Show that $sum^infty_n=1(-1)^n+1dfrac1n+x^4$ is uniformly convergent on $BbbR$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite
1












Show that the following series is uniformly convergent on $BbbR$



beginalignsum^infty_n=1(-1)^n+1dfrac1n+x^4endalign



MY TRIAL



I tried using the alternating series test before the $beta_n$ approach.



Let $f_n(x)=dfrac1n+x^4,;forall;xinBbbR,;ninBbbN,$
then



  1. $f_n(x)=dfrac1n+x^4geq 0$

  2. $f_n+1(x)leq f_n(x)$

  3. $f_n(x)=dfrac1n+x^4to 0$

Then,
beginalignbeta_n &=suplimits_xinBbbRleft|s_n(x)-sum^infty_i=1f_i(x)right|\&=suplimits_xinBbbRleft|sum^n_i=1(-1)^i+1f_i(x)-sum^infty_i=1(-1)^i+1f_i(x)right|\&=suplimits_xinBbbRleft|sum^n_i=1(-1)^i+1dfrac1i+x^4-sum^infty_i=1(-1)^i+1dfrac1i+x^4right|\&=suplimits_xinBbbRleft|(-1)^n+2dfrac1(n+1)+x^4+(-1)^n+3dfrac1(n+2)+x^4+(-1)^n+4dfrac1(n+3)+x^4cdotsright|\&=suplimits_xinBbbRleft|dfrac1(n+1)+x^4-dfrac1(n+2)+x^4+dfrac1(n+3)+x^4-dfrac1(n+4)+x^4cdotsright|\&=suplimits_xinBbbRleft|dfrac1(n+1)+x^4-left(dfrac1(n+2)+x^4-dfrac1(n+3)+x^4right)-left(dfrac1(n+4)+x^4-dfrac1(n+5)+x^4right)cdotsright|\&leq suplimits_xinBbbRleft|dfrac1(n+1)+x^4right|to 0,;;textas;ntoinftyendalign
and we are done!



Kindly help me check if I'm correct! Constructive criticisms will be highly welcome! I'll also love to see other approaches to this problem. Thanks!










share|cite|improve this question























  • Hint: Abel-Dirichlet tests.
    – xbh
    Sep 5 at 10:34










  • Maybe you could use the same technique to estimate the $sup$.
    – xbh
    Sep 5 at 10:36














up vote
0
down vote

favorite
1












Show that the following series is uniformly convergent on $BbbR$



beginalignsum^infty_n=1(-1)^n+1dfrac1n+x^4endalign



MY TRIAL



I tried using the alternating series test before the $beta_n$ approach.



Let $f_n(x)=dfrac1n+x^4,;forall;xinBbbR,;ninBbbN,$
then



  1. $f_n(x)=dfrac1n+x^4geq 0$

  2. $f_n+1(x)leq f_n(x)$

  3. $f_n(x)=dfrac1n+x^4to 0$

Then,
beginalignbeta_n &=suplimits_xinBbbRleft|s_n(x)-sum^infty_i=1f_i(x)right|\&=suplimits_xinBbbRleft|sum^n_i=1(-1)^i+1f_i(x)-sum^infty_i=1(-1)^i+1f_i(x)right|\&=suplimits_xinBbbRleft|sum^n_i=1(-1)^i+1dfrac1i+x^4-sum^infty_i=1(-1)^i+1dfrac1i+x^4right|\&=suplimits_xinBbbRleft|(-1)^n+2dfrac1(n+1)+x^4+(-1)^n+3dfrac1(n+2)+x^4+(-1)^n+4dfrac1(n+3)+x^4cdotsright|\&=suplimits_xinBbbRleft|dfrac1(n+1)+x^4-dfrac1(n+2)+x^4+dfrac1(n+3)+x^4-dfrac1(n+4)+x^4cdotsright|\&=suplimits_xinBbbRleft|dfrac1(n+1)+x^4-left(dfrac1(n+2)+x^4-dfrac1(n+3)+x^4right)-left(dfrac1(n+4)+x^4-dfrac1(n+5)+x^4right)cdotsright|\&leq suplimits_xinBbbRleft|dfrac1(n+1)+x^4right|to 0,;;textas;ntoinftyendalign
and we are done!



Kindly help me check if I'm correct! Constructive criticisms will be highly welcome! I'll also love to see other approaches to this problem. Thanks!










share|cite|improve this question























  • Hint: Abel-Dirichlet tests.
    – xbh
    Sep 5 at 10:34










  • Maybe you could use the same technique to estimate the $sup$.
    – xbh
    Sep 5 at 10:36












up vote
0
down vote

favorite
1









up vote
0
down vote

favorite
1






1





Show that the following series is uniformly convergent on $BbbR$



beginalignsum^infty_n=1(-1)^n+1dfrac1n+x^4endalign



MY TRIAL



I tried using the alternating series test before the $beta_n$ approach.



Let $f_n(x)=dfrac1n+x^4,;forall;xinBbbR,;ninBbbN,$
then



  1. $f_n(x)=dfrac1n+x^4geq 0$

  2. $f_n+1(x)leq f_n(x)$

  3. $f_n(x)=dfrac1n+x^4to 0$

Then,
beginalignbeta_n &=suplimits_xinBbbRleft|s_n(x)-sum^infty_i=1f_i(x)right|\&=suplimits_xinBbbRleft|sum^n_i=1(-1)^i+1f_i(x)-sum^infty_i=1(-1)^i+1f_i(x)right|\&=suplimits_xinBbbRleft|sum^n_i=1(-1)^i+1dfrac1i+x^4-sum^infty_i=1(-1)^i+1dfrac1i+x^4right|\&=suplimits_xinBbbRleft|(-1)^n+2dfrac1(n+1)+x^4+(-1)^n+3dfrac1(n+2)+x^4+(-1)^n+4dfrac1(n+3)+x^4cdotsright|\&=suplimits_xinBbbRleft|dfrac1(n+1)+x^4-dfrac1(n+2)+x^4+dfrac1(n+3)+x^4-dfrac1(n+4)+x^4cdotsright|\&=suplimits_xinBbbRleft|dfrac1(n+1)+x^4-left(dfrac1(n+2)+x^4-dfrac1(n+3)+x^4right)-left(dfrac1(n+4)+x^4-dfrac1(n+5)+x^4right)cdotsright|\&leq suplimits_xinBbbRleft|dfrac1(n+1)+x^4right|to 0,;;textas;ntoinftyendalign
and we are done!



Kindly help me check if I'm correct! Constructive criticisms will be highly welcome! I'll also love to see other approaches to this problem. Thanks!










share|cite|improve this question















Show that the following series is uniformly convergent on $BbbR$



beginalignsum^infty_n=1(-1)^n+1dfrac1n+x^4endalign



MY TRIAL



I tried using the alternating series test before the $beta_n$ approach.



Let $f_n(x)=dfrac1n+x^4,;forall;xinBbbR,;ninBbbN,$
then



  1. $f_n(x)=dfrac1n+x^4geq 0$

  2. $f_n+1(x)leq f_n(x)$

  3. $f_n(x)=dfrac1n+x^4to 0$

Then,
beginalignbeta_n &=suplimits_xinBbbRleft|s_n(x)-sum^infty_i=1f_i(x)right|\&=suplimits_xinBbbRleft|sum^n_i=1(-1)^i+1f_i(x)-sum^infty_i=1(-1)^i+1f_i(x)right|\&=suplimits_xinBbbRleft|sum^n_i=1(-1)^i+1dfrac1i+x^4-sum^infty_i=1(-1)^i+1dfrac1i+x^4right|\&=suplimits_xinBbbRleft|(-1)^n+2dfrac1(n+1)+x^4+(-1)^n+3dfrac1(n+2)+x^4+(-1)^n+4dfrac1(n+3)+x^4cdotsright|\&=suplimits_xinBbbRleft|dfrac1(n+1)+x^4-dfrac1(n+2)+x^4+dfrac1(n+3)+x^4-dfrac1(n+4)+x^4cdotsright|\&=suplimits_xinBbbRleft|dfrac1(n+1)+x^4-left(dfrac1(n+2)+x^4-dfrac1(n+3)+x^4right)-left(dfrac1(n+4)+x^4-dfrac1(n+5)+x^4right)cdotsright|\&leq suplimits_xinBbbRleft|dfrac1(n+1)+x^4right|to 0,;;textas;ntoinftyendalign
and we are done!



Kindly help me check if I'm correct! Constructive criticisms will be highly welcome! I'll also love to see other approaches to this problem. Thanks!







real-analysis sequences-and-series analysis convergence uniform-convergence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Sep 5 at 11:08

























asked Sep 5 at 10:29









Micheal

25510




25510











  • Hint: Abel-Dirichlet tests.
    – xbh
    Sep 5 at 10:34










  • Maybe you could use the same technique to estimate the $sup$.
    – xbh
    Sep 5 at 10:36
















  • Hint: Abel-Dirichlet tests.
    – xbh
    Sep 5 at 10:34










  • Maybe you could use the same technique to estimate the $sup$.
    – xbh
    Sep 5 at 10:36















Hint: Abel-Dirichlet tests.
– xbh
Sep 5 at 10:34




Hint: Abel-Dirichlet tests.
– xbh
Sep 5 at 10:34












Maybe you could use the same technique to estimate the $sup$.
– xbh
Sep 5 at 10:36




Maybe you could use the same technique to estimate the $sup$.
– xbh
Sep 5 at 10:36















active

oldest

votes











Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2906111%2fshow-that-sum-infty-n-1-1n1-dfrac1nx4-is-uniformly-convergen%23new-answer', 'question_page');

);

Post as a guest



































active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes















 

draft saved


draft discarded















































 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2906111%2fshow-that-sum-infty-n-1-1n1-dfrac1nx4-is-uniformly-convergen%23new-answer', 'question_page');

);

Post as a guest













































































這個網誌中的熱門文章

How to combine Bézier curves to a surface?

Mutual Information Always Non-negative

Why am i infinitely getting the same tweet with the Twitter Search API?