLi_2left(frac34+ifracsqrt34right)right]
          &=fracpi^218-fracln^2left(2right)2-fracoperatornameLi_2left(-3right)4\
          &=fracpi^218-fracln^2left(2right)2-frac-operatornameLi_2left(-frac13right)-frac12ln^2(3)-fracpi^264\
          &=frac7pi^272+fracln^2(3)8-fracln^2left(2right)2+frac14operatornameLi_2left(-frac13right).\
          endalign$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Oct 19 '14 at 5:07









          David H

          21.2k24190




          21.2k24190











          • Nice answer David H again! Thank you! +1.
            – user153012
            Oct 19 '14 at 8:49






          • 1




            Impressive! +1 for the answer and +1 for the OP @user153012. I am really too kind for upvoting post so easily (っ^▿^)💨
            – Anastasiya-Romanova 秀
            Oct 19 '14 at 9:24






          • 1




            Thank you @Anastasiya-Romanova and with this, yes, you really have a really nice expression to your hypergeom series there. Finally. ;>
            – user153012
            Oct 19 '14 at 9:26






          • 2




            @Anastasiya-Romanova $$_3F_2left(frac13,frac13,frac13;frac43,frac43; frac12 right)$$ equals to $$fracsqrt[3]23left( -frac5,pi^272 - fracpi,sqrt39ln 2 + fracpi,sqrt36ln 3+frac18ln^2 3 - frac16 ln^2 2 + frac14 psi_1left(frac13right) + frac13operatornameLi_2left(-frac13right) right)$$
            – user153012
            Oct 19 '14 at 10:00






          • 1




            @Anastasiya-Romanova The proof comes from the answers by M.N.C.E. and David H here, and the analysis by David H of this question.
            – user153012
            Oct 19 '14 at 10:07
















          • Nice answer David H again! Thank you! +1.
            – user153012
            Oct 19 '14 at 8:49






          • 1




            Impressive! +1 for the answer and +1 for the OP @user153012. I am really too kind for upvoting post so easily (っ^▿^)💨
            – Anastasiya-Romanova 秀
            Oct 19 '14 at 9:24






          • 1




            Thank you @Anastasiya-Romanova and with this, yes, you really have a really nice expression to your hypergeom series there. Finally. ;>
            – user153012
            Oct 19 '14 at 9:26






          • 2




            @Anastasiya-Romanova $$_3F_2left(frac13,frac13,frac13;frac43,frac43; frac12 right)$$ equals to $$fracsqrt[3]23left( -frac5,pi^272 - fracpi,sqrt39ln 2 + fracpi,sqrt36ln 3+frac18ln^2 3 - frac16 ln^2 2 + frac14 psi_1left(frac13right) + frac13operatornameLi_2left(-frac13right) right)$$
            – user153012
            Oct 19 '14 at 10:00






          • 1




            @Anastasiya-Romanova The proof comes from the answers by M.N.C.E. and David H here, and the analysis by David H of this question.
            – user153012
            Oct 19 '14 at 10:07















          Nice answer David H again! Thank you! +1.
          – user153012
          Oct 19 '14 at 8:49




          Nice answer David H again! Thank you! +1.
          – user153012
          Oct 19 '14 at 8:49




          1




          1




          Impressive! +1 for the answer and +1 for the OP @user153012. I am really too kind for upvoting post so easily (っ^▿^)💨
          – Anastasiya-Romanova 秀
          Oct 19 '14 at 9:24




          Impressive! +1 for the answer and +1 for the OP @user153012. I am really too kind for upvoting post so easily (っ^▿^)💨
          – Anastasiya-Romanova 秀
          Oct 19 '14 at 9:24




          1




          1




          Thank you @Anastasiya-Romanova and with this, yes, you really have a really nice expression to your hypergeom series there. Finally. ;>
          – user153012
          Oct 19 '14 at 9:26




          Thank you @Anastasiya-Romanova and with this, yes, you really have a really nice expression to your hypergeom series there. Finally. ;>
          – user153012
          Oct 19 '14 at 9:26




          2




          2




          @Anastasiya-Romanova $$_3F_2left(frac13,frac13,frac13;frac43,frac43; frac12 right)$$ equals to $$fracsqrt[3]23left( -frac5,pi^272 - fracpi,sqrt39ln 2 + fracpi,sqrt36ln 3+frac18ln^2 3 - frac16 ln^2 2 + frac14 psi_1left(frac13right) + frac13operatornameLi_2left(-frac13right) right)$$
          – user153012
          Oct 19 '14 at 10:00




          @Anastasiya-Romanova $$_3F_2left(frac13,frac13,frac13;frac43,frac43; frac12 right)$$ equals to $$fracsqrt[3]23left( -frac5,pi^272 - fracpi,sqrt39ln 2 + fracpi,sqrt36ln 3+frac18ln^2 3 - frac16 ln^2 2 + frac14 psi_1left(frac13right) + frac13operatornameLi_2left(-frac13right) right)$$
          – user153012
          Oct 19 '14 at 10:00




          1




          1




          @Anastasiya-Romanova The proof comes from the answers by M.N.C.E. and David H here, and the analysis by David H of this question.
          – user153012
          Oct 19 '14 at 10:07




          @Anastasiya-Romanova The proof comes from the answers by M.N.C.E. and David H here, and the analysis by David H of this question.
          – user153012
          Oct 19 '14 at 10:07

















           

          draft saved


          draft discarded















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f980179%2fclosed-form-of-a-special-value-dilogarithm-identity%23new-answer', 'question_page');

          );

          Post as a guest













































































          這個網誌中的熱門文章

          How to combine Bézier curves to a surface?

          Mutual Information Always Non-negative

          Why am i infinitely getting the same tweet with the Twitter Search API?