Show that $ lim_jtoinftyprod_n=j^mjfracpi2tan^-1(kn)=m^frac2kpi$
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
MathWorld (visit http://mathworld.wolfram.com/PiFormulas.html) states that
$displaystyle lim_jtoinftyprod_n=j^2jfracpi2tan^-1n=4^frac1pi$
(equation 130)
With a calculator, I find a general formula:
$displaystyle lim_jtoinftyprod_n=j^mjfracpi2tan^-1(kn)=m^frac2kpi$
But I have not found a proof for this. Any proof would be appreciated.
sequences-and-series
add a comment |Â
up vote
1
down vote
favorite
MathWorld (visit http://mathworld.wolfram.com/PiFormulas.html) states that
$displaystyle lim_jtoinftyprod_n=j^2jfracpi2tan^-1n=4^frac1pi$
(equation 130)
With a calculator, I find a general formula:
$displaystyle lim_jtoinftyprod_n=j^mjfracpi2tan^-1(kn)=m^frac2kpi$
But I have not found a proof for this. Any proof would be appreciated.
sequences-and-series
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
MathWorld (visit http://mathworld.wolfram.com/PiFormulas.html) states that
$displaystyle lim_jtoinftyprod_n=j^2jfracpi2tan^-1n=4^frac1pi$
(equation 130)
With a calculator, I find a general formula:
$displaystyle lim_jtoinftyprod_n=j^mjfracpi2tan^-1(kn)=m^frac2kpi$
But I have not found a proof for this. Any proof would be appreciated.
sequences-and-series
MathWorld (visit http://mathworld.wolfram.com/PiFormulas.html) states that
$displaystyle lim_jtoinftyprod_n=j^2jfracpi2tan^-1n=4^frac1pi$
(equation 130)
With a calculator, I find a general formula:
$displaystyle lim_jtoinftyprod_n=j^mjfracpi2tan^-1(kn)=m^frac2kpi$
But I have not found a proof for this. Any proof would be appreciated.
sequences-and-series
edited Aug 26 at 23:19
amWhy
190k26221433
190k26221433
asked Aug 26 at 23:15
Larry
1219
1219
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
4
down vote
accepted
It is easier to analyze the behavior of the limit if you take logarithm. Indeed, write
$$ P_j = P_j(m,k) = prod_n=j^mj fracpi2arctan(kn) $$
for the expression inside the limit. Then using the relation $arctan(x) = fracpi2 - arctan(frac1x)$ which holds for $x > 0$, we find that
$$ logleft(fracpi2arctan(x)right)
= -logleft(1 - tfrac2piarctanleft(tfrac1xright) right)
= tfrac2pi x + mathcalOleft(x^-2right)
quad textas quad x to infty.$$
So it follows that
$$
log P_j
= sum_n=j^mj left( logfracpi2 - logarctan(kn)right)
= sum_n=j^mj left( frac2pi kn + mathcalO(n^-2) right).
$$
By noting that this is a Riemann sum with a vanishing error term, we realize that $log P_n$ converges to $int_1^m frac2pi kx , dx
= frac2pi klog m$ as $ntoinfty$. Exponentiation then yields $ P_n to m^frac2pi k $ as expected.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
It is easier to analyze the behavior of the limit if you take logarithm. Indeed, write
$$ P_j = P_j(m,k) = prod_n=j^mj fracpi2arctan(kn) $$
for the expression inside the limit. Then using the relation $arctan(x) = fracpi2 - arctan(frac1x)$ which holds for $x > 0$, we find that
$$ logleft(fracpi2arctan(x)right)
= -logleft(1 - tfrac2piarctanleft(tfrac1xright) right)
= tfrac2pi x + mathcalOleft(x^-2right)
quad textas quad x to infty.$$
So it follows that
$$
log P_j
= sum_n=j^mj left( logfracpi2 - logarctan(kn)right)
= sum_n=j^mj left( frac2pi kn + mathcalO(n^-2) right).
$$
By noting that this is a Riemann sum with a vanishing error term, we realize that $log P_n$ converges to $int_1^m frac2pi kx , dx
= frac2pi klog m$ as $ntoinfty$. Exponentiation then yields $ P_n to m^frac2pi k $ as expected.
add a comment |Â
up vote
4
down vote
accepted
It is easier to analyze the behavior of the limit if you take logarithm. Indeed, write
$$ P_j = P_j(m,k) = prod_n=j^mj fracpi2arctan(kn) $$
for the expression inside the limit. Then using the relation $arctan(x) = fracpi2 - arctan(frac1x)$ which holds for $x > 0$, we find that
$$ logleft(fracpi2arctan(x)right)
= -logleft(1 - tfrac2piarctanleft(tfrac1xright) right)
= tfrac2pi x + mathcalOleft(x^-2right)
quad textas quad x to infty.$$
So it follows that
$$
log P_j
= sum_n=j^mj left( logfracpi2 - logarctan(kn)right)
= sum_n=j^mj left( frac2pi kn + mathcalO(n^-2) right).
$$
By noting that this is a Riemann sum with a vanishing error term, we realize that $log P_n$ converges to $int_1^m frac2pi kx , dx
= frac2pi klog m$ as $ntoinfty$. Exponentiation then yields $ P_n to m^frac2pi k $ as expected.
add a comment |Â
up vote
4
down vote
accepted
up vote
4
down vote
accepted
It is easier to analyze the behavior of the limit if you take logarithm. Indeed, write
$$ P_j = P_j(m,k) = prod_n=j^mj fracpi2arctan(kn) $$
for the expression inside the limit. Then using the relation $arctan(x) = fracpi2 - arctan(frac1x)$ which holds for $x > 0$, we find that
$$ logleft(fracpi2arctan(x)right)
= -logleft(1 - tfrac2piarctanleft(tfrac1xright) right)
= tfrac2pi x + mathcalOleft(x^-2right)
quad textas quad x to infty.$$
So it follows that
$$
log P_j
= sum_n=j^mj left( logfracpi2 - logarctan(kn)right)
= sum_n=j^mj left( frac2pi kn + mathcalO(n^-2) right).
$$
By noting that this is a Riemann sum with a vanishing error term, we realize that $log P_n$ converges to $int_1^m frac2pi kx , dx
= frac2pi klog m$ as $ntoinfty$. Exponentiation then yields $ P_n to m^frac2pi k $ as expected.
It is easier to analyze the behavior of the limit if you take logarithm. Indeed, write
$$ P_j = P_j(m,k) = prod_n=j^mj fracpi2arctan(kn) $$
for the expression inside the limit. Then using the relation $arctan(x) = fracpi2 - arctan(frac1x)$ which holds for $x > 0$, we find that
$$ logleft(fracpi2arctan(x)right)
= -logleft(1 - tfrac2piarctanleft(tfrac1xright) right)
= tfrac2pi x + mathcalOleft(x^-2right)
quad textas quad x to infty.$$
So it follows that
$$
log P_j
= sum_n=j^mj left( logfracpi2 - logarctan(kn)right)
= sum_n=j^mj left( frac2pi kn + mathcalO(n^-2) right).
$$
By noting that this is a Riemann sum with a vanishing error term, we realize that $log P_n$ converges to $int_1^m frac2pi kx , dx
= frac2pi klog m$ as $ntoinfty$. Exponentiation then yields $ P_n to m^frac2pi k $ as expected.
answered Aug 26 at 23:37
Sangchul Lee
86.2k12155253
86.2k12155253
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2895628%2fshow-that-lim-j-to-infty-prod-n-jmj-frac-pi2-tan-1kn-m-frac%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password